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1 Introduction

Consider the surface intrinsic positive Helmholtz equation

(𝑐 − ΔS)𝑢 = 𝑓 , (1)

whereΔS denotes the Laplace-Beltrami operator associated with the surfaceS ⊂ R𝑑 ,
and 𝑐 > 0 is a constant. Discretization of this equation arises in many applications
including the time-stepping of reaction-diffusion equations on surfaces [1], the com-
parison of shapes [2], and the solution of Laplace-Beltrami eigenvalue problems [3].
As a consequence, considerable recent work has taken place to develop efficient,
high-speed solvers for this and other related PDEs on surfaces.

There are several methods to solve surface intrinsic differential equations (DEs).
If a surface parameterization (a mapping from the surface to a parameter space) is
known, then the equation can be solved in the parameter domain [4]. For triangulated
surfaces, a finite element discretization can be created [5]. Alternatively, we can
solve the DE in a neighborhood of the surface using standard PDE methods in the
underlying embedding space [6, 7, 8, 9]. Here, we discretize via the closest point
method (CPM), which is an embedding method suitable for the discretization of
PDEs on surfaces. The closest point method leads to non-symmetric linear systems
to solve. On complex geometries or when varying scales arise, iterative solvers
can be slow despite the sparsity of the underlying systems. In order to develop an
efficient iterative solver which is also capable of parallelism, Parallel Schwarz (PS)
and Optimized Parallel Schwarz (OPS) algorithms have been applied to the CPM for
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(1) in [10]. Here, we study the convergence of the PS-CPM at the continuous level for
smooth, closed 1-manifolds where periodicity is inherent in the geometry. As shown
in Section 3, this problem, posed in R𝑑 , is equivalent to a one-dimensional periodic
problem. This leads us to study the 1-dimensional periodic problem in detail.

While there has been substantial work carried out on Schwarz methods, they have
not been widely used for solving surface DEs. The shallow-water equation is solved
with a PS iteration on the cubed-sphere with a finite volume discretization in [11].
PS and OPS methods for the 2D positive definite Helmholtz problem are investigated
on the unit sphere in [12]. In [12], the analysis is based on latitudinal subdomains
that are periodic in longitude. Hence, the Fourier transform is a natural choice to
solve the subproblems analytically and obtain the contraction factor. PS and OPS
methods are also analyzed with an overset grid for the shallow-water equation in [13].
In that work, the discretization in 1D is reduced to the positive definite Helmholtz
problem on the unit circle. The unit circle case is investigated with two equal-sized
subdomains, and a convergence factor is derived for the configuration in terms of the
overlap parameter. In addition, the 2D positive definite Helmholtz problem on the
sphere is analyzed where the subdomains are derived from a Yin-Yang grid system. It
is worth noting a key difference between our work and [13]. In our problem, domain
subdivision is carried out in the underlying embedding space. As a consequence, the
unequal-sized subdomain case is essential to our understanding of the problem.

The convergence of PS and OPS for general surfaces remains unknown. Section 2
reviews the CPM. Section 3 studies the PS-CPM combination for the surface intrinsic
positive Helmholtz equation (1) by analyzing an equivalent one-dimensional periodic
problem. This section proves convergence and derives convergence factors. Although
(1) on 1-manifolds can be solved through parameterization, we only investigate
the convergence of the PS-CPM for 1-manifolds in this paper with the hope of
extending our work to higher dimensional manifolds in the future. Section 4 provides
a numerical experiment in which the PS-CPM contraction factor converges to its PS
counterpart by increasing the grid resolution. Finally, Section 5 gives conclusions.

2 The Closest Point Method

The CPM was first introduced in [7] for explicitly solving evolutionary PDEs on sur-
faces. It is an embedding method and allows the use of standard Cartesian methods
for the discretization of surface intrinsic differential operators. The surface rep-
resentation and extension of quantities defined on the surface to the surrounding
embedding space is done using the closest point mapping cpS (𝑥) = arg min

