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For many expensive deterministic computer simulators, the outputs do not have replication error and
the desired metamodel (or statistical emulator) is an interpolator of the observed data. Realizations of
Gaussian spatial processes (GP) are commonly used to model such simulator outputs. Fitting a GP model
to n data points requires the computation of the inverse and determinant of n × n correlation matrices,
R, that are sometimes computationally unstable due to near-singularity of R. This happens if any pair
of design points are very close together in the input space. The popular approach to overcome near-
singularity is to introduce a small nugget (or jitter) parameter in the model that is estimated along with
other model parameters. The inclusion of a nugget in the model often causes unnecessary over-smoothing
of the data. In this article, we propose a lower bound on the nugget that minimizes the over-smoothing
and an iterative regularization approach to construct a predictor that further improves the interpolation
accuracy. We also show that the proposed predictor converges to the GP interpolator.
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1. INTRODUCTION

Computer simulators are often used to model complex phys-
ical and engineering processes that are either too expensive or
time consuming to observe. A simulator is said to be determin-
istic if the replicate runs of the same inputs will yield iden-
tical responses. For the last few decades, deterministic sim-
ulators have been widely used to model physical processes.
For instance, Kumar and Davidson (1978) used deterministic
simulation models for comparing the performance of highly
concurrent computers; Su et al. (1996) used generalized linear
regression models to design a lamp filament via a determinis-
tic finite-element computer code; Aslett et al. (1998) discussed
an optimization problem for a deterministic circuit simulator;
several deterministic simulators are being used for analyzing
biochemical networks (see Bergmann and Sauro 2008 for ref-
erences). On the other hand, there are cases where stochastic
(nondeterministic) simulators are preferred due to unavoidable
biases (e.g., Poole and Raftery 2000). In spite of the recent in-
terest in stochastic simulators, deterministic simulators are still
being actively used. For instance, Medina, Moreno, and Royo
(2005) demonstrated the preference of deterministic traffic sim-
ulators over their stochastic counterparts. In this article, we as-
sume that the simulator under consideration is deterministic up
to working precision and the scientist is confident about the va-
lidity of the simulator.

Sacks et al. (1989) proposed modeling (or emulating) such
an expensive deterministic simulator as a realization of a Gaus-
sian stochastic process (GP). An emulator of a deterministic
simulator is desired to be an interpolator of the observed data
(e.g., Sacks et al. 1989; Van Beers and Kleijnen 2004). For the
problem that motivated this work, the objective is to emulate
the average extractable tidal power as a function of the turbine
locations in the Bay of Fundy, Nova Scotia, Canada. The deter-
ministic computer simulator for the tidal power model is a nu-
merical solver of a complex system of partial differential equa-
tions, and we accept the simulator as a valid representation of
the tidal power.

In this article, we discuss a computational issue in building
the GP based emulator for a deterministic simulator. Fitting
a GP model to n data points using either a maximum likeli-
hood technique or a Bayesian approach requires the computa-
tion of the determinant and inverse of several n × n correla-
tion matrices, R. Although the correlation matrices are posi-
tive definite by definition, near-singularity (also referred to as
ill-conditioning) of these matrices is a common problem in fit-
ting GP models. Ababou, Bagtzoglou, and Wood (1994) stud-
ied the relationship of a uniform grid to the ill-conditioning and
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quality of model fit for various covariance models. Barton and
Salagame (1997) studied the effect of experimental design on
the ill-conditioning of kriging models. Jones, Schonlau, and
Welch (1998) used the singular value decomposition to over-
come the near-singularity of R. Booker (2000) used the sum of
independent GPs to overcome near-singularity for multistage
adaptive designs in kriging models. A more popular solution
to overcome near-singularity is to introduce a nugget or jitter
parameter, δ, in the model (e.g., Sacks et al. 1989; Neal 1997;
Booker et al. 1999; Santner, Williams, and Notz 2003; Gramacy
and Lee 2008) that is estimated along with other model param-
eters. However, adding a nugget to the model introduces addi-
tional smoothing in the predictor and as a result the predictor is
no longer an interpolator.

Here, we first propose a lower bound on the nugget (δlb) that
minimizes the additional over-smoothing. Second, an iterative
approach is developed to enable the construction of a new pre-
dictor that further improves the interpolation as well as the pre-
diction (at unsampled design points) accuracy. We also show
that the proposed predictor converges to an interpolator. Al-
though an arbitrary nugget (0 < δ < 1) can be used in the itera-
tive approach, the rate of convergence (i.e., the number of iter-
ations required to reach certain tolerance) depends on the mag-
nitude of the nugget. To this effect, the proposed lower bound
δlb significantly reduces the number of iterations required. This
feature is particularly desirable for implementation.

The article is organized as follows. Section 2 presents the
tidal power modeling example. In Section 3, we review the GP
model, a computational issue in fitting the model, and the pop-
ular approach to overcome near-singularity. Section 4 presents
the new lower bound for the nugget that is required to achieve
well-conditioned correlation matrices and minimize unneces-
sary over-smoothing. In Section 5, we develop the iterative ap-
proach for constructing a more accurate predictor. Several ex-
amples are presented in Section 6 to illustrate the performance
of our proposed predictor over the one obtained using the popu-
lar approach. Finally, we conclude the paper with some remarks
on the numerical issues and recommendations for practitioners
in Section 7.

2. MOTIVATING EXAMPLE

The Bay of Fundy, located between New Brunswick and
Nova Scotia, Canada, with a small portion touching Maine,
U.S.A., is world famous for its high tides. In the upper portion
of the Bay of Fundy [see Figure 1(a)], the difference in water
level between high tide and low tide can be as much as 17 me-
ters. The high tides in this region are a result of a resonance,
with the natural period of the Bay of Fundy very close to the
period of the principal lunar tide. This results in very regular
tides in the Bay of Fundy with a high tide every 12.42 hours.
The incredible energy in these tides has meant that the region
has significant potential for extracting tidal power [Greenberg
1979; Karsten et al. 2008 (hereafter KMLH)].

Though the notion of harnessing tidal power from the Bay of
Fundy is not new, earlier proposed methods of harvesting the
much needed green electrical energy involved building a bar-
rage or dam. This method was considered infeasible for a va-
riety of economic and environmental reasons. Recently, there
has been rapid technological development of in-steam tidal tur-
bines. These devices act much like wind turbines, with individ-
ual turbines placed in regions of strong tidal currents. Individual
turbines can be up to 20 m in diameter and can produce over
1 MW of power. Ideally, these turbines would produce a pre-
dictable and renewable source of power with less of an impact
on the environment than a dam. KMLH examined the power
potential of farms of such turbines across the Minas Passage
[Figure 1(b)] where the tidal currents are strongest. They found
that the potential extractable power is much higher than previ-
ous estimates and that the environmental impacts of extracting
power can be greatly reduced by extracting only a portion of
the maximum power available. The simulations in KMLH did
not represent individual turbines and left open the question of
how to optimally place turbines. In this article, we emulate the
KMLH numerical model to examine the placement of turbines
to maximize the power output.

