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A B S T R A C T

Water alternating gas (WAG) is an enhanced oil recovery (EOR) method integrating the improved macroscopic
sweep of water flooding with the increased microscopic displacement of gas injection. The optimal design of the
WAG operating parameters is usually based on numerical reservoir simulation via trial and error. In this study,
robust evolutionary algorithms are utilized to automatically optimize hydrocarbon WAG performance in the E-
segment of the Norne field. Net present value (NPV) and two global semi-random search strategies, a genetic
algorithm (GA) and particle swarm optimization (PSO), are used to optimize over an increasing number of
operating parameters. The operating parameters include water and gas injection rates, bottom-hole pressures of
the oil production wells, cycle ratio, cycle time, the composition of the injected hydrocarbon gas and the total
WAG period. In progressive case studies, the number of decision-making variables is increased, increasing the
problem complexity while potentially improving the efficacy of the WAG process. We also optimize the incre-
mental recovery factor (IRF) within a fixed total WAG simulation time. The distinctions between the WAG
parameters found by optimizing NPV and oil recovery are highlighted. This is the first known work to optimize
over such a wide set of WAG variables and the first use of PSO to optimize a WAG project at the field scale.
Compared to the reference cases, the best overall values of the objective functions found by GA and PSO were
13.8% and 14.2% higher, respectively, if NPV is optimized over all the above WAG operating variables, and
14.2% and 16.2% higher, respectively, if the IRF is optimized.

1. Introduction

Enhanced oil recovery (EOR) techniques are meant to decrease the
residual oil saturation after primary and secondary oil production [1].
Gas injection as an EOR process is widely used for increasing oil re-
covery by injecting gases into the oil reservoir [1–6]. A low mobility
ratio between the injected gas and the displaced oil during the im-
miscible displacement process leads to an unstable zone on the front as
well as early breakthrough and viscous fingering [7,8]. Water alter-
nating gas (WAG) was first proposed as a method to integrate the im-
proved microscopic displacement efficiency of gas injection with the
increased macroscopic sweep efficiency of water flooding [9].

WAG has been conducted with success in most field trials. The
majority of the fields subjected to WAG are located in Canada and the
United States. WAG incremental oil recovery is reported to be about
5%, however, incremental recovery has reached up to 20% in several
fields. High incremental recovery is usually a result of the gas being
miscible with the reservoir oil. Carbon dioxide (CO2) and hydrocarbon
gases are the two most commonly used injectants. CO2 is expensive, not

easily available, especially for offshore purposes, and it can cause cor-
rosion issues [10,11], however, hydrocarbon gases are directly ob-
tained from oil production or from a nearby gas field, and in almost all
offshore WAG applications hydrocarbon gases are injected either as dry
gas or are enriched before injection [9].

It is crucial to develop and test various WAG scenarios in order to
determine the optimum operational parameters based on economics
[12]. Parameters which can affect WAG are classified into reservoir
characteristics (such as heterogeneity, wettability, fluid properties) and
operational/well control parameters (injection pattern, injection rates,
bottom-hole pressures of the oil producers, WAG or cycle ratio, cycle
time, the composition of the injection gas and the total WAG duration)
[9,13–17]. Reservoir characteristics are usually either uncontrollable or
too costly to modify, hence locating the optimal operational point is of
vital significance. Non-optimal well control parameters are likely to
result in early breakthrough and high water cut and/or gas-oil ratio,
thus low oil recovery and less profit. To the best of the authors’
knowledge, no automatic optimization has ever been done on the whole
set of control variables prepared here. As the number of controlling
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variables increases, the optimization of WAG performance in a het-
erogeneous reservoir becomes more complex and challenging.

Several previous simulation studies have used a limited number of
runs and suggested field performance surveillance to optimize WAG
parameters [12,18–21]. Ampomah et al. optimized WAG cycles using
numerical reservoir simulators and proposed longer gas cycles to in-
crease oil recovery and CO2 storage [22]. Gharbi utilized an expert
system, as a subclass of Artificial Intelligence, combined with an eco-
nomic package, to optimize WAG ratio, slug size per WAG cycle and
then the total slug size by changing the variables incrementally in small
ranges [23]. Esmaiel and Heeremans, Ghomian et al., and Ghaderi et al.
used response surfaces as a proxy for the reservoir simulator to optimize
the WAG parameters by means of a polynomial expression [24–26]. Dai
et al. [27,28] employed a response surface analysis and Monte Carlo
simulation to optimize a CO2-EOR process and found the optimal dis-
tance between the wells and the sequence of alternating injection cy-
cles. Rahmawati et al. solved the mixed-integer nonlinear optimization
problem for different flooding strategies and employed a heuristic
simplex algorithm to find the maximum NPV and the best injection
scenario. They mentioned that the NPV should be tested and maximized
for the optimum field production life time (before the negative return of
NPV) [29]. Jahangiri used Ensemble Kalman filter (EnKF) to optimize
the net present value of a WAG process by controlling the injection
rates, bottom hole pressures of the producers and injection pattern as
the variables. He showed the flexibility of EnKF in the choice of si-
mulator and economic model and its low computational cost [30].

Yang et al. used a genetic algorithm (GA) and simulated annealing
to optimize the multivariate production-injection system for WAG
miscible flooding using net present value as the objective function.
They chose average reservoir pressure, producing GOR, water-cut and
oil rate for each production well, and gas or water injection volume as
the decision-making variables. They claimed that both of the techniques
showed stability and efficiency for their optimization purpose [31,32].
Chen et al. used a GA to optimize the controlling variables (WAG ratio,
cycle time, injection rates and bottom hole pressures of the producers)
of a CO2-miscible WAG in field scale. They hybridized the GA with an
orthogonal array and Tabu search to improve the convergence speed of
GA [14]. However, they limited all the optimization variables to take
only a few discrete values.

The huge number of alternative WAG control schemes necessitates
the employment of efficient and robust optimization algorithms to
make the most profitable decision. We use a genetic algorithm (GA) and
particle swarm optimization (PSO) in this study. GA has gained much
popularity in the petroleum industry and both of these techniques have
proven their capability in finding the optima of various oil and gas
problems [33–35]. These are black-box algorithms which do not need
access to the simulator code and can be efficiently parallelized. GA has
already been used for the purpose of WAG optimization, however, the
injection gas composition was not included and the number of variables
was lower than those optimized in this paper. PSO is tested here to
optimize a WAG project in the field scale for the first time.