𝑠∈S
|𝑥 − 𝑠 |

for 𝑥 ∈ R𝑑 . This mapping gives the closest point in Euclidean distance to the surface
for any point 𝑥 in the embedding space. It is smooth for any point in the embedding
space within a distance 𝑅0 of a smooth surface, where 𝑅0 is a lower bound for the
surface radii of curvature [8].
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Suppose the closest point mapping of a manifold is smooth over a tubular neigh-
borhood Ω ⊂ R𝑑 of the manifold. We introduce �̃� : Ω → R as the solution to the
embedding CPM problem. Two principles are fundamental to the CPM: equivalence
of gradients and equivalence of divergence [7]. Assuming a smooth manifold S,
the equivalence of gradients principle gives us ∇�̃�(cpS) = ∇S𝑢 since �̃�(cpS) is
constant in the normal direction to the manifold. Further, applying the equivalence
of divergence principle, ∇ · (∇�̃�(cpS)) = ∇S · (∇�̃�(cpS)) holds on the manifold.
Therefore, on the manifold,

Δ�̃�(cpS) = ∇ · (∇�̃�(cpS)) = ∇S · (∇�̃�(cpS)) = ∇S · (∇S𝑢) = ΔS𝑢. (2)

A modified version of (2) offers improved stability at the discrete level and is normally
used in elliptic problems [14, 3, 15]. The regularized Laplace operator is

Δ#
ℎ�̃� = Δ�̃�(cpS) −

2𝑑
ℎ2

[
�̃� − �̃�(cpS)

]
, (3)

where 0 < ℎ � 1. As in [14, 3], we take the parameter ℎ to be equal to the mesh
spacing in the fully discrete setting.

Equation (3) gives our replacement for the Laplace-Beltrami operator. Applying
it, and extending the function 𝑓 off the manifold using the closest point mapping
gives our embedding equation for (1):

(𝑐 − Δ#
ℎ) �̃� = 𝑓 (cpS), 𝑥 ∈ Ω. (4)

Standard numerical methods in the embedding space may be applied to (4) to
complete the discretization. In this paper, we apply standard second order finite
differences on regular grids to approximate the derivative operators. Because discrete
points do not necessarily lie on S, an interpolation scheme is needed to recover
surface values. Utilizing tensor product barycentric Lagrangian interpolation [16],
an extension matrix E is defined to extend values off of the manifold. Note that the
extension matrix may be viewed as a discretization of the closest point mapping.

Using a mesh spacing ℎ and degree-𝑝 interpolation polynomials, it is sufficient
to numerically approximate equation (4) in a narrow tube around S of radius 𝑟 =√︁
(𝑑 − 1) (𝑝 + 1)2 + (𝑝 + 3)2ℎ/2. A more thorough explanation of the CPM at the

discrete level can be found in [14].

3 The PS-CPM Convergence Analysis

PS is an overlapping domain decomposition method which is designed to iteratively
solve DEs over subdomains, distributing the computational costs. It is also capable
of parallelism and can be combined with the CPM, a method whose underlying
linear system is sparse. We assume S to be a smooth, closed 1-manifold in R𝑑 with
arclength 𝐿. We consider the case with two subdomains, but the discussion can be
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generalized to any finite number of subdomains [17]. We let the disjoint subdomains
be S̃1 and S̃2. We parameterize the manifold by arclength 𝑠 starting at a boundary
of S̃1. Next, we let the overlapping subdomains be S1 = [𝑎1, 𝑏1] and S2 = [𝑎2, 𝑏2].
Since overlapping subdomains are needed, we have 𝑎1 < 0 and 𝑏2 > 𝐿. Define
ℓ1 ≡ 𝑏1 − 𝑎1 and ℓ2 ≡ 𝑏2 − 𝑎2 to be the subdomain lengths. Further, let 𝛿1 = 𝑏1 − 𝑎2
and 𝛿2 = 𝑏2 − (𝑎1 + 𝐿) denote the subdomain overlaps at 𝑠 = ℓ1 and 𝑠 = ℓ2,
respectively. In addition, we assume 0 < 𝛿1 + 𝛿2 < min{ℓ1, ℓ2}. In the CPM, the
overlapping subdomains Ω1 and Ω2, corresponding to S1 and S2, are constructed
using a graph-based partitioning algorithm applied over the computational tube [10].
Then, the PS-CPM for equation (1) is: for 𝑛 = 0, 1, . . . and for 𝑗 = 1, 2 solve{