We numerically simulate the tides as in KMLH by solv-
ing the 2D shallow water equations using the Finite-Volume
Coastal Ocean Model (FVCOM) with a triangular grid on the

(a) (b)

Figure 1. Panel (a) shows the triangular grid used in the FVCOM model for simulating tides in the upper Bay of Fundy. The small box in the
center surrounds the Minas Passage shown in (b). The shaded triangles in the center of (b) represent a possible turbine location.
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upper Bay of Fundy [see Figure 1(a)]. Since the grid triangles
differ in size and orientation, the ith turbine was modeled on
the set of all triangular elements whose centers lie within 250 m
of (xi, yi). A possible turbine location is shown in Figure 1(b).
The triangular grid was developed by David Greenberg and col-
leagues at the Bedford Institute of Oceanography, NS, Canada.
The details of FVCOM can be found in the article by Chen,
Beardsley, and Cowles (2006).

Using this setup, the estimate of the electric power that can be
harnessed through a turbine at a particular location (x, y) over a
tidal cycle T = 12.42 hr is obtained by the simulator in KMLH.
The average tidal power at the location (x, y) is given by

P̄(x, y) = 1

T

∫ T

0
P(t; x, y)dt,

where P(t; x, y) is the extractable power output at time t and
location (x, y). The process is deterministic up to the machine
precision, and the main objective is to emulate P̄(x, y).

It turns out that the GP model fitted to the simulator out-
put at n = 100 points (chosen using a space-filling design cri-
terion) is not an interpolator and results in an over-smoothed
emulator (see Example 4 for details). This is undesirable as
the ocean modelers are interested in an emulator that interpo-
lates their simulator. This emulator will be used to obtain es-
timates of both the maximizer of the power function (i.e., the
location where to put the turbine) and the extractable power at
this location. The manufacturing and installation cost of the ini-
tial prototype turbine is very high (roughly 20 million dollars).
Since the over-smoothed emulator can underestimate the maxi-
mum extractable power, a good approximation of the attainable
power function can be helpful in saving the cost of a few tur-
bines. Example 4 shows that the proposed approach leads to a
more accurate estimate of the maximum extractable power.

3. BACKGROUND REVIEW

3.1 Gaussian Process Model

Let the ith input and output of the computer simulator be
denoted by a d-dimensional vector, xi = (xi1, . . . , xid), and the
univariate response, yi = y(xi), respectively. The experiment de-
sign D0 = {x1, . . . , xn} is the set of n input trials. The outputs
of the simulation trials are held in the n-dimensional vector
Y = y(D0) = (y1, y2, . . . , yn)

′. The simulator output, y(xi), is
modeled as

y(xi) = μ + z(xi); i = 1, . . . ,n, (1)

where μ is the overall mean, and z(xi) is a GP with E(z(xi)) = 0,
Var(z(xi)) = σ 2

z , and Cov(z(xi), z(xj)) = σ 2
z Rij. In general,

y(D0) has a multivariate normal distribution, Nn(1nμ,�),
where � = V(D0|y(D0)) = σ 2

z R, and 1n is an n × 1 vector
of all ones (see Sacks et al. 1989 and Jones, Schonlau, and
Welch 1998 for details). Although there are several choices
for the correlation function, we focus on the Gaussian corre-
lation because of its properties like smoothness (or differen-
tiability in mean squared sense) and popularity in other areas
like machine learning (radial basis kernels) and geostatistics
(kriging). For a detailed discussion on correlation functions see
the works of Stein (1999), Santner, Williams, and Notz (2003),

and Rasmussen and Williams (2006). The Gaussian correlation
function is a special case (pk = 2 for all k) of the power expo-
nential correlation family

Rij = corr(z(xi), z(xj)) =
d∏

k=1

exp{−θk|xik − xjk|pk } for all i, j,

(2)

where θ = (θ1, . . . , θd) is the vector of hyperparameters, and
pk ∈ (0,2] is the smoothness parameter. As discussed in Sec-
tion 7, the results developed in this article may vary slightly
when other correlation structures are used instead of the Gaus-
sian correlation.

We use the GP model with Gaussian correlation function to
predict responses at any unsampled design point x∗; however,
the theory developed here is also valid for other correlation
structures in the power exponential family (see Section 7 for
more details). Following the maximum likelihood approach, the
best linear unbiased predictor (BLUP) at x∗ is

ŷ(x∗) = μ̂ + r′R−1(Y − 1nμ̂)

=
[
(1 − r′R−11n)

1′
nR−11n

1′
n + r′

]
R−1Y, (3)

with mean squared error

s2(x∗) = σ 2
z (1 − 2C′r + C′RC)

= σ 2
z

(
1 − r′R−1r + (1 − 1′

nR−1r)2

1′
nR−11n

)
, (4)

where r = (r1(x∗), . . . , rn(x∗))′, ri(x∗) = corr(z(x∗), z(xi)), and
C is such that ŷ(x∗) = C′Y . In practice, the parameters μ,σ 2

z ,
and θ are replaced with estimates (see Sacks et al. 1989;
Santner, Williams, and Notz 2003, for details).

3.2 A Computational Issue in Model Fitting

Fitting a GP model (1)–(4) to a dataset with n observations in
d-dimensional input space requires numerous evaluations of the
log-likelihood function for several realizations of the parameter
vector (θ1, . . . , θd;μ,σ 2

z ). The closed form estimators of μ and
σ 2

z , given by

μ̂(θ) = (1′
nR−11n)

−1(1′
nR−1Y) and

(5)

σ̂ 2
z (θ) = (Y − 1nμ̂(θ))′R−1(Y − 1nμ̂(θ))

n
,

are often used to obtain the profile log-likelihood

−2 log Lp ∝ log(|R|)
+ n log

[
(Y − 1nμ̂(θ))′R−1(Y − 1nμ̂(θ))

]
(6)

for estimating the hyperparameters θ = (θ1, . . . , θd), where |R|
denotes the determinant of R. Recall from (2) that the correla-
tion matrix R depends on θ and the design points.

An n × n matrix R is said to be near-singular (or, ill-
conditioned) if its condition number κ(R) = ‖R‖ · ‖R−1‖ is
too large (see Section 4 for details on “how large is large?”),
where ‖ · ‖ denotes a matrix norm (we will use the L2-norm).
Although these correlation matrices are positive definite by def-
inition, computation of |R| and R−1 can sometimes be unstable
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due to ill-conditioning. This prohibits precise computation of
the likelihood and hence the parameter estimates.

Ill-conditioning of R often occurs if any pair of design points
are very close in the input space, or θk’s are close to zero,
that is,

∑d
k=1 θk|xik − xjk|pk ≈ 0. The distances between neigh-

boring points in space-filling designs with large n (sample
size) and small d (input dimension) can be very small. Near-
singularity is more common in the sequential design setup (e.g.,
expected improvement based designs; see Jones, Schonlau, and
Welch 1998; Schonlau, Welch, and Jones 1998; Oakley 2004;
Huang et al. 2006; Ranjan, Bingham, and Michailidis 2008;
Taddy et al. 2009), where the follow-up points tend to “pile up”
near the prespecified features of interest like the global maxi-
mum, contours, quantiles, and so on.