In this study, D-optimal design, a design of experiments (DOE) ap-
proach which spans the whole search space more efficiently than a full
factorial design [36], is integrated with GA and PSO to improve the
initialization process of the algorithms and is also used as the reference
case to monitor the success of our optimization. NPV and incremental
recovery factor (IRF) are selected as objective functions and the set of
controllable operating parameters include water and gas injection rates,
bottom-hole pressures of the oil producers, cycle ratio, cycle time, the
composition of the injected hydrocarbon gas and the total WAG period.
Three case studies on NPV optimization and one on IRF optimization
are designed. The case studies are carried out on the E-segment of the
Norne field (See Section 3 for more information on the field). In pro-
gressive case studies, an incremental number of variables are sampled
from this set to examine the practicality of the optimization algorithms
and the increased efficacy of the WAG process as the problem

complexity increases. We show that such optimization techniques will
succeed at finding the optimal solution and increase the economic
benefit.

2. Methodology

In this section, the objective functions, well control parameters
(optimization variables), optimization techniques and the optimization
procedure used in this study are explained and illustrated.

2.1. Objective functions

In production optimization, the ultimate recovery factor or net
present value (NPV) is usually chosen as the objective (fitness) function.
Although NPV, as an economic measure, is not the only influencing
factor, it is a proper indication of the project’s profitability and helps in
decision making. NPV is defined as the sum of the present values of
incoming and outgoing cash flows over a period of time [14]. NPV for a
WAG process can be calculated as
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where n is the total number of years, i is the year number, co is the price
of produced oil, cg and cw are the price for purchasing gas and water for
injection, ′cg and ′cw are the cost of treating and recycling the produced
gas and water, Q is the total volume of the produced or injected fluid
and r is the interest rate. The subscripts o w, and g refer to oil, water and
gas and the superscripts inj and prod represent injection and produc-
tion, respectively. The volumes are obtained as outputs of the reservoir
simulator and are functions of the optimization vector x .

The total oil production after the start of the WAG divided by the
initial oil in place, known as incremental recovery factor (IRF), is the
second objective function used in this study. IRF is defined in the fol-
lowing form

∫
=IRF

q dt
IOIP

,
T

o0
(2)

whereT is the total WAG duration, qo is the total oil production rate and
IOIP is the initial oil in place.

2.2. Well control parameters

The three subsystems, namely reservoir, well and surface facilities
are often treated independently and the locally optimized results of
each subsystem is handed off to its next downstream stage for func-
tional analysis [37]. It is important to consider the problem of pro-
duction optimization as an integrated system and optimize the sub-
systems’ performance globally. Therefore, in this paper both the
injection and production parameters are taken into account.

Due to reservoir heterogeneity, different injection rates/flowing
bottom hole pressures are assigned to each injector/producer. Injection
rates should be chosen according to fracturing pressure and well in-
jectivity and the producers’ bottom-hole pressures (BHPs) should vary
in a range which conforms to well and surface facility constraints. It is
economical to maintain the BHP at, or close to, the minimum mis-
cibility pressure (MMP) if sufficient drawdown can be applied in the
reservoir [14].

Other WAG injection parameters include the length of a period of
water and gas injection. This is known as the cycle time. Another WAG
injection parameter requiring investigation is the ratio of water to gas
injection which can be defined by WAG ratio or cycle ratio. WAG ratio
is the ratio of the volume of water to the volume of gas injected at

E. Mohagheghian et al. Fuel 223 (2018) 86–98

87



reservoir conditions and cycle ratio is the ratio of water injection time
to the total cycle time. Cycle time varies the number of cycles in a fixed
total production time, and hence affects ultimate recovery. Higher WAG
or cycle ratio results in more favorable mobility, whereas a lower ratio
diminishes the residual oil saturation and extends the waterless pro-
duction period [13]. Therefore, the optimal cycle time and ratio should
be carefully determined to improve the efficiency of WAG process.
While the total time of a WAG process is usually fixed, we include it as
one of the optimization variables in this study due to the uncertainties
in reservoir life predictions and the negative return of accumulated NPV
versus time.

Another parameter which is rarely optimized is the injection gas
composition. It is essential to study the effect of gas composition on the
miscibility in the course of design and optimization of a gas flooding
project [38]. It would be economical to make the injection miscible by
altering the composition if the increase in oil recovery could justify the
costs of gas enrichment.

2.3. Optimization techniques

Due to the complexities of WAG optimization in field scale and in-
tricacies of relations between the objective function and the decision-
making variables, efficient and robust optimization methods are re-
quired to obtain the most economical WAG control parameters. Both
GA and PSO are heuristic global stochastic search algorithms which
have demonstrated their competence in solving optimization problems.
D-optimal design is used to help initialize the searching procedure and
improve the convergence speed. All the simulation runs during the
optimization search are stored, so redundant runs are avoided and
parallel computation is utilized to save computational time. We now
briefly present an overview of the optimization methods used in this
paper.

2.4. Genetic algorithm

In 1975, Holland proposed genetic algorithms “as an abstraction of
biological evolution” [39]. Over the last 20 years, this algorithm has
attracted much attention from various fields as an optimization tech-
nique to solve complex and nonlinear problems [40]. This algorithm is
recognized as an efficient, robust, parallel, and global randomized
searching algorithm which copes with a given problem by investigating
and exploiting the search space, and solves the problem by using a set of
encoded variable strings, which are called chromosomes. To conduct its
optimization process, GA evolves its population from one generation
(parents) to the next (offspring) by means of the operations of selection,
mutation and crossover [41].

The parents are selected randomly through the selection process and
chromosomes with higher fitness values are more likely to be chosen. In
the crossover operation, two parent chromosomes are combined and
part of their genetic information is exchanged to produce the offspring.
Before inserting the offspring with the best fitness values back into the
original population, a mutation operator causes the GA method to span
the search space more thoroughly and introduce variety in the popu-
lation. It is expected that GA obtains the optimal solution through the
combination of these three steps, however convergence is not guaran-
teed [41]. GA has been used in the oil industry more than other evo-
lutionary algorithms [42].