(𝑐 − Δ#
ℎ
) �̃�𝑛+1

𝑗
= 𝑓 (cpS), in Ω 𝑗 ,

�̃�𝑛+1
𝑗

= �̃�𝑛 (cpS), on Γ 𝑗𝑘 , 𝑘 ≠ 𝑗
(5)

where Γ 𝑗𝑘 for 𝑗 , 𝑘 = 1, 2 are the boundaries of subdomains 𝑗 and 𝑘 .
To begin, an initial guess is needed over the subdomain boundaries. An iteration

may then be completed by solving all subproblems. This gives new boundary values
that can be used to initiate the next iteration, and so on, until convergence. In
this form of the Schwarz algorithm, there is no concept of a global solution. In
order to construct the global solution, a weighted average of subdomain solutions
is utilized [18]. In this paper, at any time, the approximation of the global solution
is given as the union of the disjoint subdomain solutions 𝑢𝑛 = 𝑢𝑛1 | S̃1

∪ 𝑢𝑛2 | S̃2
. This

is called restricted additive Schwarz (RAS), and we use the labels PS and RAS
interchangeably. Our analysis examines the equivalent one dimensional periodic
problem formulated below.

Theorem 1 In the limit as ℎ → 0, and using two subdomains S1 = [𝑎1, 𝑏1] and
S2 = [𝑎2, 𝑏2], the PS-CPM for the positive surface intrinsic Helmholtz equation (5)
is equivalent to:

(𝑐 − d2

d𝑠2 )𝑢𝑛+1
1 = 𝑓 , in S1,

𝑢𝑛+1
1 (𝑎1) = 𝑢𝑛2 (𝑎1 + 𝐿),

𝑢𝑛+1
1 (𝑏1) = 𝑢𝑛2 (𝑏1),

,


(𝑐 − d2

d𝑠2 )𝑢𝑛+1
2 = 𝑓 , in S2,

𝑢𝑛+1
2 (𝑎2) = 𝑢𝑛1 (𝑎2),

𝑢𝑛+1
2 (𝑏2) = 𝑢𝑛1 (𝑏2 − 𝐿),

(6)

where 𝐿 is the manifold length.

Proof For a smooth manifold S, the regularized operator Δ#
ℎ

is consistent with
the Laplace operator on the manifold [14]. Thus the CPM is consistent with the
surface intrinsic PDE problems in the limit ℎ → 0 where ℎ denotes the mesh size.
Parameterizing a one-dimensional manifold S in R𝑑 by arclength 𝑠, the differential
operator ΔS becomes d2/d𝑠2, yielding our result. �

In [13], the convergence of (6) is studied for an equal-sized partitioning. The
partitioning arising from the PS-CPM problems in (5) is performed within the
embedding space. As a consequence, our subdomains will be unequal. This motivates
us to investigate the convergence of the method for an unequal-sized partitioning.
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By defining the errors 𝜖𝑛
𝑗
= 𝑢𝑛

𝑗
− 𝑢 |S 𝑗

, 𝑗 = 1, 2, and using the linearity of (1),
iteration (6) is reduced to:

(𝑐 − d2

d𝑠2 )𝜖𝑛+1
1 = 0, in S1,

𝜖𝑛+1
1 (𝑎1) = 𝜖𝑛2 (𝑎1 + 𝐿),
𝜖𝑛+1

1 (𝑏1) = 𝜖𝑛2 (𝑏1),
,


(𝑐 − d2

d𝑠2 )𝜖𝑛+1
2 = 0, in S2,

𝜖𝑛+1
2 (𝑎2) = 𝜖𝑛1 (𝑎2),
𝜖𝑛+1

2 (𝑏2) = 𝜖𝑛1 (𝑏2 − 𝐿).
(7)

After solving the ODEs in (7), error values at the boundaries can be computed. At
each iteration, these error values depend on the error values at the boundaries from
the previous iteration. To state this concisely, we define an error vector at iteration 𝑛

which is comprised of the error values at the boundaries:

𝝐𝑛 := [𝜖𝑛1 (𝑏2 − 𝐿), 𝜖𝑛1 (𝑎2), 𝜖𝑛2 (𝑏1), 𝜖𝑛2 (𝑎1 + 𝐿)]𝑇 . (8)