3.3 The Popular Approach

A popular approach to overcome the ill-conditioning of R is
to introduce a nugget, 0 < δ < 1 in the model, and replace the
ill-conditioned R with a well-conditioned Rδ = R + δI that has
a smaller condition number (see Section 4 for details) as com-
pared to that of R. Equivalently, one can introduce an indepen-
dent white-noise process in the model

y(xi) = μ + z(xi) + εi, i = 1, . . . ,n,

where εi are iid N(0, σ 2
ε ). That is, Var(Y) = V(D0|y(D0)) =

σ 2
z R + σ 2

ε I = σ 2
z (R + δI) for δ = σ 2

ε /σ 2
z . The value of the

nugget is bounded above, δ < 1, to ensure that the numerical
uncertainty is smaller than the process uncertainty. The result-
ing BLUP is given by

ŷδ(x) =
[
(1 − r′(R + δI)−11n)

1′
n(R + δI)−11n

1′
n + r′

]
(R + δI)−1Y, (7)

and the associated mean squared error s2
δ (x) is

s2
δ(x) = σ 2

z (1 − 2C′
δr + C′

δRCδ), (8)

where Cδ is such that ŷδ(x) = C′
δY .

Theoretically, it is straightforward to see that the use of a pos-
itive nugget in the GP model produces a non-interpolator. Jones,
Schonlau, and Welch (1998) showed that the GP fit given by (3)
and (4) is an interpolator because for 1 ≤ j ≤ n, r′R−1 = e′

j,
where ej is the jth unit vector, r = (r1(xj), . . . , rn(xj))

′ and
ri(xj) = corr(z(xi), z(xj)). If we use a δ (> 0) in the model (i.e.,
replace R with Rδ), then r′R−1

δ 	= e′
j and thus ŷ(xj) 	= yj and

ŝ2(xj) 	= 0. From a practitioner’s viewpoint, one could sacri-
fice exact interpolation if the interpolation accuracy of the fit
is within the desired tolerance, but it is not always achievable
(see Section 6 for illustrations).

The nugget parameter δ is often estimated along with the
other model parameters. However, one of the major concerns
in the optimization is that the likelihood (modified by replacing
R with Rδ) computation fails if the candidate nugget δ ∈ (0,1)

is not large enough to overcome ill-conditioning of Rδ . To avoid
this problem in the optimization, it is common to fix an ad hoc
boundary value on the nugget parameter. The resulting maxi-
mum likelihood estimate is often close to this boundary value
and the fit is not an interpolator of the observed data (i.e., the in-
terpolation error is more than the desired tolerance). Even if the

estimated nugget is not near the boundary, the use of a nugget
in the model in this manner may introduce unnecessary over-
smoothing from a practical standpoint (Section 6 presents sev-
eral illustrations). In the next section, we propose a lower bound
on the nugget that minimizes the unnecessary over-smoothing.

4. CHOOSING THE NUGGET

Recall from Section 3.2 that an n×n matrix R is said to be ill-
conditioned or near-singular if its condition number κ(R) is too
large. Thus, we intend to find δ such that κ(Rδ) is smaller than a
certain threshold. Our main objectives here are to compute the
condition number of Rδ and the threshold that classifies Rδ as
well-behaved.

Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of R. Then, in the
L2-norm, κ(R) = λn/λ1 (Golub and Van Loan 1996). The addi-
tion of δ along the main diagonal of R shifts all of the eigenval-
ues of R by δ. That is, the eigenvalues of Rδ = R+ δI are λi + δ,
i = 1, . . . ,n, where λi is the ith smallest eigenvalue of R. Thus,
Rδ is well-conditioned if

log(κ(Rδ)) � a,

λn + δ

λ1 + δ
� ea,

δ � λn(κ(R) − ea)

κ(R)(ea − 1)
= δlb,

where κ(R) = λn/λ1 and ea is the desired threshold for κ(Rδ).
Note that δlb is a function of the design points and the hyperpa-
rameter θ .

The closed form expressions for the eigenvalues and hence
the condition number of a Gaussian correlation matrix R, in
(2), for arbitrary θ and design {x1, . . . , xn} is, to our knowledge,
yet unknown. If x ∈ (−∞,∞)d and xk ∼ N(0, σ 2

x ), closed form
expressions of the expected eigenvalues of R are known (see
section 4.3 in the book by Rasmussen and Williams 2006). In
our case, x ∈ [0,1]d , and the design points are often chosen us-
ing a space-filling criterion (e.g., Latin hypercube with prop-
erties like maximin distance, minimum correlation, OA; uni-
form designs, and so on). In such cases, one may assume, at
most, xk ∼ U(0,1) for k = 1, . . . ,d. In fact, the objectives of
building efficient emulators for computer simulators often in-
clude estimating prespecified process features of interest, and
sequential designs (e.g., expected improvement based designs)
are preferred to achieve such goals. In such designs, the follow-
up points tend to “pile up” near the feature of interest. The
distributions of such design points are not uniform and can be
nontrivial to represent in analytical expressions. Hence, it is al-
most surely infeasible to obtain closed form expressions for the
eigenvalues of such R in general. Of course, one can compute
these quantities numerically. We use Matlab’s built-in function
eig to compute the maximum eigenvalue of R and cond to cal-
culate the condition number κ(R) = λn/λ1 in the expression of
δlb.

Another important component of the proposed lower bound
is the threshold for getting well-behaved nonsingular correla-
tion matrices. As one would suspect, the near-singularity of
such a correlation matrix depends on n, d, the distribution of
{x1, . . . , xn} ∈ [0,1]d , and θ ∈ (0,∞)d . We now present the key
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Figure 2. The contours in the left panel show the proportion of correlation matrices flagged as near-singular. The contours in the right panel
display average log(κ(R)) values. The shaded region in the left panel corresponds to log(κ(R)) > 25. The online version of this figure is in color.

steps of the simulation algorithm used for estimating the thresh-
old under a specific design framework. The results are averaged
over the distribution of {x1, . . . , xn} and θ , and thus it is suffi-
cient to find the threshold of κ(R).

For several combinations of n and d, we generate 5000 corre-
lation matrices where the design points {x1, . . . , xn} follow the
maximin Latin hypercube sampling scheme (Stein 1987) and
θk’s are chosen from an exponential distribution with mean 1.
Recall from Section 3.2 that a near-singular (or ill-conditioned)
correlation matrix has a large condition number, and κ(R) is in-
versely proportional to θ . Consequently, we focused on small
values of θ in simulating R. These correlation matrices are used
to compute the proportion of matrices that are near-singular
(see the contours in the left panel of Figure 2). We used Mat-
lab’s built-in function lhsdesign to generate the design points
and chol (which computes the Cholesky factorization) to check
whether or not a matrix R was near-singular under the working
precision.