In this study, the “stochastic uniform” method is used for selection.
Parents are selected at a rate which is randomly proportional to their
scaled values. An elite count of 2 with a scattered crossover fraction of
0.8 and uniform mutation rate of 0.01 are used [43]. A population size
of 50 with 40 generations (total of 2000 simulation runs) are applied in
each of the GA optimization trials.

2.5. Particle swarm optimization

In 1995, Eberhart and Kennedy introduced particle swarm optimi-
zation (PSO) which was inspired by the social behavior and movement
dynamics of animals [44]. PSO is similar to GA, however, PSO uses the
collaborative approach rather than the competitive one used in GA
[45]. PSO uses a number of particles to span the search space. The
position of particle i at iteration k x,( ),i

k is a vector with dimension equal
to the number of optimization variables. The particles form a popula-
tion of random solutions and are stochastically distributed over the
solution space. Each particle in the swarm potentially finds a solution to
the optimization problem and moves towards the global optimum of the
objective function. Each particle remembers its most recent position in
the search space, its best ever position, p( )i

k , and the swarm’s best ever
global solution, g( )i

k .
In the optimization process, the position of each particle in the next

iteration is updated by
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Each individual modifies its velocity to find the most promising
solution based on the following relationship [46]
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where ω is the inertia weight and C1 and C2 are the cognitive and social
learning coefficients, respectively. The quantities r and r1 2 represent
two random parameters in the range of (0, 1) which are multiplied
componentwise, via the operator ⊗, with the terms in the brackets.

The inertia weight as a linear function of the iteration index is re-
presented by [46]

= −
−ω ω ω ω

k
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max min

max (5)

where ωmax expresses the maximum magnitude of the inertia weight,
ωmin is the minimum magnitude of the inertia weight, k represents the
current iteration, and kmax denotes the total number of iterations.

Perez and Behdinan [47] demonstrated that the particle swarm is
only stable if the following conditions are satisfied

< + <C C0 4,1 2 (6)

+
− < <

C C ω
2

1 1.1 2
(7)

If the above conditions are met, PSO is guaranteed to converge to a
stable equilibrium point. However, whether or not this point is actually
the global optimum cannot be guaranteed. In this study, the parameter
values of =C 0.5,1 =C 1.25,2 =ω 0.9max and =ω 0.4min were used. These
parameter values have shown good convergence results in literature
[48,49]. 50 particles and 40 iterations (totally 2000 simulation runs)
are used in each of the PSO optimization trials in this study.

2.6. Optimization procedure

Fig. 1 shows the flowchart for model-based WAG optimization
conducted in this study. The optimization is done on a fixed history
matched reservoir model. After history matching, the best simulation
runs from the results of DOE are used to initialize the search process.
The variables (WAG injection/production parameters) are written in
the suitable format in a file included in the main simulation data file
and the compositional reservoir simulator (in this case Schlumberger’s
Eclipse E300 [50]) is called to calculate the oil recovery and profiles of
cumulative oil, gas and water for each point in the solution space
(particle in PSO or individual in GA terminology). Cumulative oil
production is calculated directly for the purpose of oil recovery opti-
mization. NPV for each individual WAG scenario is computed using Eq.
(1) as coded in the economic module. A stopping criterion (usually
based on the computational budget or maximum CPU time) is defined.
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GA generates the next population by means of selection, crossover and
mutation operators and PSO updates the velocity and position of the
particles using Eqs. (2) and (3). The aforementioned process is iterated
until the stopping criterion is met. The stopping criterion here is a
maximum limit on the number of iterations. Then the process is ter-
minated and the results can be viewed. The whole optimization process
is done automatically and without any manual interruption. Here we
use a generic implementation of GA and PSO which have been shown to
be robust for a large class of problems. Improvements of both optimi-
zation algorithms are likely possible by tuning for the specific problem
of interest.

3. Field background

The Norne field dataset, including two case studies for the whole
field and the E-segment, is hosted and supported by the Integrated
Operations (IO) center at Norwegian University of Science and
Technology (NTNU). The Norne field on the Norwegian Continental
Shelf is operated by Statoil, a partner of the IO center. The Norne oil
field was discovered in December 1991. It is located about 80 km north
of the Heidrun field in the Norwegian Sea in about 380m of water.
Development drilling began in August 1996 and oil production started
on November 6th 1997. The horst block is approximately 9 km×3 km.

The Norne main structure (Norne C, D and E‐segments) containing 97%
of the oil in place, and the North‐East Segment (Norne G‐segment) are
the two separate oil compartments of the field [51]. The oil bearing
sandstones are buried at a depth of 2500–2700m. The porosity is in the
range of 25–30% and permeability varies from 20 to 2500mD. The
initial reservoir pressure was about 273 bar at 2639m true vertical
depth (TVD) and the reservoir temperature is 98.3 °C

The total hydrocarbon column is 135m which contains 110m of oil
and 25m of gas. Gas injection stopped in 2005 and the oil is produced
with water injection as drive mechanism. The Norne field was expected
to produce for 20–24 years with abandonment in 2020 [52]. However,
Statoil has made an oil discovery in the Svale North prospect in the
Norwegian Sea about 9 km northeast of the Norne field and is pushing
operation until 2030 [53].

In this paper, we assume the E‐segment is separated from the rest of
the field. The E‐segment contains 8733 active cells. The sizes of the
blocks are between 80m and 100m in the horizontal direction. The
rock is of mixed wettability and pore compressibility is × − −bar4.84 10 5 1

at 277 bar [54]. The E-segment of the Norne field with the active in-
jectors (F-1H and F-3H) and producers (E-2AH, E-3CH and E-3H) in
place, at the end of 2006, is shown in Fig. S1.

