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Cayley graphs of finitely generated groups

Definition
Let G be a f.g. group and let S ⊆ G r {1G} be a finite generating set.
Then the Cayley graph Cay(G, S) is the graph with vertex set G and
edge set

E = {{x , y} | y = xs for some s ∈ S ∪ S−1}.

The corresponding word metric is denoted by dS.

For example, when G = Z and S = {1}, then the corresponding
Cayley graph is:
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But which Cayley graph?

However, when G = Z and S = {2, 3}, then the corresponding Cayley
graph is:

u u u u u u u u u u u u u u u u
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Theorem (S.T.)
There does not exist an explicit choice of generators for each
f.g. group which has the property that isomorphic groups are
assigned isomorphic Cayley graphs.
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The basic idea of geometric group theory

Although the Cayley graphs of a f.g. group G with respect to different
generating sets S are usually nonisomorphic, they always have the
same large scale geometry.
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The quasi-isometry relation

Definition (Gromov)
Let G, H be f.g. groups with word metrics dS, dT respectively. Then G,
H are said to be quasi-isometric, written G ≈QI H, iff there exist

constants λ ≥ 1 and C ≥ 0, and
a map ϕ : G → H

such that for all x, y ∈ G,

1
λ

dS(x , y)− C ≤ dT (ϕ(x), ϕ(y)) ≤ λdS(x , y) + C;

and for all z ∈ H,
dT (z, ϕ[G]) ≤ C.
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When C = 0

Definition (Gromov)
Let G, H be f.g. groups with word metrics dS, dT respectively. Then G,
H are said to be Lipschitz equivalent iff there exist

a constant λ ≥ 1, and
a map ϕ : G → H

such that for all x, y ∈ G,

1
λ

dS(x , y) ≤ dT (ϕ(x), ϕ(y)) ≤ λdS(x , y);

and for all z ∈ H,
dT (z, ϕ[G]) = 0.
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As expected ...

Observation
If S, S′ are finite generating sets for G, then

id : 〈G, dS〉 → 〈G, dS′〉

is a quasi-isometry.

Thus while it doesn’t make sense to talk about the isomorphism type
of “the Cayley graph of G”, it does make sense to talk about the
quasi-isometry type.
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A topological criterion

Theorem (Gromov)
If G, H are f.g. groups, then the following are equivalent.

G and H are quasi-isometric.
There exists a locally compact space X on which G, H have
commuting proper actions via homeomorphisms such that
X/G and X/H are both compact.

Definition
The action of the discrete group G on X is proper iff for every compact
subset K ⊆ X, the set {g ∈ G | g(K ) ∩ K 6= ∅} is finite.
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Obviously quasi-isometric groups

Definition
Two groups G1, G2 are said to be virtually isomorphic, written
G1 ≈VI G2, iff there exist subgroups Ni 6 Hi 6 Gi such that:

[G1 : H1], [G2 : H2] < ∞.
N1, N2 are finite normal subgroups of H1, H2 respectively.
H1/N1

∼= H2/N2.

Proposition (Folklore)
If the f.g. groups G1, G2 are virtually isomorphic, then G1, G2 are
quasi-isometric.
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More quasi-isometric groups

Theorem (Erschler)
The f.g. groups Alt(5) wr Z and C60 wr Z are quasi-isometric but not
virtually isomorphic. (In fact, they have isomorphic Cayley graphs.)

Question
How many f.g. groups up to quasi-isometry?
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Growth rates and quasi-isometric groups

Theorem (Grigorchuk 1984 - Bowditch 1998)

There are 2ℵ0 f.g. groups up to quasi-isometry.

Proof (Grigorchuk).
Consider the growth rate of the size of balls of radius n in the Cayley
graphs of suitably chosen groups.

Proof (Bowditch).
Consider the growth rate of the length of “irreducible loops” in the
Cayley graphs of suitably chosen groups.
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The complexity of the quasi-isometry relation

Question
What are the possible complete invariants for the quasi-isometry
problem for f.g. groups?