For a positive definite well-behaved matrix R, “[U,p] = chol(R)” produces an
upper triangular matrix U satisfying U′U = R and p is zero. If R is not positive
definite, then p is a positive integer.

We also computed the condition numbers of these 5000 cor-
relation matrices (using Matlab’s built-in function cond). The
right panel of Figure 2 presents the contours of the average of
log(κ(R)) for different combinations of n and d.

From Figure 2, it is clear that a ≈ 25 can be used as the
threshold for log(κ(Rδ)) of a well-behaved correlation matrix
Rδ . Also note that the proportion of near-singular cases, denoted
by the contours in the left panel of Figure 2, decreases rapidly
with the increment in the input dimension. This is somewhat
intuitive because the volume of the void (or unexplored region)
increases exponentially with the dimension, and a really large
space-filling design is needed to jeopardize the conditioning of
the correlation matrices in high-dimensional input space. For
other design schemes (e.g., sequential designs), one can follow
these steps to estimate the threshold for the condition number
of well-behaved correlation matrices.

The lower bound on the nugget is only a sufficient condi-
tion and not a necessary one for Rδ to be well-conditioned.

For instance, a correlation matrix with 100 design points in
(0,1)2 chosen using a space-filling criterion may lead to a well-
behaved R if θ is very large. If the correlation matrix is well-
conditioned, R should be used instead of Rδ , that is,

δlb = max

{
λn(κ(R) − ea)

κ(R)(ea − 1)
,0

}
. (9)

That is, when R is well-behaved our approach allows δlb to
be zero and hence a more accurate surrogate can be obtained
as compared to the popular approach (Section 3.3), where
a nonzero nugget is forced in the model which may lead
to undesirable over-smoothing. This could be of concern in
high-dimensional input space, because the proportion of near-
singular cases decreases with the increment in the input di-
mension. Example 3 demonstrates the performance of the pro-
posed methodology over the popular approach for an eight-
dimensional simulator.

Although the use of δlb in the GP model minimizes the over-
smoothing, δlb may not be small enough to achieve the desired
interpolation accuracy (see Examples 1 and 2 for illustrations),
and choosing δ < δlb may lead to ill-conditioned R. This may
not be a big issue if one believes that the simulator is somewhat
noisy and/or the statistical emulator is biased due to misspec-
ification in the correlation structure or model assumptions. In
such cases, a little smoothing might be a good idea. However,
controlling the amount of smoothing is a nontrivial task and
requires more attention. On the other hand, over-smoothing is
undesirable if the experimenter believes that the computer sim-
ulator is deterministic and the statistician is confident about the
choice of the emulator (we consider the GP model with Gaus-
sian correlation structure). Under these assumptions, we now
propose a new predictor that can achieve the desired level of
interpolation accuracy.

5. NEW ITERATIVE APPROACH

In this section, we propose a predictor that is based on the
iterative use of a nugget δ ∈ (0,1). This approach does not
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depend severely on the magnitude of the nugget, and the re-
sults developed here are based on an arbitrary 0 < δ < 1, large
enough to ensure Rδ well-behaved. However, choosing δ > δlb

may require more iterations to attain the desired interpolation
accuracy, and we recommend using δlb. We also show that the
proposed predictor converges to the interpolator (3) and (4).

Recall that the key problem here is the inaccurate computa-
tion of |R| and R−1 due to ill-conditioning of R. The main idea
of the new approach is to rewrite the profile log-likelihood as

−2 log Lp ∝ − log(|R−1|)
+ n log

[
(Y − 1nμ̂(θ))′R−1(Y − 1nμ̂(θ))

]
, (10)

and replace the ill-conditioned R−1 with a well-behaved quan-
tity. This modified profile log-likelihood can then be optimized
to get the parameter estimates. Next, we describe how to find
the appropriate well-behaved substitute for R−1.

In the same spirit as the popular approach, we attempt to eval-
uate R−1w by solving Rt = w, under the assumption that R can-
not be inverted accurately (i.e., R is near-singular) and there
exists a δ ∈ (0,1) such that Rδ = (R + δI) is well-conditioned.
In an attempt to find an interpolator of the simulator (up to cer-
tain accuracy), our objective is to find t∗ = f (Rδ,w) that is a
better approximation of t = R−1w as compared to t̃ = R−1

δ w,
suggested by the popular approach. To achieve this goal, we
propose to use iterative regularization (e.g., Tikhonov 1963;
Neumaier 1998), a technique for solving ill-conditioned sys-
tems of equations.

Let s0 = w and si, i = 1, . . . ,M, be a sequence of vectors ob-
tained by recursively solving the system of equations given by

(R + δI)si = δsi−1. (11)

Then, the estimate of t = R−1w after the ith iteration (1 ≤ i ≤
M) of regularization is given by

ti = ti−1 + si

δ
, (12)

where t0 is a vector of zeros. The final solution with M iterations
of regularization,

tM =
M∑

k=1

δk−1(R + δI)−kw,

requires only one direct inversion (or one Cholesky decompo-
sition) of Rδ = R + δI, followed by M forward and backward
substitutions. The proposed approximation of t = R−1w is tM ,
with M ≥ 1 chosen to satisfy the interpolation accuracy require-
ment. Lemma 1 shows that the iterative regularization approach
in (11) and (12) leads to a solution that is a generalization of the
popular approach outlined in Section 3.3.

Lemma 1. Let R be an n × n positive definite correlation ma-
trix, I be the n × n identity matrix, and 0 < δ < 1 be a constant;
then

R−1 =
∞∑

k=1

δk−1(R + δI)−k.

The convergence of this infinite series follows from the
von Neumann series (the matrix version of the Taylor series;
Lebedev 1997) expansion of g(u) = (R + uI)−1 around u = δ:

g(u) = g(δ) + (u − δ)g′(δ) + (u − δ)2

2! g′′(δ)

+ (u − δ)3

3! g′′′(δ) + · · · ,

that is,

(R + uI)−1 = (R + δI)−1 + (u − δ)(−1)(R + δI)−2

+ (u − δ)2

2! (−1)(−2)(R + δI)−3 + · · ·

= (R + δI)−1 − (u − δ)(R + δI)−2

+ (u − δ)2(R + δI)−3 − · · · .
Setting u = 0, we get R−1 = ∑∞

k=1 δk−1(R + δI)−k and thus the
proposed solution obtained using the iterative regularization is
the Mth-order von Neumann approximation of R−1. The pre-
dictor ŷδ in the popular approach (7) uses t1, the first-order von
Neumann approximation, and hence our proposed approach is
a generalization of the popular approach.