The reservoir fluid is characterized as light oil with a gravity of
32.7° API, bubble point pressure of 251 bar, gas-oil ratio of 111 Sm3/

No 

Yes 

Fig. 1. Flowchart of the WAG optimization process.
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Sm3, oil formation volume factor of 1.347 and 1.3185 Rm3/Sm3 at
bubble point and initial reservoir pressure, respectively, oil density and
viscosity of 0.712g/cm3 and 0.58 cP at bubble point pressure and gas
formation volume factor of 0.00474 Rm3/Sm3 [55]. The detailed com-
positional analysis of the reservoir oil is presented in Table S1.

It is worth noting that all the simulation studies already done on the
Norne field have been run in Black Oil mode [52,55–57]. The above
composition and fluid properties data was regressed using PVTi module
of Eclipse (version 2014.1) and E300 was utilized as the compositional
reservoir simulator in this study. By doing so, the effect of injection gas
composition on the objective function can be investigated. History
matching was also conducted up to December 2006 (based on the
available production and history data) to improve the accuracy of the
model and reduce the simulations’ uncertainty.

4. Case studies

Three case studies for optimization of NPV and one case study for
optimization of IRF were designed in this study. The full set of opti-
mization variables consists of two water and two gas injection rates for
the two injectors, three BHPs of the three oil producers, cycle ratio,
cycle time, the mole fractions of C2, C3 and C4 and the total WAG period
(13 variables in total). The parameter values provided in Table S2 were
used for NPV calculations in all the case studies.

Water flooding was performed on the model (history matched up to
December 2006) with sufficiently low rates in the two injectors to reach
the value of 90% for the field water cut in May 2015. This was con-
sidered as the initial point for WAG simulations and optimization.

There are two types of constraints in the optimization of an oil re-
covery process, namely general economic and bound constraints. The
economic constraints consist of a lower limit on oil production (10 Sm3/
day) and upper limits on water cut (95%) and GOR (500 vol/vol) for all
the production wells’ perforations. If the upper limits are violated, the
worst offending perforation will be shut and the simulation continues
until at least one perforation is open. A maximum liquid production
rate in each producer of 6000 Sm3/day and a maximum injection
pressure in each injector of 600 bar are also placed in the simulation
data file. The bound constraints are of the simple inequality type as
shown in Table 1. It is worth noting that only discrete values (with the
specified step sizes) are assigned to the cycle ratio, cycle time and total
WAG duration and the rest of the variables are assumed to be con-
tinuous.

GA and PSO handle bound constraints differently. In GA, mutation
and crossover functions are defined to generate only feasible solutions
[43]. In this study, the ‘absorb’ method was used for handling bound
constraints in PSO so that the algorithm prevents the particles from
traveling outside the bounds. This method has proven to be sufficiently
efficient for problems which only include bound constraints [58].

In case study 1, two water and two gas injection rates, three BHPs of
the production wells, cycle ratio and cycle time (nine variables) are
optimized. The mole fractions of the injection gas components are fixed
at their lower bounds. The gas injection is immiscible in this case since

the MMP of the reservoir oil and injection gas is calculated to be about
550 bar using PVTsim software, which is far above the reservoir pres-
sure. In case study 2, the injection gas composition (the mole fractions
of C2, C3 and C4) are added to the optimization variables giving a total
of 12 variables. The MMP between the reservoir oil and the most en-
riched gas is calculated to be about 330 bar, so miscibility could be
achieved in the reservoir. In case studies 1 and 2, the total WAG si-
mulation time is fixed at 30months. We include the total WAG time as a
variable in case study 3 where we optimize over all 13 variables. For the
purpose of IRF optimization, only one case study is conducted with the
12 decision variables used in case study 2 and using a fixed total WAG
simulation time of 60months. The rationale behind the progressive case
studies is to investigate the effect of increasing the number of variables
on the optimal solution and to provide some information about the
efficiency of the two optimization techniques.

In this study, D-optimal design was used to obtain the initial guess
for the optimization algorithms. In case study 3, for example, a full
factorial design requires 27,648 simulation runs. D-optimal design is
able to search the solution space with only 110 runs. For case studies 1
and 2, with nine and 12 variables, respectively, D-optimal design only
requires 60 and 96 simulation runs. For each case study, the best con-
figurations found by DOE were used to initialize the population and
particles for GA and PSO, respectively. This was done to improve the
convergence speed of the optimization algorithms. The best WAG
scheme among the initial guesses was also selected as the reference case
to be compared with the optimization results.

Due to the stochastic nature of the optimization techniques, mul-
tiple trials are required for each case study. The compositional simu-
lations are time consuming, so the objective function calculations are
costly and demanding. We perform four trials with 2000 objective
function evaluations using both GA and PSO (i.e., eight trials in total)
for each of the three NPV optimization case studies; and three trials
again with 2000 objective function evaluations using the same algo-
rithms (i.e., six trials in total) for IRF optimization. Each objective
function evaluation requires a reservoir simulation run. Each trial used
50 individuals or particles for 40 generations or iterations.

5. Results and discussion

In this section we present the results of case studies 1, 2 and 3 to
optimize NPV and a single case study to optimize IRF using GA and
PSO. Sensitivity studies are also conducted to investigate the effect of
decision variables and economic parameters on NPV.

5.1. Case study 1: NPV optimization over 9 variables

In case study 1, two water and two gas injection rates, three BHPs of
the oil producers, cycle ratio and cycle time are the nine optimization
variables. The total WAG duration is fixed at 30months and the mole
fractions of C2, C3 and C4 are fixed at 0.05, 0.02 and 0.01, respectively.
The top 50 results out of the 60 simulation runs from the DOE are used
as the initial positions for the 50 particles in PSO and the 50 members of
the population for the GA optimization and the best of the 50 is chosen
as the reference case for comparison.

Table 2 shows the values of the decision variables and the NPV for
the reference case and for the best overall solutions found by the op-
timization techniques. As can be seen, PSO located the same optimal
solution in all of its four trials, while GA was able to arrive at the best
answer found by PSO only once. The values of the optimized variables
which differ from the reference case have been marked with an asterisk.
The numerical results of the four trials of GA and PSO are tabulated and
presented in Tables S3 and S4 respectively in the Supplementary
document.

As indicated by asterisks in Table 2, one of the BHPs (well E-2AH)
changed from 150 bar to 158.8 bar, the cycle ratio shifted from 0.65 to
0.9 and the cycle time changed from 4months to 5months in the

Table 1
The optimization variables along with their ranges in this study.

