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1 Introduction

Schwarz Waveform relaxation (SWR) [1, 2, 6] is an iterative algorithm for
solving time dependent partial differential equations (PDEs) in parallel. The
domain of the PDE is partitioned into overlapping or non-overlapping subdo-
mains, then the PDE is solved iteratively on each subdomain. The emphasis
has focused on developing artificial transmission conditions which exchange
information between neighboring subdomains and lead to fast convergence.

The initial guess at the subdomain boundaries is often chosen to be a
constant (maybe a continuation of the initial condition for the PDE). We
show here, that in some situations, we can dramatically reduce the number
of SWR iterations to convergence by computing an improved initial guess
at the subdomain boundaries using a multirate (MR) time integrator. The
MR time integrator naturally produces a spatial splitting over time windows,
while the SWR portion of the algorithm can fix a potential loss of accuracy
in the MR approach. The efficacy of the resulting accelerated SWR (ASWR)
algorithm is demonstrated for a test problem.
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2 Background Material

We assume the PDE has been semi-discretized in space using finite differ-
ences, leading to a system of ordinary differential equations (ODEs) of the
form

y′ = f(t, y),

y(t0) = y0, y ∈ RN .
(1)

We integrate (1) using a MR method largely due to Savenco et al. [5].
Consider the embedded Rosenbrock method given by

(I − γ∆tfy(tn−1, yn−1))K1 = ∆tf(tn−1, yn−1) + γ∆t2ft(tn−1, yn−1),

(I − γ∆tfy(tn−1, yn−1))K2 = ∆tf(tn−1 +∆t, yn−1 +K1)

− γ∆t2ft(tn−1, yn−1)− 2K1,

yn = yn−1 +K1,

ŷn = yn−1 +
3

2
K1 +

1

2
K2,

(2)

where fy(tn, yn) is the Jacobian matrix and ft(tn, yn) is the time derivative.
In what follows, ft is estimated using a forward difference. The first order
approximation (ROS1), yn, is used as the time integrator to obtain the nu-
merical results presented in this paper, while the second order approximation
(ROS2), ŷn, provides an estimate of the local error vector, En. In our tests
we use γ = 1/2 which results in A–stable ROS1 and ROS2 methods [4]. The
approximation is linearly implicit, requiring a linear solve at each time step.
This can be efficient for non-linear problems.

ROS1 and ROS2 can be used together to produce an adaptive (single rate)
time stepper based on local error control. The local error of the ith component
for the ODEs (1) at time t = tn, En,i, can be estimated as En,i = |yn,i− ŷn,i|,
for i = 1, . . . , N . If ‖En‖∞ (obtained with time step ∆t) is less than the
required tolerance, the integration proceeds with a (possibly larger) new time
step, otherwise the step is repeated with a smaller step size. In either case
the new time step is given by ∆tnew = θ∆t(tol/‖En‖∞)1/2, where θ < 1 is a
safety factor and tol is the tolerance.

3 A Multirate Approach

The local error control mechanism can also be used as the basis for a MR
approach, see [5]. Suppose a local error, En, is obtained with a time step
∆t. We can estimate the time step required by each component of the ODE
system, ∆tn,i to achieve the tolerance tol as ∆tn,i = θ∆t(tol/En,i)

1/2, for
i = 1, 2, . . . , N . We denote the minimum time step required by any component
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as ∆tmin = mini=1,...,N ∆tn,i. Figure 1 shows two scenarios for the size of the
local error during the integration of parabolic PDEs of interest here.

       

Fig. 1: Identifying fast components using the local error.

In the figure on the left all of the components of the local error are be-
low the required tolerance. In this case the time step is accepted, and likely
increased for the next step. The plot on the right shows a situation where
some components of the local error are larger than the required tolerance. In
the MR approach, only these (fast) components are recomputed (using the
smaller time step, ∆tmin). The other (slow) components are accepted with-
out further computation. Coupling between the fast and slow components is
typically handled by interpolation or using dense output formulae. The single
rate approach, in contrast, would recompute all components with a smaller
time step if the norm of the local error is larger than the tolerance. The pro-
cess is then repeated for the next global time step. In [5] the size of the global
time step is chosen using a MR factor which is controlled by a heuristic based
on the estimated computational savings.

In [5] uniform or recursive refinements are suggested for the fast com-
ponents. An error analysis for linear systems and the θ–method with one
level of refinement is given in [3]. For parabolic time dependent PDEs which
have groups of components evolving at different time scales, the MR method
demonstrates a gain in efficiency. In our experience, however, the approach
is quite sensitive to the choice of slow and fast components and the accuracy
of the interpolation method.