The proposed regularization is implemented by optimizing
the modified profile log-likelihood

−2 log Lp ∝ − log(|R−1
δ,M|)

+ n log
[
(Y − 1nμ̂(θ))′R−1

δ,M(Y − 1nμ̂(θ))
]
, (13)

where R−1
δ,M = ∑M

k=1 δk−1(R + δI)−k . Closed form expressions

for μ̂(θ) and σ̂ 2
z (θ) are the same as in (5) subject to R−1 re-

placed by R−1
δ,M . The new regularized predictor ŷδ,M(x) at x ∈ χ

is

ŷδ,M(x) =
[
(1 − r′R−1

δ,M1n)

(1′
nR−1

δ,M1n)
1′

n + r′
]

R−1
δ,MY, (14)

and the corresponding MSE s2
δ,M(x) is given by

s2
δ,M(x) = σ 2

z (1 − 2C′
δ,Mr + C′

δ,MRCδ,M), (15)

where Cδ,M is such that ŷδ,M(x) = C′
δ,MY . Lemmas 2 and 3 es-

tablish the convergence results for an arbitrary 0 < δ < 1.

Lemma 2. Let R be a near-singular correlation matrix as de-
fined in (2), and 0 < δ < 1 be a nugget such that R + δI is well-
behaved. Then, for every x∗ ∈ χ = [0,1]d ,

lim
M→∞ ŷδ,M(x∗) = ŷ(x∗),

where ŷ(x∗) and ŷδ,M(x∗) are defined in (3) and (14), respec-
tively.

The proof follows from Lemma 1 and using limM→∞ R−1
δ,M =

R−1 in (14). It is straightforward to show that Cδ,M in (15) con-
verges to C in (4) as M → ∞. This also proves the next result
on the convergence of the mean squared error for the proposed
predictor.
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Lemma 3. Let R be a near-singular correlation matrix as de-
fined in (2), and 0 < δ < 1 be a nugget such that R + δI is well-
behaved. Then, for every x∗ ∈ χ = [0,1]d ,

lim
M→∞ s2

δ,M(x∗) = s2(x∗),

where s(x∗) and sδ,M(x∗) are defined in (4) and (15), respec-
tively.

Lemmas 2 and 3 prove that even if a few pairs of points are
too close together in the input space, or θk’s are close to zero
to cause near-singularity of R, the proposed iterative predictor
converges to an interpolator as M increases [i.e., for 1 ≤ i ≤ n,
ŷδ,M(xi) → yi and s2

δ,M(xi) → 0 as M → ∞].

Remark. In practice, when a prespecified interpolation ac-
curacy is desired, the proposed iterative approach suggests re-
fitting the GP model [i.e., optimization of (13)] for different
choices of M ≥ 1. Note that the parameter estimates change
with M which allows for the extra flexibility in the model that
adjusts the over-smoothed portion of the surrogate. First of all,
the computational cost of fitting this model increases with M.
Second, the combined cost of refitting the model for different
values of M can be quite large. Although the numerical stabil-
ity in computing R−1

δ,M does not change with M, computation of

|R−1
δ,M| can become less numerically stable with increasing M.

This is because R−1
δ,M → R−1 as M → ∞ and the computation

of |R−1| is assumed to be unstable. Considering these issues,
we recommend optimizing the profile log-likelihood (13) with
M = 1 to obtain θ̂mle and δlb(θ̂mle), and then use it to compute
ŷδ,M(x) and ŝδ,M(x) for any M ≥ 1 by following the iterative
regularization steps outlined above.

The convergence results in Lemmas 1, 2, and 3 do not depend
on the choice of θ and δ in Rδ = R + δI, and so the predictor
obtained is still an interpolator. The key steps required for the
implementation of the proposed approach are as follows:

1. Computation of the profile log-likelihood (10) for the es-
timation of θ .

(a) Choose a candidate θ in 
d and compute R.
(b) Compute the lower bound of nugget δlb in (9). Note

that δlb is a function of the hyperparameters θ , the design
matrix, and the threshold.

(c) Replace R−1 with R−1
δlb,1

in the likelihood (10).

2. Obtain the parameter estimates θ̂ and δlb(θ̂) by optimizing
the profile log-likelihood. Then compute μ̂(θ̂ ) and σ̂ 2

z (θ̂).
3. Use the parameter estimates θ̂ , δlb(θ̂ ), μ̂(θ̂ ), and σ̂ 2

z (θ̂ ) to
compute the regularized emulator given by ŷδlb,M(x) and
ŝ2
δlb,M

(x) in (14) and (15), respectively.

The number of iterations (M) in ŷδlb,M(x) and ŝ2
δlb,M

(x) depends
on the desired interpolation accuracy, and one can build stop-
ping rules for attaining the prespecified accuracy in (14). We
use Mahalanobis distance (Bastos and O’Hagan 2009) to com-
pute the accuracy of the predictor. The interpolation accuracy is
measured by

ξ0
I,k = log10

[(
y(D0) − ŷδlb,k(D0)

)′

× {
V(D0|y(D0))

}−1(
y(D0) − ŷδlb,k(D0)

)]
,

where ŷδlb,k(D0) = (ŷδlb,k(x1), . . . , ŷδlb,k(xn))
′, and V(D0|

y(D0)) = σ 2
z (R + δlbI). Similarly,

ξI,k = log10
[(

ŷδlb,k(D0) − ŷδlb,k−1(D0)
)′

× {
V(D0|y(D0))

}−1(
ŷδlb,k−1(D0) − ŷδlb,k(D0)

)]
measures the improvement of the predictor ŷδ,k in interpolating
the data by increasing the number of terms in the von Neumann
approximation. Lemmas 2 and 3 show that both ξI,k and ξ0

I,k
tend to −∞ as k increases. As ξI,k tends to −∞, the predictor
ŷδ,k is stabilizing, while as ξ0

I,k tends to −∞, the predictor in
(14) is converging to the BLUP in (3). As we will see in Ex-
ample 1, the rates of convergence of ξI,k and ξ0

I,k may differ.

That is, both of these measures (ξ0
I,k and ξI,k) can be used in

practice to choose appropriate M for achieving the desired in-
terpolation accuracy. For measuring the prediction accuracy (at
out-of-sample points), we define an analogous quantity

ξ0
P,k = log10

[(
y(Dnew) − ŷδlb,k(Dnew)

)′

× {
V(Dnew|y(D0))

}−1(
y(Dnew) − ŷδlb,k(Dnew)

)]
,

where Dnew is a set of nnew unsampled points in the input
space. The parameters σ 2

z and θ in the covariance matrix
V(Dnew|y(D0)) = σ 2

z (R + δlbI) are estimated from the original
data D0, but δlb was recomputed for Dnew. For the simulated ex-
amples considered in this article, we used maximin Latin hyper-
cube designs of size nnew = 1000 · d as Dnew, whereas the tidal
power application used a holdout set for Dnew. The next section
illustrates that even the best choice of δ can lead to over-smooth
emulators, and the iterative approach is advantageous.

6. EXAMPLES

To illustrate the proposed approach we first present a few
simulated examples. The performance of the new iterative pre-
dictor is also compared with the popular approach. Then, we
revisit the tidal power modeling example.