Optimization variable Range

Water injection rates [Sm3/day] 500–2700
Gas injection rates [Sm3/day] 103–106

Producers bottom hole pressures [bar] 150–240
Cycle ratio [−] 0–1 in steps of 0.05
Cycle time [month] 2–12 in steps of 1 month
Mole fraction of C2 [−] 0.05–0.2
Mole fraction of C3 [−] 0.02–0.1
Mole fraction of C4 [−] 0.01–0.05
Total WAG duration [month] 30–60 in steps of 1 month
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optimal configuration found by the algorithms. The overall optimal
NPV is about 8.2% higher than the NPV of the initial reference case.

Fig. 2 depicts the best performance of the optimization techniques
in the four trials. The best NPV found by the algorithms in each trial is
displayed versus the iteration index for iterations 11–40. The plots of
best NPV for all the iterations of the four trials of the algorithms can be
viewed in the Supplementary file in Fig. S1. Fig. 2 shows that GA
produces a non-decreasing NPV curve throughout its search; however,
it usually converges to solutions which are marginally lower than those
found by PSO. The version of PSO used in this study converges to the
same optimal solution in its four trials, however, small fluctuations can
be observed in the best NPV value versus PSO iteration index. GA finds
a solution with an NPV in the vicinity of 0.01% of the optimum solution
for the first time in iteration 9 of the third trial and fails to find such an
answer in the other trials. PSO gives a solution in the specified range for
the first time in iteration 7 of trials 1–3 and iteration 8 of trial 4. We see
that generally the default optimization of PSO outperforms GA for this
example.

5.2. Case study 2: NPV optimization over 12 variables

In case study 2, the injection gas composition (the mole fractions of

C2, C3 and C4) are added to the optimization variables of case study 1,
giving 12 variables in total. The total WAG duration is fixed at
30months. The top 50 results out of the 96 simulation runs from the
DOE are used as the initial positions for the 50 particles in PSO and the
50 members of the population for the GA optimization and the best of
the 50 is chosen as the reference case for comparison. The values of the
decision variables and NPVs for the reference case and the best solu-
tions located by the optimization algorithms are presented in Table 3.
The values of the optimized variables which differ from the reference
case have been marked with an asterisk. Tables S5 and S6 in the
Supplementary file show the best overall solutions of all the individual
trials of GA and PSO, respectively.

In this case, the reference solution has a lower NPV than that of case
study 1. Here more simulation runs are conducted for the DOE than in
case study 1 (96 compared to 60), however, DOE is not able to provide
as good an initial guess. Case study 2 is more complex and has a higher
dimensional search space (12 variables in case study 2 compared to
nine variables in case study 1).

As shown in Table 3, PSO was able to reduce the gas injection rate of
well F-1H to its minimum (1000 Sm3/day), increase the BHP of well E-

Table 2
The reference case and best operational points found by GA and PSO (case study 1: NPV
optimization over 9 variables). * Optimized variables which differ from the reference
case.

Variable Reference case GA trial 3 PSO trials 1–4

Qw (F-1H) [Sm3/day] 2700 2700 2700
Qg (F-1H) [Sm3/day] 1000 1000 1000
Qw (F-3H) [Sm3/day] 2700 2700 2700
Qg (F-3H) [Sm3/day] 1000 1000 1000
BHP (E-2AH) [bar] 150 158.8* 158.8*

BHP (E-3CH) [bar] 150 150 150
BHP (E-3H) [bar] 150 150 150
Cycle ratio [−] 0.65 0.9* 0.9*

Cycle time [month] 4 5* 5*

NPV [$ million] 135.45 146.56 146.56

Fig. 2. NPV vs. iteration index per trial for iterations 11–40 of GA and PSO (case study 1: NPV optimization over 9 variables).

Table 3
The reference case and best operational points found by GA and PSO (case study 2: NPV
optimization over 12 variables).

Variable Reference case GA trials 2, 3 PSO trials 1–4

Qw (F-1H) [Sm3/day] 2700 2700 2700
Qg (F-1H) [Sm3/day] 380,620 1000* 1000*

Qw (F-3H) [Sm3/day] 2700 2700 2700
Qg (F-3H) [Sm3/day] 1000 1000 1000
BHP (E-2AH) [bar] 150 158.9* 158.8*

BHP (E-3CH) [bar] 150 150 150
BHP (E-3H) [bar] 201.3 150* 150*

Cycle ratio [−] 0.7 0.9* 0.9*

Cycle time [month] 2 2 5*

Mole fraction of C2 [−] 0.05 0.2* 0.2*

Mole fraction of C3 [−] 0.1 0.1 0.1
Mole fraction of C4 [−] 0.05 0.05 0.05
NPV [$ million] 132.09 148.66 148.76
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2AH from 150 to 158.8 bar and decrease the BHP of well E-3H to the
minimum (150 bar), change the cycle ratio from 0.7 to 0.9 and increase
the mole fraction of ethane in the injection gas from 0 to the maximum
(0.2). The best overall NPVs found by GA and PSO are respectively
about 12.5% and 12.6% higher compared to the NPV of the reference
case. GA fails to change the cycle time in all the four trials and gets
stuck at the value of the reference case. Unlike GA, PSO gives the same
optimal solution in all the trials. However, the difference between the
best answers found by GA and PSO is negligible and mainly due to the
effect of different cycle times.

Fig. 3 displays the best NPVs found by GA and PSO for each trial
versus the iteration index for iterations 11–40. Fig. S3 in the
Supplementary file presents the results of all the iterations of the four
trials of the algorithms. As depicted in Fig. 3, GA shows a monotonic
trend and except in trial 4, it converges to approximately the same
answer. PSO shows general superiority over GA and convergence to the
same optimal solution in all the four trials in spite of minor fluctuations.

The optimal NPV found in the first trial of GA is a little lower than
the best NPV found in trials 2 and 3. This is due to the higher value of
BHP for well E-2AH (see Tables S5). In trial 4, GA changes the value of
the gas injection rate of well F-1H and the BHP of well E-2AH to values
which result in the lowest NPV of all the trials of the optimization
techniques. In other words, GA has the poorest performance in trial 4.