To illustrate this we consider the traveling wave equation

ut = εuxx + ξu2(1− u), (3)

for 0 < x < 5, 0 < t ≤ T = 3, with initial and boundary conditions
u(x, 0) = (1 + eλ(x−1))−1 and ux(0, t) = ux(5, t) = 0, where ε = 10−2,
ξ = 1/ε and λ =

√
ξ/2ε. In space, u is discretized with N = 1000 grid points

and standard second order differences. For comparison purposes a single rate
reference solution has been integrated in time using Matlab’s ode15s with tol-
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erance 10−10. The solution is a travelling wave solution with a sharp interface
between u = 1 and u = 0 moving to the right.

In Tables 1 and 2, we use Savenco’s code, see [5], for both the single rate
and MR approaches. We modify the inputs to control the MR time step size,
the number of points added to fast region identified by the local error test, and
the interpolation used to generate the slow components needed during the
refinement of the fast components. The errors at the final time are measured
by subtracting the single or the MR solution from the reference solution in
the infinity norm. The work estimates are based on the cost of the linear
solves in the timestepping. The CPU times (in seconds) for both the single
rate and MR approaches are reported for various tolerances.

Table 1 shows that the MR approach is able to reduce the CPU time,
albeit with some decrease in the accuracy. The reduction in CPU time is
more dramatic for smaller required tolerances. The loss in accuracy can be
reduced by adding points to the fast regions identified by the component-wise
local error test or by increasing the accuracy of the interpolation used at the
interfaces of the regions, see Table 2.

Single-rate Multirate

Tol Error Work CPU Error Work CPU

1.00e-03 3.204e-03 1639638 3.790 1.406e-02 131260 3.020

5.00e-04 1.924e-03 2256254 5.530 2.586e-03 167978 2.990

1.00e-04 4.835e-04 4862858 3.990 6.812e-03 319690 4.530

5.00e-05 2.541e-04 6816810 5.580 3.294e-03 442186 4.120

1.00e-05 5.427e-05 15057042 12.120 5.460e-04 971304 6.880

Table 1: Errors, Work and CPU time in seconds at T = 3 of Savcenco’s MR
approach with uniform refinement and using the dense output method.

Added Points ErrorL ErrorQ ErrorD
0 8.392e-03 3.407e-03 3.271e-03

5 2.061e-03 1.052e-03 1.028e-03

10 7.418e-04 5.623e-04 5.582e-04

15 5.062e-04 4.751e-04 4.744e-04

20 4.654e-04 4.600e-04 4.599e-04

Table 2: Errors obtained using linear and quadratic interpolation and dense
output for (3) at T = 3 using a fixed MR time step ∆mt = 2∆st with
Tol = 10−4 while varying the number of points added to the fast region.

The number of added points which allows the MR algorithm to recover the
single rate error for a given tolerance depends on the MR time step size, the
final integration time, the PDE being solved, and the discretizations used.
This is difficult to determine a priori.
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4 An Accelerated SWR approach

Consider our test problem discretized using 1000 uniformly spaced points on
[0, 5]. We solve the global domain problem with MR time steps of ∆mt =
m∆st with a multirate factor m and ∆st = 0.01 (a time step which keeps
the local error below a tolerance of tol = 5× 10−3 for the single rate (global)
algorithm). In Figure 2, the horizontal lines show multirate time steps with
m = 20. The local error estimate is used to identify the fast region (shown
in red) and the slow regions, during each MR time step.

To implement a SWR iteration the domain is partitioned into ten equal
subdomains, as shown in the left of Figure 2. We refer to this as a static
partitioning. Overlapping subdomains are obtained by adding a small overlap
(not shown) to the left and right of the interior interfaces. We generate initial
guesses for the SWR iteration as follows. If an interface lies in a slow region
then an interpolant in time, constructed using the solution obtained from the
MR time step, is used. If an interface lies in a fast region then an improved
initial guess is constructed by refining the fast region using a single rate
method with a time step of ∆st, as described in Section 3. A (classical) SWR
iteration is used from these initial guesses, here the SWR iterates are also
computed using ∆st (in practice one could use an adaptive time stepping for
the subdomain solves). The process is then repeated over the next ∆mt, and
so on. To demonstrate, in Figure 3 we plot the results of this experiment
for ASWR with static partitioning on the second (left) and fourth (right)
time windows. The vertical axis shows the error between the single rate and
SWR solutions. The two norm of the error (in time) is calculated along all
interfaces. SWR is accelerated if any of the subdomain boundaries lie in a fast
region and hence is able to benefit from the refined solution. The reduction
in the iteration count on each time window depends on the position of the
interface in the fast region. For this example, we will see that with a good
placement of the interface one SWR iteration is able to correct the loss of
accuracy inherent in the MR algorithm.