Example 1. Let x1, x2 ∈ [0,1], and the underlying determin-
istic simulator output be generated using the GoldPrice function
(Andre, Siarry, and Dognon 2000),

f (x1, x2) =
[

1 +
(

x1

4
+ 2 + x2

4

)2

×
{

5 − 7x1

2
+ 3

(
x1

4
+ 1

2

)2

− 7x2

2

+
(

3x1

2
+ 3

)(
x2

4
+ 1

2

)
+ 3

(
x2

4
+ 1

2

)2}]

∗
[

30 +
(

x1

2
− 1

2
− 3x2

4

)2

×
{

26 − 8x1 + 12

(
x1

4
+ 1

2

)2

+ 12x2

− (9x1 + 18)

(
x2

4
+ 1

2

)
+ 27

(
x2

4
+ 1

2

)2}]
.
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(a) Popular fit with MLE (b) M = 1 (with lower bound)

(c) M = 5 (with lower bound) (d) M = 20 (with lower bound)

Figure 3. The dots denote the design points, the solid curves denote the contours of the true GoldPrice function, and the dashed curves
represent the contours of the predicted surfaces.

For illustration purposes, we intentionally select a max-
imin Latin hypercube design (Stein 1987) with n = 70 points
that leads to an ill-conditioned correlation matrix for small
θ ∈ (0,∞)2. It turns out that for this particular design (see
Figure 3), the correlation matrix R is ill-conditioned if θ1 ·
θ2 � 3. Figure 3(a) presents the contours (at heights y =
120,500,1000, and 10,000) of the true simulator (solid curve)
and the GP surrogate fit (obtained using the methodology out-
lined in Sections 3.1 and 3.3). For successful implementa-
tion of the popular approach, we optimized the likelihood in
the parameter space δ ∈ (10−5,1) and θ ∈ (0,∞)2. The pa-
rameter estimates for the GP fit are δ̂mle = 1.06 · 10−5 and
θ̂mle = (5.01,7.33). Note that δ̂mle is close to the boundary and
the fitted surrogate is significantly different than reality in the
central part of the input space.

The parameter estimates for the GP model fit obtained from
the proposed method are θ̂mle = (2.26,2.75) and δlb(θ̂mle) =
5.26 ·10−10. The GP surrogate for M = 1, in Figure 3(b), shows
a much better fit, which is further improved by the iterative ap-
proach [see Figure 3(c) and (d)]. Figure 4 shows that ξI,k goes
to −∞ at a faster rate as compared to ξ0

I,k.

Table 1 summarizes the results from a detailed simulation
study based on several combinations of the design sizes and the
boundary values of δ in the likelihood optimization. For fair

Figure 4. Convergence of ξI,k (dashed curve—right axis) and ξ0
I,k

(solid curve—left axis). The online version of this figure is in color.
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Table 1. Median and (P5,P95) of ξ0
I,M values for the proposed approach (denoted by “lb”) and the popular approach

(denoted by “mle”) applied to the GoldPrice function

n = 25 n = 50 n = 75 n = 100

δ̂mle ≥ 10−5 0.71 (−3.60, 3.02) 1.36 (0.61, 1.74) 2.12 (1.91, 2.49) 2.43 (2.26, 2.60)
δ̂mle ≥ 10−10 −0.89 (−7.08, 2.14) 1.07 (−3.28, 2.03) 1.48 (0.46, 2.10) 1.21 (0.41, 1.70)

δlb (M = 1) −25.71 (−28.13, −20.50) −16.68 (−20.49, −14.40) 0.85 (0.63, 1.17) 1.09 (0.90, 1.26)
δlb (M = 5) 0.19 (−0.29, 0.70) 0.43 (0.27, 0.72)
δlb (M = 20) −0.48 (−0.91, −0.09) −0.07 (−0.35, 0.14)

comparison between the two methodologies, first we use the
proposed model with only one term in the von Neumann ap-
proximation (i.e., M = 1) and the popular method with δ̂mle.
We then increase the number of iterations to measure the im-
provement in the interpolation accuracy. The results in Table 1
are summarized over model fits with 50 random maximin Latin
hypercube designs. These designs are generated using Matlab’s
built-in function lhsdesign which takes random starting points
and hence the output designs are random. The table entries are
P50 (P5,P95), where Pr denotes the rth percentile of ξ0

I,M val-
ues obtained from the model fits.

From Table 1, it is clear that the interpolation error of the
surrogates fitted using the popular approach decreases by low-
ering the boundary value of the nugget parameter (from 10−5 to
10−10) in the optimization problem. It turns out that the corre-
lation matrices are well-behaved for small designs (i.e., n = 25
and n = 50) and nonzero nuggets are not required for a nu-
merically stable model fitting process. This is captured by the
proposed approach, as δlb(θ̂mle) = 0 and the interpolation error
is much smaller than in the popular approach where a nonzero
nugget is forced in the model. Consequently, the iterative ap-
proach is not used for these cases. For n = 75 and n = 100,
the correlation matrices turn out to be near-singular for θ near
θ̂mle, and nonzero δ had to be used for numerically stable com-
putation. It is clear from the last three rows that the proposed
iterative approach leads to improvement in the interpolation ac-
curacy.

Table 2 summarizes the corresponding prediction accuracy
values, ξ0

P,M , where the test set of unsampled points, Dnew, is
a randomly chosen 2000-point maximin Latin hypercube de-
sign. The simulation results are based on 50 realizations. As
before, the maximin Latin hypercube designs were generated
using the built-in function lhsdesign in Matlab and the output
designs are random. The results illustrate that the proposed it-
erative approach also improves the prediction at out-of-sample
points. Note that the improvement in prediction accuracy is

not as significant as the improvement in interpolation accuracy.
This is expected as the proposed methodology is geared toward
improving the approximation of the interpolator.

Example 2. Suppose the deterministic simulator outputs are
generated using the three-dimensional Perm function (Yang
2010) given by

f (x) =
3∑

k=1

[
3∑

i=1

(ik + β)((xi/i)k − 1)

]2

,

where x = (x1, x2, x3) and the ith input variable xi ∈ [−3,3] for
i = 1, . . . ,3. For convenience, we rescale the input variables
in [0,1]. As in the previous example, we fit the GP model us-
ing both the popular method (Section 3.3) and the proposed
approach (Sections 4 and 5) to the data generated by evaluat-
ing the Perm function at n design points. Table 3 compares the
median and the two tail percentiles (P5,P95) of ξ0

I,M values ob-
tained from fitting GP models to 50 datasets (maximin Latin
hypercube designs generated using Matlab’s built-in function
lhsdesign) of different run-sizes. Here also, we prespecified the
boundary values for estimating δ in the popular approach.