The first nine variables of the optimal solution of case study 2 have
the same values as those of case study 1, while a better NPV has been
achieved due to enriching the gas and a more miscible injection which
increases oil recovery. The optimal NPV of case study 2 is about 1.5%
higher than the corresponding value for case study 1. So even though
the reference case for case study 2 has a lower NPV compared to case
study 1, the optimization techniques have been able to improve the
optimal solution.

PSO finds a solution with an NPV in the vicinity of 0.01% of the
optimal solution for the first time in iteration 24, 7, 24 and 25 of trials
1–4, respectively. GA fails to achieve such a solution. Compared to case
study 1, a poorer initial guess definitely influences the number of
iterations required to find a solution close to the optimal solution,
hence the effect of problem complexity by adding more variables is

difficult to discern.

5.3. Case study 3: NPV optimization over 13 variables

In case study 3, the total WAG period is added to the optimization
variables of case study 2. This gives 13 variables in total. The initial
positions for GA and PSO and the reference case are chosen out of the
110 simulation runs from the DOE in the same way as the previous case
studies. The values of the decision variables and the NPV for the re-
ference case and for the best overall solutions found by GA and PSO are
presented in Table 4. The reference case for this case study gives a
higher NPV than case studies 1 and 2. This is mainly due to a longer
total WAG duration and a higher total oil production. Tables S7 and S8
in the Supplementary file present the global best solutions of each trial
of GA and PSO, respectively. The values of the optimized variables
which differ from the reference case have been marked with an asterisk.

Table 4 shows that GA always converges to a suboptimal solution
and is never able to find the solution found by PSO in any of the trials.
GA finds quite different values for the cycle time in the trials (see Table

Fig. 3. NPV vs. iteration index per trial for iterations 11–40 of GA and PSO (case study 2: NPV optimization over 12 variables).

Table 4
The reference case and best operational points found by GA and PSO (case study 3: NPV
optimization over 13 variables).

Variable Reference case GA trial 2 PSO trials 1–4

Qw (F-1H) [Sm3/day] 2700 2700 2700
Qg (F-1H) [Sm3/day] 1000 1000 1000
Qw (F-3H) [Sm3/day] 2700 2700 2700
Qg (F-3H) [Sm3/day] 1000 1000 1000
BHP (E-2AH) [bar] 150 150 150
BHP (E-3CH) [bar] 150 150 150
BHP (E-3H) [bar] 150 237.5* 226.2*

Cycle ratio [−] 0.55 0.9* 0.9*

Cycle time [month] 2 7* 8*

Total time [month] 60 60 60
Mole fraction of C2 [−] 0.2 0.2 0.2
Mole fraction of C3 [−] 0.02 0.1* 0.1*

Mole fraction of C4 [−] 0.05 0.05 0.05
NPV [$ million] 194.72 221.65 222.29
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S7), neither of which yields the optimum NPV found by PSO. However,
the best NPV found by PSO is only 0.29% higher than the optimal NPV
of GA. This is due to different BHPs for well E-3H and different cycle
times. The best NPV of GA is about 13.8% higher than the NPV value of
the reference case. In the optimal solution found by PSO, the BHP of
well E-3H increased from 150 bar to 226.2 bar, the cycle ratio changed
from 0.55 to 0.9, the cycle time shifted from 2months to 8months and
the mole fraction of C3 changed from 0 to 0.1. This resulted in about
14.2% increase in NPV compared to the reference case. PSO converges
to the same solution in all the trials.

The best NPVs of iterations 11–40 of all the trials of GA and PSO are
plotted versus the iteration index in Fig. 4 and Fig. S4 in the
Supplementary file shows the results of all the iterations per trial. The
similar trend and behavior of the performance of GA and PSO as ob-
served in the previous case studies can be drawn from the above figures.

PSO finds a solution with an NPV in the vicinity of 0.01% of the
optimum solution for the first time in iteration 27, 22, 26 and 18 of
trials 1–4, respectively. GA never finds such a point in any of the trials.
It is difficult to isolate the effect of problem complexity on the rate of
convergence of optimization techniques due to the effect of the initial
guess. Nevertheless, PSO on average finds a solution in the vicinity of
0.01% of the optimal solution for the first time in iteration 7 of case
study 1, iteration 20 of case study 2 and iteration 23 of case study 3. GA
finds such an answer only in iteration 9 of one of the trials of case study
1.

The main difference between case study 3 and case studies 1 and 2 is
the addition of the total time as a variable and setting 60months as its
upper bound. This has resulted in two major differences in the optimal
operational points. In case studies 1 and 2, the optimal BHP of well E-
2AH is about 158.8 bar and wells E-3CH and E-3H would give a higher
NPV if produced at the lower pressure bound (150 bar). In case study 3,
the optimal BHP of well E-2AH and E-3CH is the minimum (150 bar)
and well E-3H would produce optimally at around 226.2 bar. The other
distinction is the cycle time. The optimal cycle time of case studies 1
and 2 lies at 5months, while it was found to be 8months for case study
3. The optimal NPV of case study 3 ($ 222.29 million) is about 51.7%
and 49.4% higher in value compared to the optimal NPVs of case stu-
dies 1 ($ 146.56 million) and 2 ($ 148.76 million), respectively.

Fluctuations in the best NPV found by PSO versus the iteration index
seem to be a feature of this PSO implementation, while GA has usually
proved to be monotonically increasing in the value of the objective
function. GA keeps the best ever solution and if the GA operations
(selection, crossover and mutation) do not result in a better solution,
the global best solution would be transferred to the next iteration. In
PSO, however, the positions of all the particles are updated by a random
factor of the position of the global best solution, hence the best found
solution may not carry over to the next iteration. These fluctuations,
however, probably help PSO escape from local optima.

5.4. NPV sensitivity studies

A sensitivity analysis is a means to measure the effect of in-
dependent parameters on the objective function. In this study, to ex-
amine the effect of an individual WAG operational parameter on NPV,
all the other parameters are kept constant at their optimal values. The
normalized NPV (the ratio of NPV to the maximum NPV found by the
optimization algorithms for case study 3) is plotted versus the nor-
malized variables (the ratio of each variable to its optimal value). The
trend and slope of each curve shows how that parameter affects the
objective function.