We obtain, in matrix form, 𝝐𝑛+1 = MPS𝝐
𝑛, where

MPS =


0 0 𝑟1 𝑝1
0 0 𝑞1 𝑠1
𝑟2 𝑝2 0 0
𝑞2 𝑠2 0 0

 (9)

is called the iteration matrix. It has entries

𝑝 𝑗 =
1 − 𝑒2

√
𝑐 (ℓ 𝑗−𝛿 𝑗−1)

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐𝛿 𝑗−1 , 𝑟 𝑗 =

1 − 𝑒2
√
𝑐𝛿 𝑗−1

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐 (ℓ 𝑗−𝛿 𝑗−1) ,

𝑞 𝑗 =
1 − 𝑒2

√
𝑐 (ℓ 𝑗−𝛿 𝑗 )

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐𝛿 𝑗 , 𝑠 𝑗 =

1 − 𝑒2
√
𝑐𝛿 𝑗

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐 (ℓ 𝑗−𝛿 𝑗 ) , (10)

for 𝑗 = 1, 2 and 𝛿0 ≡ 𝛿2. The definitions of 𝛿 𝑗 and ℓ 𝑗 may be found at the beginning
of this section. The following lemma holds for the quantities in (10):

Lemma 1 ([17]) Suppose 0 < 𝛿1+𝛿2 < min{ℓ1, ℓ2}. Then the scalars 𝑝 𝑗 , 𝑞 𝑗 , 𝑟 𝑗 , 𝑠 𝑗 , 𝑗 =

1, 2, appearing in (10) satisfy 0 < 𝑞 𝑗 + 𝑠 𝑗 < 1 and 0 < 𝑝 𝑗 + 𝑟 𝑗 < 1.

Now, we arrive at the most important result of this section.

Theorem 2 Under the restrictions on the partitioning of the manifold S detailed
in Lemma 1 above, the PS iteration (6) for the positive Helmholtz equation on any
closed, smooth one-dimensional manifold converges globally.

Proof We must show the spectral radius of the iteration matrix, 𝜌(MPS), is less than
1. ‖MPS‖∞ bounds the spectral radius, 𝜌(MPS) ≤ ‖MPS‖∞ = max{𝑟 𝑗 + 𝑝 𝑗 , 𝑞 𝑗 + 𝑠 𝑗 }.
In Lemma 1, we have shown that 0 < 𝑝 𝑗 + 𝑟 𝑗 < 1 and 0 < 𝑞 𝑗 + 𝑠 𝑗 < 1. Therefore,
‖MPS‖∞ < 1, and consequently the algorithm converges. �

We define the convergence factor 𝜅 as the ratio of the ∞-norm of the error
vector (8) at two steps 𝑛 + 2 and 𝑛, 𝜅 = ‖𝝐𝑛+2‖∞/‖𝝐𝑛‖∞. Considering the inequality
‖𝝐𝑛+1‖∞ ≤ ‖MPS‖∞‖𝝐𝑛‖∞, ‖MPS‖2

∞ is an upper bound for the convergence factor.
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That is, 𝜅 ≤ ‖MPS‖2
∞. In the following corollary, we show that the our analysis for

the equal-sized partitioning agrees with the one obtained in [13].

Corollary 1 Assume an equal-sized partitioning for the PS iteration (6). That is,
S1 = [−𝛿, 𝐿/2 + 𝛿], S2 = [𝐿/2 − 𝛿, 𝐿 + 𝛿]. Then, the convergence factor can be
calculated as 𝜅 ≤ (𝑝 + 𝑟)2 = (𝑒

√
𝑐𝐿/2 + 𝑒

√
𝑐𝛿)2/(1 + 𝑒

√
𝑐 (𝐿/2+𝛿) )2.

Proof If we make the simplifying assumption that both subdomains are of equal
size and have a common overlap size, then 𝑞1 = 𝑞2 = 𝑝1 = 𝑝2 = 𝑝 and 𝑠1 = 𝑠2 =

𝑟1 = 𝑟2 = 𝑟 . The iteration matrix becomes a doubly stochastic matrix with row and
column sums of 𝑝 + 𝑟, and subsequently 𝜌(MPS) = 𝑝 + 𝑟. By a direct substitution
for 𝑝 and 𝑟 , we obtain 𝜅 = 𝜌(MPS)2 = (𝑒

√
𝑐𝐿/2 + 𝑒

√
𝑐𝛿)2/(1 + 𝑒

√
𝑐 (𝐿/2+𝛿) )2. �

4 Numerical Simulation

Here we numerically verify the results obtained in Section 3. Since numerical so-
lutions of the PS-CPM and the PS algorithm will be compared, we use RAS as the
domain decomposition method to build a global approximate solution. It is shown
in [18] that RAS and PS are identical iterations and have the same convergence rate.
Hence, we will use RAS-CPM instead of PS-CPM hereafter.