As in Example 1, the interpolation errors of the GP fits ob-
tained through the popular approach are slightly reduced by
lowering the boundary value of δ (from 10−5 to 10−10) in the
optimization process. The small values of the percentiles of ξ0

I,M
in the row labeled “δlb (M = 1)” of Table 3 indicate that the cor-
relation matrices are well-behaved [i.e., δlb(θ̂mle) = 0] for most
of the designs with runs-sizes n = 25, 50, and 75. It turns out
that approximately 46% of the correlation matrices are well-
behaved for designs of size n = 100. In “δlb (M = 5)” case, the
interpolation accuracy has increased and 53% of the designs of
size n = 100 show δlb(θ̂mle) = 0. The proposed approach facil-
itates the inclusion of a nonzero nugget only when required for
fixing the ill-conditioning problem. Clearly, the number of real-
izations that required a nonzero nugget in the GP models here is

Table 2. Median and (P5,P95) of ξ0
P,M values for the predictors in the proposed approach (denoted by “lb”) and the popular approach

(denoted by “mle”) applied to the GoldPrice function

n = 25 n = 50 n = 75 n = 100

δ̂mle ≥ 10−5 4.59 (3.71, 6.17) 3.45 (3.25, 3.75) 3.34 (3.18, 3.46) 3.23 (3.12, 3.43)
δ̂mle ≥ 10−10 4.49 (3.68, 6.01) 3.40 (3.12, 3.85) 2.76 (2.50, 3.03) 2.30 (1.85, 2.52)

δlb (M = 1) 4.28 (3.59, 5.72) 3.22 (3.02, 3.54) 2.29 (2.07, 2.52) 1.94 (1.68, 2.18)
δlb (M = 5) 2.15 (1.90, 2.42) 1.77 (1.55, 2.02)
δlb (M = 20) 2.08 (1.71, 2.50) 1.69 (1.47, 1.98)
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Table 3. Median and (P5,P95) of ξ0
I,M values for the proposed approach (denoted by “lb”) and the popular approach

(denoted by “mle”) applied to the Perm function

n = 25 n = 50 n = 75 n = 100

δ̂mle ≥ 10−5 2.42 (−2.78, 4.29) 1.70 (0.00, 2.17) 2.79 (1.56, 3.16) 3.12 (2.22, 3.63)
δ̂mle ≥ 10−10 2.24 (−4.17, 3.85) 1.69 (−0.36, 2.33) 2.90 (1.39, 3.28) 3.07 (1.72, 3.68)

δlb (M = 1) −26.46 (−27.53, −24.97) −21.37 (−22.98, −18.99) −18.76 (−20.07, −17.35) 1.76 (−20.35, 1.81)
δlb (M = 5) −16.71 (−20.22, 1.73)

much smaller than in the GoldPrice example. This is expected
because getting near-singular correlation matrices becomes less
likely as the dimensionality of the input space increases.

The corresponding prediction accuracy measures for 50 sim-
ulations are summarized in Table 4. The test set, Dnew, required
for computing ξ0

P,M , is a randomly chosen 3000-point maximin
Latin hypercube design. As in Example 1, the prediction accu-
racy increases with M, the number of iterations, and by lower-
ing the boundary value of the nugget in the optimization prob-
lem.

Example 3. The borehole model is a more realistic determin-
istic simulator, that models the flow rate through a borehole
which is drilled from the ground surface through two aquifers,
and is commonly used in computer experiments (e.g., Joseph,
Hung, and Sudjianto 2008) to compare different methods. The
flow rate is given by

f (x) = 2πTu(Hu − Hl)

log(r/rw)[1 + 2LTu/(log(r/rw)r2
wKw) + Tu/Tl] ,

where x = (rw, r,Tu,Tl,Hu,Hl,L,Kw), and the input rw ∈
[0.05,0.15] is the radius of the borehole, r ∈ [100,50,000] is
the radius of the influence, Tu ∈ [63,070,115,600] is the trans-
missivity of the upper aquifer, Tl ∈ [63.1,116] is the transmis-
sivity of the lower aquifer, Hu ∈ [990,1110] is the potentiomet-
ric head of the upper aquifer, Hl ∈ [700,820] is the potentio-
metric head of the lower aquifer, L ∈ [1120,1680] is the length
of the borehole, and Kw ∈ [9855,12,045] is the hydraulic con-
ductivity of the borehole. For convenience, we rescale the input
variables to [0,1].

Table 5 compares the median and two tail percentiles
(P5,P95) of ξ0

I,M values obtained from the GP model surro-
gates fitted to 50 random maximin Latin hypercube designs via
the two methods. Since the simulator is eight-dimensional, we
considered slightly larger run-sizes n = 50,75,100, and 125;
however, the number of simulations and the candidates for the
boundary values of δ in the likelihood optimization were kept
the same as in Examples 1 and 2.

As expected, the interpolation error of the GP fits obtained
using the popular approach slightly decreases by lowering the
boundary value of the nugget parameter (from 10−5 to 10−10)
in the optimization problem. The proposed method leads to
predictors with significantly higher interpolation accuracy. The
percentiles of ξ0

I,M in the last row of Table 5 also suggest that
most of the correlation matrices are well-conditioned for the
θ values near θ̂mle, and δlb(θ̂mle) = 0. That is, the iterative ap-
proach is not needed to further improve the interpolation accu-
racy.

Table 6 summarizes the prediction accuracy values (i.e.,
ξP,M) for 50 simulations. The test set for computing ξ0

P,M is a
randomly chosen 8000-point maximin Latin hypercube design.
It is clear from Table 6 that more accurate prediction can be
achieved by lowering the δ value in the optimization process of
the popular approach, and certainly the proposed approach re-
sults in the best prediction at unsampled points among the three
cases considered here.

Example 4. We now revisit the tidal power example in Sec-
tion 2. The computer simulator (a version of FVCOM) is ex-
pensive and cannot be evaluated at numerous coordinates. Each
of the runs presented here required approximately one hour to
run on four processors in parallel on the Atlantic Computational
Excellence network (ACEnet) mahone cluster. While this is not
particularly onerous on a large cluster, the grid resolution used
in KMLH is about 200 m (length of a side in a triangle). A re-
alistic model of 20 m sided triangular grid and with 10 vertical
layers to model 3D flow would increase the computational ex-
pense by a factor of 5120, making each individual simulator
run roughly 10 times more costly than the generation of the en-
tire dataset examined here. The ocean modelers believe that the
simulator is deterministic up to the machine precision and they
are interested in an emulator that interpolates the simulator.

A total of 533 runs (on a 13 × 41 grid) were used to obtain
the data displayed in Figure 5. We use these data to compare our
results. The goal is to build an emulator of the computer model
using a fraction of the budget (533 runs) that provides the best
approximation of the simulator.