Motivated by the improvement, should a subdomain boundary lie in a fast
region, we can build an improved dynamic partitioning algorithm. After com-
pleting a global MR time step, assuming a sufficient number of processors we
partition the whole domain by introducing an interface in each fast region,
and partition the rest of domain so that the subdomains are of (approxi-
mately) equal size. This is illustrated in the right plot in Figure 2. Placing
the interface in the middle of the fast region attempts to minimize the cou-
pling between the fast and slow components. With this dynamic partitioning
ASWR accelerates convergence in an approximately uniform way over all
time windows, see Figure 4 where the SWR errors are shown on the second
time window for two different multirate time steps.

The difficulty in choosing the appropriate number of points to add to the
fast region and the interpolation required in the MR method is pushed aside
and instead the refined fast solution can be used to accelerate a correction
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using SWR. The computation of the global time step and the subsequent
partitioning from the MR algorithm provides: information that can guide the
SWR partitioning, improved initial guesses at the interfaces for the subse-
quent SWR correction, and information about the single rate or SWR time
step required to globally achieve the local error tolerance.

A general algorithm would handle multiple fast regions during a multirate
time step. Interfaces are introduced into each fast region and SWR initial
guesses are obtained by refining the fast regions (in parallel). A global time
step for the SWR iteration can be chosen to be the smallest time step used
over all the fast regions. Again with a sufficient number of processors a well
load–balanced splitting is possible while keeping interfaces in the fast regions.
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(b) Dynamic Partitioning

Fig. 2: Partitioning approaches for ASWR.
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Fig. 3: Convergence histories for classical ASWR with S = 10 and m = 20 on
the second (left) and fourth (right) time window using a static partitioning.
An overlap of 10 points is used during the SWR.

The number of SWR iterations can be further minimized by introducing
a non-overlapping splitting and an optimized SWR iteration.
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(a) t ∈ [∆mt, 2∆mt] with m = 20
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(b) t ∈ [∆mt, 2∆mt] with m = 10

Fig. 4: Convergence histories for ASWR with m = 20, 10 points of overlap,
on S = 10 subdomains (left) and m = 10, 5 points of overlap, on S = 15
subdomains (right) on the second time window using a dynamic partitioning.

5 A Comparison

In Table 3, we provide a comparison of the single rate, MR, static and dy-
namic ASWR algorithms. Single rate results are given, then the local error
estimate is used to identify and refine the fast region. MR results (using the
algorithm in Section 3) with 0 and 20 points added to the identified fast re-
gion are provided. Finally, one classical ASWR iteration is used with static
and dynamic partitioning with S = 15 subdomains for ∆st = 0.01, S = 26
for ∆st = 0.005, S = 30 for ∆st = 0.0025, S = 34 for ∆st = 0.00125 and
only one point of overlap. A multirate factor of m = 10 is used for the MR
and ASWR results.

Single-rate MR (0) MR (20) S-ASWR D-ASWR

∆st Error Work Error Work Error Work Error Work Error Work

0.01 0.0273 300000 0.0345 51910 0.0274 63930 0.0279 72198 0.0274 74505

0.005 0.0131 600000 0.2126 84760 0.0138 108600 0.0243 115085 0.0130 110360

0.025 0.0042 1200000 0.0950 162710 0.0043 210680 0.0107 215412 0.0037 207800

0.0125 0.0012 2400000 0.0391 317990 0.0012 413980 0.0309 423535 0.0002 400996

Table 3: Errors and work at T = 3 for the single rate method, MR with 0
and 20 added points to the fast region, and static and dynamic ASWR.

Table 3 shows that the MR method without points added to the fast re-
gion loses accuracy compared to the single rate method. The refined fast
region allow us to accelerate the SWR convergence recovering the lost ac-
curacy with a cost less than the cost of the single rate solution. Increasing
the number of subdomains further makes the simulation more efficient. The
S-ASWR method (with static partioning) has a higher error than the D-
ASWR approach after one SWR correction. This is due to the somewhat
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random placement of the interfaces in the S-ASWR approach. One iteration
of D-ASWR is sufficient to achieve the required tolerance for this problem.

6 Conclusions

The MR approach proposed in [5] provides an automatic way to identify
the fast and slow components of a problem based on a local error estimate.
The coupling between this fast-slow splitting leads to a loss in accuracy as
compared to a single rate approach. The error can be reduced by increasing
the size of the fast region (to reduce the coupling) but the required size of
the overlap is problem dependent.

We propose algorithms which use the MR splitting to provide a decom-
position of the space-time domain and improved initial guesses for the SWR
(correction), resulting in an ASWR algorithm. The robustness and efficiency
of the ASWR comes from the large reduction in the number of SWR iter-
ations to reach the single rate accuracy and the increase in the number of
subdomains. This can be achieved with the dynamic partitioning approach.
Future work will include an analysis of these ASWR algorithms.
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