Fig. 5(a) shows the effect of the BHPs of the producers on the NPV.
The optimal BHP of well E-3H is about 226.2 bar. The normalized BHP
of well E-3H is changed on the interval [0.8, 1.05] in steps of 0.05 for
the sensitivity study. Setting the BHP below the optimal value delays
and reduces water production and enhances the NPV, while setting it
above the optimal value causes the oil production to fall below the
economic limit. The optimal BHP of wells E-2AH and E-3CH is 150 bar.
The normalized BHPs of these two wells are changed on the interval
[1.05, 1.2] in steps of 0.05 for the sensitivity analysis. These two wells
behave normally in the sense that by increasing the BHP the oil pro-
duction reduces significantly which affects the NPV. This indicates that
well E-3H is the most sensitive well to water production.

The effect of cycle ratio on NPV is presented in Fig. 5(b). The op-
timal cycle ratio is 0.9 which means that in each cycle water is injected
for 90% of the time and the rest is allocated to gas injection. It is worth
recalling that cycle ratio was changed in steps of 0.05 through the

Fig. 4. NPV vs. iteration index per trial for iterations 11–40 of GA and PSO (case study 3: NPV optimization over 13 variables).
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search process of the optimization. For the sensitivity analysis, this
parameter was changed from 0.7 to 1 in steps of 0.05. A cycle ratio of 1
refers to water flood. As can be seen, for a cycle ratio less than 0.9
(when gas is injected for more than 10% of a cycle), the NPV is lower
than the optimum. This implies that increasing the gas injection period
above that threshold does not result in enough oil production to make
up for the cost of gas injection. When water is injected for more than
90% of a cycle the cost of water handling reduces the NPV below the
optimum. The optimal cycle ratio depends strongly on the prices as-
sumed for the NPV calculations. The optimal cycle time for the 5-year
WAG process is 8 months. This means that the most economically ef-
ficient WAG injection scenario for a period of 5 years is to inject gas for
24 days and then inject water for 216 days (based on the cycle ratio of
0.9), cyclically.

The effect of the total WAG time is shown in Fig. 5(c). The nor-
malized total time is changed on the interval [0.8, 1.2] in steps of 0.05.
As shown, the NPV is strictly increasing versus the total WAG time. This
suggests that WAG has the potential of being extended for at least one
more year and would still be economical. However, the optimal op-
erational WAG parameters for the 5-year period may not result in the
highest NPV for a longer period and the optimal WAG for a longer
period would have to be determined in a separate optimization process.

5.4.1. Sensitivity analysis of economic parameters
The economic parameters of oil price, gas injection cost, water in-

jection cost and water recycling cost are selected for the sensitivity
study to investigate their effect on the NPV. The injection and operating
costs are all included in the assumed prices. When the effect of one
economic parameter on NPV is examined, the other parameters are set
at the values shown in Table S2. The gas injection cost is $0.271 / Sm3

which is the unit price of gas containing 65% C1, 20% C2, 10% C3 and
5% C4, each of which costs the price assumed in Table S2. Fig. S5 shows
the ratio of NPV to the best overall NPV found in case study 3 versus the
normalized prices (the ratio of each price to its corresponding value in

Table S2). The normalized oil price is varied on the interval [0.8, 1.2] in
steps of 0.05. The other normalized prices are changed on the interval
[0, 1.2] to test the assumption of zero cost for injection and recycling.

As shown in Fig. S5, the relative change of NPV versus the relative
change of the economic parameters clearly indicates that the NPV of
WAG changes significantly as the oil price varies and oil price is the
most influential economic parameter on the NPV. Water recycling cost
has the second highest effect on the NPV and gas injection and water
injection costs are ranked third and fourth, respectively. The effects of
gas and water injection costs are much smaller than that of oil price and
this is indicated by smaller slopes (in absolute value).

5.5. Case study 4: IRF optimization

In this section, GA and PSO are employed to optimize the incre-
mental recovery factor (IRF) or the recovery factor from the start of the
WAG, on the E-segment of the Norne field. The optimization variables
include two water and two gas injection rates, three BHPs of the oil
producers, cycle ratio, cycle time and the mole fractions of C2, C3 and
C4. The total WAG time is fixed at 60months. The top 50 results out of
the 96 simulation runs from the DOE are used as the initial positions for
the 50 particles in PSO and the 50 members of the population for the
GA optimization and the best of the 50 (the one with the maximum oil
recovery) is chosen as the reference case for comparison.

Three trials of GA and PSO (six trials in total) with the same initial
guess are run. The variables along with their values and the IRF cal-
culated from the start of the WAG (as time zero) for the reference case
and the best operational points found by GA and PSO are shown in
Table 5. The best solution of each trial of GA and PSO are presented in
Tables S9 and S10 in the Supplementary document. The values of the
optimized variables which differ from the reference case have been
marked with an asterisk.

As shown in Table 5, PSO converged to the same optimal solution in
all the three trials. In the best solution found by PSO, the values of the

Fig. 5. (a) Effect of BHP on the NPV. (b) Effect of cycle ratio on the NPV. (c) Effect of total WAG time on the NPV.
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variables for the reference case changed as follows. The water injection
rates increased to their maximum value, the BHP of well E-3H de-
creased from 240 bar to 209 bar, the cycle ratio changed from 0.1 to
0.15, the cycle time shifted from 2months to 12months and the mole
fraction of C4 increased to 0.05. This resulted in about 16.2% increase
in the IRF compared to the reference case. GA is not able to find the
optimal set of BHPs and the optimal cycle ratio found by PSO and re-
duces one of the gas injection rates to a non-optimal value in one of the
trials (see Table S9). GA finds quite different solutions in the three
trials, the best of which is about 14.2% higher than the reference case
IRF.

The maximum IRFs of iterations 11–40 of the individual trials of GA
and PSO and the best results of all the iterations are plotted versus the
iteration index and shown in Fig. 6 and Fig. S6, respectively. The main
observations in the performance of the optimization techniques are si-
milar to the previous case studies.