Table 4. Median and (P5,P95) of ξ0
P,M values for the predictors in the proposed approach (denoted by “lb”) and the popular approach

(denoted by “mle”) applied to the Perm function

n = 25 n = 50 n = 75 n = 100

δ̂mle ≥ 10−5 6.78 (4.94, 7.43) 4.24 (4.06, 4.44) 4.01 (3.91, 4.28) 4.02 (3.80, 4.16)
δ̂mle ≥ 10−10 6.68 (5.21, 7.22) 4.23 (4.12, 4.40) 4.10 (3.90, 4.27) 3.90 (3.52, 4.24)

δlb (M = 1) 5.87 (4.70, 6.88) 4.08 (3.91, 4.28) 3.80 (3.60, 4.00) 2.60 (2.21, 3.89)
δlb (M = 5) 2.49 (2.17, 3.86)
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Table 5. Median and (P5,P95) of ξ0
I,M values for the proposed approach (denoted by “lb”) and the popular approach

(denoted by “mle”) applied to the borehole model

n = 50 n = 75 n = 100 n = 125

δ̂mle ≥ 10−5 0.62 (0.21, 1.26) 1.27 (0.69, 1.58) 1.55 (1.11, 1.91) 1.86 (1.44, 2.30)
δ̂mle ≥ 10−10 0.48 (−1.59, 1.12) 0.65 (−1.05, 1.56) 0.83 (−1.47, 1.66) 1.33 (−0.41, 2.15)

δlb (M = 1) −18.47 (−19.45, −16.66) −16.18 (−17.06, −14.27) −13.93 (−15.19, −12.46) −14.74 (−16.00, −13.47)

We used a maximin based coverage design (Johnson, Moore,
and Ylvisaker 1990) to choose a subset of n = 100 points from
these 533 points to constitute a space-filling design. The con-
tours from both the predicted surface and the true simulator
(based on the 13 × 41 grid) are shown in Figure 6. For suc-
cessful implementation of the popular approach outlined in Sec-
tions 3.1 and 3.3, the likelihood optimization took place in the
parameter space δ ∈ (10−5,1) and θ ∈ (0,∞)2, and the pa-
rameter estimates for the GP fit are θ̂mle = (163.18,50.66) and
δ̂mle = 0.0462 [see Figure 6(a)]. The parameter estimates for
the GP model fitted using the proposed approach with M = 1
are θ̂mle ≈ (788.54,221.18) and δlb(θ̂mle) ≈ 0 [see Figure 6(b)].

Figure 6 shows that the GP based emulator obtained using
the proposed approach [Figure 6(b)] is less smooth as com-
pared to the emulator obtained via the popular approach [Fig-
ure 6(a)]. The interpolation errors for the GP fits obtained with
the popular method and the proposed approach are ξ0

I,M = 6.63
and −26.58, respectively. That is, the proposed approach is
better at approximating the interpolator. In terms of predict-
ing the power surface at unsampled points (i.e., the rest of 433
points), the prediction error values for both the popular and
proposed approaches are somewhat close, ξ0

P,M ≈ 10. More-
over, when using the popular approach, the maximum pre-
dicted power obtained by evaluating max{ŷ(x), x ∈ χ} is ap-
proximately 1.4 · 108 W with the maximizer being (0.7850,
0.4500), whereas if we use the proposed approach the maxi-
mum predicted power is approximately 1.6 · 108 W observed at
(0.7900, 0.4500).

7. DISCUSSION

Assuming that the underlying computer simulator is deter-
ministic up to the machine precision and the statistician is cer-
tain about the suitability of a GP model with Gaussian correla-
tion as the emulator, fitting the model to a dataset with n points
in d-dimensional input space requires computation of the de-
terminant and inverse of n × n correlation matrices for several
θ values. In Section 4, we conducted a simulation study to ex-
plore space-filling designs (specifically maximin Latin hyper-
cube designs) for different combinations of (n,d) that can lead

to near-singular correlation matrices. In Section 5, we proposed
an iterative approach, that is also a generalization of the popu-
lar approach, to construct a new predictor ŷδ,M that has higher
interpolation accuracy as compared to ŷδ—the predictor from
the popular approach. Lemmas 1, 2, and 3 show that ŷδ,M con-
verges to the BLUP as the number of iterations (M) increases.
The lower bound δlb, proposed in Section 4, also allows us to
use a nonzero nugget only when needed, and in this case min-
imizes the number of iterations required to reach the desired
interpolation accuracy.

There are a few important remarks worth noting. First,
the methodology developed here can also be adapted to the
Bayesian framework. For computing the posterior of the pa-
rameters and the predictor, |R| and R−1 need to be computed
for several realizations of θ , and a nugget is often used to over-
come the near-singularity of R (e.g., Taddy et al. 2009). The
proposed lower bound δlb can be used for defining a prior for
δ; that is, the search should be limited to [δlb,1). One can also
use the iterative approach to further improve the interpolation
and/or prediction accuracy.

Second, we used the squared exponential correlation (pk =
p = 2 for all k) in the GP model because of its popularity and
good theoretical properties. It turns out the GP model with other
power exponential correlation (i.e., pk = p < 2) may lead to
predictors with larger MSE and sometimes worse fits as com-
pared to that of the GP models with the Gaussian correlation.
Recall that the near-singularity of R occurs because (a) at least
two of the design points (say xi and xj) are close together in
the input space, and/or (b) the hyperparameters θk, k = 1, . . . ,d,
are very close to zero, that is,

∑d
k=1 θk|xk,i − xk,j|pk ≈ 0. This

makes a few of the rows of R very similar, and will happen even
if pk < 2. That is, the ill-conditioning problem may also occur
when other power exponential correlation functions (i.e., pk’s
are same and less than 2 or pk’s are different and less than 2) are
used. A closer investigation reveals that with pk = p < 2, near-
singular cases occur very frequently in the sequential design
setup. However, for the space-filling designs, it is rather fasci-
nating that the occurrence of near-singular cases is substantially
reduced by even a small reduction in the power from p = 2 to
p = 1.99. We suspect this is due to the limiting behavior of the

Table 6. Median and (P5,P95) of ξ0
P,M values for the predictors in the proposed approach (denoted by “lb”) and the popular approach

(denoted by “mle”) applied to the borehole model

n = 50 n = 75 n = 100 n = 125

δ̂mle ≥ 10−5 4.01 (3.73, 4.37) 4.04 (3.68, 4.34) 4.13 (3.77, 4.53) 4.23 (3.93, 4.56)
δ̂mle ≥ 10−10 3.90 (3.55, 4.32) 3.81 (3.48, 4.16) 3.74 (3.27, 4.04) 3.77 (3.43, 4.07)

δlb (M = 1) 3.73 (3.37, 4.08) 3.57 (3.22, 3.86) 3.37 (2.94, 3.82) 3.64 (3.25, 4.03)
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Figure 5. FVCOM outputs (average extractable power) over a coarse grid in the Minas Passage. The online version of this figure is in color.

Gaussian correlation in the family of power exponential corre-
lation functions p ∈ (0,2].

In conclusion, when fitting a GP model to a dataset obtained
from a deterministic computer model with nearly singular cor-
relation matrices, we recommend using δlb—the lower bound
on the nugget, along with the iterative approach with the num-
ber of iterations, M, chosen according to the desired interpola-
tion accuracy.
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