Question
Is the quasi-isometry problem for f.g. groups strictly harder than the
isomorphism problem?
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An explicit reduction

Let S be a fixed infinite f.g. simple group. Then the isomorphism
problem for f.g. groups can be reduced to the virtual isomorphism
problem via the explicit map

G 7→ (Alt(5) wr G) wr S

in the sense that

G ∼= H iff (Alt(5) wr G) wr S ≈VI (Alt(5) wr H) wr S.

Church’s Thesis for Real Mathematics
EXPLICIT = BOREL

A function f : X → Y is Borel iff graph(f ) is a Borel subset of X × Y .
“Equivalently”, f−1(A) is Borel for each Borel subset A ⊆ Y .
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The Polish space of f.g. groups

Let Fm be the free group on {x1, · · · , xm} and let Gm be the compact
space of normal subgroups of Fm. Since each m-generator group can
be realised as a quotient Fm/N for some N ∈ Gm, we can regard Gm as
the space of m-generator groups. There are natural embeddings

G1 ↪→ G2 ↪→ · · · ↪→ Gm ↪→ · · ·

and we can regard
G =

⋃
m≥1

Gm

as the space of f.g. groups.
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A slight digression

Some Isolated Points
Finite groups
Finitely presented simple groups

The Next Stage
SL3(Z)

Question (Grigorchuk)
What is the Cantor-Bendixson rank of Gm?
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Borel equivalence relations

Remark (Champetier)
The isomorphism relation ∼= on the space G of f.g. groups is a
countable Borel equivalence relation.

Definition
An equivalence relation E on a Polish space X is Borel iff E is a
Borel subset of X × X.
A Borel equivalence relation E is countable iff every E-class is
countable.

Theorem (Feldman-Moore)
Every countable Borel equivalence relation can be realized as the
orbit equivalence relation of a Borel action of a countable group.
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The isomorphism relation

The natural action of the countable group Aut(Fm) on Fm induces a
corresponding homeomorphic action on the compact space Gm of
normal subgroups of Fm. Furthermore, each π ∈ Aut(Fm) extends to
a homeomorphism of the space G of f.g. groups.

If N, M ∈ Gm and there exists π ∈ Aut(Fm) such that π(N) = M, then
Fm/N ∼= Fm/M. Unfortunately, the converse does not hold.
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The isomorphism relation continued

Theorem (Tietze)
If N, M ∈ Gm, then the following are equivalent:

Fm/N ∼= Fm/M.
There exists π ∈ Aut(F2m) such that π(N) = M.

Corollary (Champetier)
The isomorphism relation ∼= on the space G of f.g. groups is the
orbit equivalence relation arising from the homeomorphic action
of the countable group Autf (F∞) of finitary automorphisms of the
free group F∞ on {x1, x2, · · · , xm, · · · }.
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Some Borel equivalence relations

Remark
The following are Borel equivalence relations on the space G of
f.g. groups:

the isomorphism relation ∼=
the virtual isomorphism relation ≈VI

the quasi-isometry relation ≈QI

Simon Thomas (Rutgers University) St Martin’s College, Ambleside 25th August 2007



Borel reductions

Definition
Let E, F be Borel equivalence relations on the Polish spaces X, Y .

E ≤B F iff there exists a Borel map f : X → Y such that

x E y ⇐⇒ f (x) F f (y).

In this case, f is called a Borel reduction from E to F.

E ∼B F iff both E ≤B F and F ≤B E.
E <B F iff both E ≤B F and E �B F.
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
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A universal countable Borel equivalence relation

Confirming a conjecture of Hjorth-Kechris ...

Theorem (S.T.-Velickovic)
The isomorphism relation ∼= on the space G of f.g. groups is a
universal countable Borel equivalence relation.

Remark
The proof shows that the isomorphism relation on the space G5 of
5-generator groups is already countable universal. Presumably the
same is true for the isomorphism relation on G2?
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The commensurability relation ≈C

Definition
The f.g. groups G1, G2 are (abstractly) commensurable, written
G1 ≈C G2, iff there exist subgroups Hi 6 Gi of finite index such
that H1

∼= H2.