PSO finds a solution with an IRF in the vicinity of 0.01% of the
optimal solution for the first time in iteration 28 in all three trials. GA
never finds a solution in the specified range in any of the trials.

Fig. 7 shows the optimal IRF for each simulation run among the
three trials of GA and PSO. The amplitude of fluctuations in the GA
solutions is higher than that of PSO and GA usually yields a lower re-
covery factor.

The optimal water injection rates are the same (2700 Sm3/day) for
both NPV and IRF optimization, however, the optimal gas injection
rates are set at the lower bound (1000 Sm3/day) for NPV optimization
and at the upper bound (1,000,000 Sm3/day) for IRF optimization.
When there is no restriction on the injection rates from the point of
view of economic benefit (in the case of IRF optimization), a higher
injection rate would probably result in more oil production.

The optimal BHP of well E-3H is a little different for NPV optimi-
zation (226.2 bar) and oil recovery optimization (209 bar) due to the
relative prices of oil and water handling. As expected, a lower BHP
results in more oil production and the difference in the BHPs indicates
the sensitivity of well E-3H to water production.

The optimal cycle ratio for oil recovery optimization is 0.15 which
means that in each cycle water is injected for 15% of the time and the
rest is allocated to gas injection. The optimal cycle ratio for NPV opti-
mization is 0.9 which means that longer periods of water injection are
more beneficial from economic point of view, however, an optimum of
0.15 for the case of IRF optimization indicates the greater effect of
longer periods of gas injection on the oil recovery.

12months yields the highest oil recovery as the optimal cycle time
for a 5-year WAG process. This means that the most efficient WAG in-
jection scenario to produce the most oil in a 5-year period is to inject
gas for 306 days and then inject water for 24 days (based on the cycle
ratio of 0.15) cyclically. The optimal cycle time for case study 3 is
8months. This indicates that if more oil recovery is required then less
alternation between gas and water injection is necessary.

The most enriched injection gas composition (65% C1, 20% C2, 10%
C3 and 5% C4) is the optimal solution for the case studies of NPV and
IRF optimization. This means that with the assumed prices, the richest
injection gas yields the greatest oil recovery as well as the greatest
economic benefit.

The oil recovery factors from different recovery methods are pre-
sented in Fig. 8 from the start of the WAG project to the end of the 5-

Table 5
The reference case and best operational points found by GA and PSO (oil recovery op-
timization).

Variable Reference case GA trial 2 PSO trials 1–3

Qw (F-1H) [Sm3/day] 500 2700* 2700*

Qg (F-1H) [Sm3/day] 106 106 106

Qw (F-3H) [Sm3/day] 500 2700* 2700*

Qg (F-3H) [Sm3/day] 106 106 106

BHP (E-2AH) [bar] 150 150 150
BHP (E-3CH) [bar] 150 150 150
BHP (E-3H) [bar] 240 237.5* 209*

Cycle ratio [−] 0.1 0.1 0.15*

Cycle time [month] 2 8* 12*

Mole fraction of C2 [−] 0.2 0.2 0.2
Mole fraction of C3 [−] 0.1 0.1 0.1
Mole fraction of C4 [−] 0.01 0.05* 0.05*

IRF [−] 4.45% 5.08% 5.17%

Fig. 6. IRF vs. iteration index per trial for iterations 11–40 of GA and PSO (oil recovery optimization).
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year period. The recovery methods under investigation include the
optimal WAG (from the viewpoint of NPV), water flooding with
minimum and maximum injection rates, gas flooding with minimum
and maximum injection rates and optimal WAG (from the viewpoint of
oil recovery). The oil recovery at the start of the project is about
49.15%. The ultimate recoveries are as follows: 54.31% for the opti-
mized-recovery WAG, 54.04% for gas flooding with the maximum in-
jection rate (1,000,000 Sm3/day), 52.57% for the optimized-NPV WAG,
52.17% for water flooding with the maximum injection rate (2700 Sm3/

day), 51.53% for water flooding with the minimum injection rate
(500 Sm3/day) and 51.22% for gas flooding with the minimum injec-
tion rate (1000 Sm3/day). The optimized-NPV WAG process is ranked
third after the optimized-recovery WAG and gas flooding with the
maximum injection rate. Continuous gas flooding with the minimum
injection rate yields the lowest recovery.

The cumulative production and injection data (see Table S11) and
the NPV calculation for the WAG scenario yielding the maximum oil
recovery are shown in the Supplementary file. The huge negative NPV

Fig. 7. IRF of the best solution as a function of simulation run for PSO (blue curve) and GA (red curve). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. Comparison of the oil recovery among different recovery methods.
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($-532 million) for this case clearly indicates the lack of any economic
justification for increasing the gas injection rate and period.

6. Conclusions

Two evolutionary algorithms, a genetic algorithm (GA) and particle
swarm optimization (PSO) were utilized to develop an optimization
methodology and determine the optimal water alternating gas (WAG)
operating parameters in a natural gas WAG process simulated using
Schlumberger’s compositional Eclipse 300. The full set of optimization
variables consists of water and gas injection rates, bottom hole pres-
sures of the production wells, cycle ratio, cycle time, the total WAG
time, and the composition of the injection gas. A reference case was first
obtained for each case study by means of DOE and then both GA and
PSO were applied and compared to the base case. Three case studies to
optimize NPV with different numbers of controlling variables (9, 12 and
13) and one case study to optimize incremental oil recovery (with 12
variables and a fixed total WAG time) were analyzed.

Both of the optimization techniques were capable of improving the
values of the objective functions (NPV and incremental oil recovery)
compared to the reference case. They were able to find a reasonable
solution over all the variables using 2000 objective function evalua-
tions, while an exhaustive search over only the discrete variables (the
cycle ratio, cycle time and total WAG duration) required more than
7000 objective function evaluations. The differences in the values of the
optimal solutions found by the algorithms were small. PSO converged
to the same optimal solution in all the trials for each case study and
marginally outperformed GA. GA usually converged to different solu-
tions in different trials of the same case study and yielded an inferior
solution. Further tuning of GA and PSO would help us draw a stronger
conclusion.

As the number of WAG operating parameters increases, the opti-
mization techniques, especially PSO, were able to find a higher NPV but
generally required more iterations.
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