Theorem 1 shows that the CPM equipped with RAS as a solver is in the limit
as ℎ → 0 equivalent to RAS applied to a 1D periodic problem. To verify this, we
numerically solve (1) with 𝑐 = 1 and 𝑓 (𝑠) = sin(2𝜋𝑠/𝐿) using the RAS-CPM for the
boundary of a Möbius strip with width 1, whose center circle has radius 1. The initial
guess for the discrete solution is taken as 𝑈 (0) = 0. Two disjoint subdomains are
created by splitting the length of the curve in a 1:2 ratio, and overlapping subdomains
are formed using overlaps 𝛿 = 𝛿1 = 𝛿2 = 0.1𝐿. The solution using the RAS-CPM
with grid spacing ℎ = 0.01 and fourth degree barycentric Lagrangian interpolation
applied in a dimension-by-dimension fashion is shown in Fig. 1 (left). Here, the two
disjoint subdomains are visualized as point clouds in red and black. Convergence
histories for various grid spacings are depicted in Fig. 1 (right). Here, the RAS
and the RAS-CPM contraction factors are compared with the theoretical result. The
errors are defined as the max-norm of the difference of the DD solution and the
single domain solution.

As we observe in Fig.1 (right), the RAS error has the same decay rate as that
described in Theorem 1 (shown as the black dashed line). In addition, the RAS-CPM
error tends toward the RAS error as the mesh size is reduced.

As another experiment, (1) is solved with two equal-sized subdomains, assuming
S is the unit circle. The overlapping subdomains are shown in Fig. 2 (left). Fig. 2
(right) shows the effect of the overlap parameter 𝛿 on RAS-CPM for three different
grids (ℎ = 0.05, 0.01, 0.005). For a given ℎ and 𝛿, the numerical convergence factor
changes slightly as the iteration progresses, hence we present an average of the
convergence factor over all iterations. To compare with the result in Corollary 1, the
theoretical convergence factor associated with a double iteration, (𝑒𝐿/2 + 𝑒𝛿)2/(1 +
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Fig. 1 Left: RAS-CPM solution of the surface intrinsic Helmholtz equation on edge of a Möbius
strip. The disjoint subdomains are depicted. Right: Error versus the double iteration number.

𝑒𝐿/2+𝛿)2, is shown in Fig. 2 (right) as a black dashed line. The observed RAS-CPM
contraction factor converges to the theoretical value as the grid quality improves. By
increasing the overlap, 𝜅 is reduced and a better convergence factor is obtained.

-1.5 -1 -0.5 0 0.5 1 1.5

x

-1

-0.5

0

0.5

1

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RAS-CPM, h=0.05

RAS-CPM, h=0.01

RAS-CPM, h=0.005

Theoretical Convergence Factor

Fig. 2 Left: Equal-sized overlapping subdomains for the unit circle. Right: Comparison of the
RAS-CPM convergence factor and theoretical convergence factor for different values of overlap
parameter in an equal-sized subdomain configuration for the unit circle.

5 Conclusion

Employing RAS as a solver for the CPM parallelizes the solution of PDEs on surfaces
and enhances the performance for large scale problems. In this paper, convergence
of the (continuous) CPM equipped with a restricted additive Schwarz solver was
investigated for a one-dimensional manifold in R𝑑 . Convergence was shown for
the two-subdomain case; extensions to any finite number of subdomains is under
investigation [17]. Observed convergence rates agree with our theory as the mesh
spacing is refined. Indeed, the results apply to any convergent discretization (e.g., a
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finite element discretization) of RAS solvers applied to surface PDEs as the mesh
spacing approaches zero. Finally, note that other variants of Schwarz methods –
sequential restricted additive Schwarz, optimized restricted additive Schwarz, and
multiplicative methods – can be utilized as a solver or a preconditioner for the CPM.
We plan to extend our analysis to these cases as well.
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