Observation
The commensurability relation ≈C on the space G of f.g. groups is a
countable Borel equivalence relation.

Open Problem
Find a “group-theoretic” reduction from ≈C to ∼=.

Theorem (S.T.)
There does not exist a Borel reduction f from ≈C to ∼= such that
f (G) ≈C G for all G ∈ G.
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The virtual isomorphism relation

Definition
The f.g. groups G1, G2 are virtually isomorphic, written G1 ≈V G2, iff
there exist subgroups Ni 6 Hi 6 Gi such that:

[G1 : H1], [G2 : H2] < ∞.
N1, N2 are finite normal subgroups of H1, H2 respectively.
H1/N1

∼= H2/N2.

Theorem (S.T.)
The virtual isomorphism problem for f.g. groups is strictly harder than
the isomorphism problem.
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Central Extensions of Tarski Monsters

Definition
E1 is the Borel equivalence relation on [0, 1]N defined by

x E1 y ⇐⇒ x(n) = y(n) for almost all n.

Theorem (Kechris-Louveau)
E1 is not Borel reducible to the isomorphism relation on any class of
countable structures.

Lemma (S.T.)
There exists a Borel map s 7→ Gs from [0, 1]N to G such that:

Gs is a suitable central extension of a fixed Tarski monster M.
s E1 t iff Gs ≈VI Gt .
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Kσ equivalence relations

Definition
The equivalence relation E on the Polish space X is Kσ iff E is the
union of countably many compact subsets of X × X.

Example
The following are Kσ equivalence relations on the space G of f.g.
groups:

the isomorphism relation ∼=
the virtual isomorphism relation ≈VI

the quasi-isometry relation ≈QI
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The quasi-isometry relation is Kσ

Fix some m ≥ 2.
Let G, H ∈ Gm with word metrics dS, dT respectively.
Suppose that there exists a (λ, C)-quasi-isometry ϕ : G → H.
Clearly we can suppose that ϕ(1G) = 1H .
Then for every g ∈ G, there are only finitely many possibilities
for ϕ(g) ∈ H.
And for every h ∈ H, there are only finitely many possibilities
for g ∈ G such that dT (h, ϕ(g)) ≤ C.
Thus the relation

Eλ,C = {(G, H) | G, H are (λ, C)-quasi-isometric}

is a compact subset of Gm × Gm.
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Kσ equivalence relations
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Some universal Kσ equivalence relations

Theorem (Rosendal)
Let EKσ be the equivalence relation on

∏
n≥1{1, . . . , n } defined by

α EKσ β ⇐⇒ ∃N ∀k |α(k)− β(k)| ≤ N.

Then EKσ is a universal Kσ equivalence relation.

Theorem (Rosendal)
The Lipschitz equivalence relation on the space of compact separable
metric spaces is Borel bireducible with EKσ .
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More universal Kσ equivalence relations

Theorem (S.T.)
The following equivalence relations are Borel bireducible with EKσ

the growth rate relation on the space of strictly increasing
functions f : N → N;
the quasi-isometry relation on the space of connected 4-regular
graphs.

Definition
The strictly increasing functions f , g : N → N have the same
growth rate, written f ≡ g, iff there exists an integer t ≥ 1 such that

f (n) ≤ g(tn) for all n ≥ 1, and
g(n) ≤ f (tn) for all n ≥ 1.
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The quasi-isometry problem

The Main Conjecture
The quasi-isometry problem for f.g. groups is universal Kσ.
In particular, the quasi-isometry problem is strictly harder
than the isomorphism problem.

Conjecture
The quasi-isometry problem for f.g. groups is strictly harder
than the virtual isomorphism problem.
In particular, the virtual isomorphism problem is not
universal Kσ.
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The virtual isomorphism problem

Theorem (Hjorth-S.T.)
The virtual isomorphism problem for f.g. groups is not universal Kσ.

Corollary (Hjorth-S.T.)
The virtual isomorphism problem for f.g. groups is strictly easier than
the quasi-isometry relation for connected 4-regular graphs.
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Conclusion
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Theorem (S.T.)
The quasi-isometry problem for
f.g. groups is not smooth.
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