Crested products

r.a.bailey@qmul.ac.uk

From Higman-Sims to Urysohn: a random walk through groups, graphs, designs, and spaces August 2007

A story of collaboration

Time-line

Pre-Cambrian:

- association schemes;
- transitive permutation groups;
- direct products (crossing);
- wreath products (nesting);
- partitions;
- orthogonal block structures.

▲□▶ ▲□▶ ▲□▶ ★□▶ ▲□ ● ● ●

An association scheme of rank *r* on a finite set Ω is a colouring of the elements of $\Omega \times \Omega$ by *r* colours such that

▲□▶ ▲□▶ ▲□▶ ★□▶ ▲□ ● ● ●

An association scheme of rank *r* on a finite set Ω is a colouring of the elements of $\Omega \times \Omega$ by *r* colours such that

- (i) one colour is exactly the main diagonal;
- (ii) each colour is symmetric about the main diagonal;
- (iii) if (α, β) is yellow then there are exactly $p_{\text{red,blue}}^{\text{yellow}}$ points γ such that (α, γ) is red and (γ, β) is blue (for all values of yellow, red and blue).

ション ふぼう ふほう ふほう しょうめん

An association scheme of rank *r* on a finite set Ω is a colouring of the elements of $\Omega \times \Omega$ by *r* colours such that

- (i) one colour is exactly the main diagonal;
- (ii) each colour is symmetric about the main diagonal;
- (iii) if (α, β) is yellow then there are exactly $p_{\text{red,blue}}^{\text{yellow}}$ points γ such that (α, γ) is red and (γ, β) is blue (for all values of yellow, red and blue).

The set of pairs given colour *i* is called the *i*-th associate class.

ション ふぼう ふほう ふほう しょうめん

Adjacency matrices

The adjacency matrix A_i for colour *i* is the $\Omega \times \Omega$ matrix with

$$A_i(\alpha,\beta) = \begin{cases} 1 & \text{if } (\alpha,\beta) \text{ has colour } i \\ 0 & \text{otherwise.} \end{cases}$$

Adjacency matrices

The adjacency matrix A_i for colour *i* is the $\Omega \times \Omega$ matrix with

$$A_i(\alpha,\beta) = \begin{cases} 1 & \text{if } (\alpha,\beta) \text{ has colour } i \\ 0 & \text{otherwise.} \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Colour 0 is the diagonal, so (i) $A_0 = I$ (identity matrix); (ii) every A_i is symmetric; (iii) $A_i A_j = \sum_k p_{ij}^k A_k$; (iv) $\sum_i A_i = J$ (all-1s matrix).

Permutation groups

If *G* is a transitive permutation group on Ω , it induces a permutation group on $\Omega \times \Omega$. Give (α, β) the same colour as (γ, δ) iff there is some *g* in *G* with $(\alpha^g, \beta^g) = (\gamma, \delta)$.

The colour classes are the orbitals of G.

Permutation groups

If *G* is a transitive permutation group on Ω , it induces a permutation group on $\Omega \times \Omega$. Give (α, β) the same colour as (γ, δ) iff there is some *g* in *G* with $(\alpha^g, \beta^g) = (\gamma, \delta)$.

The colour classes are the orbitals of *G*.

association scheme	permutation group
$(i) A_0 = I$	\iff transitivity
(ii) every A_i is symmetric	\iff the orbitals are self-paired
(iii) $A_i A_j = \sum_i p_{ij}^k A_k$	always satisfied
(iv) $\sum_{i} A_{i} = \overset{k}{J}$	always satisfied

ション ふぼう ふほう ふほう しょうめん

Permutation groups

If *G* is a transitive permutation group on Ω , it induces a permutation group on $\Omega \times \Omega$. Give (α, β) the same colour as (γ, δ) iff there is some *g* in *G* with $(\alpha^g, \beta^g) = (\gamma, \delta)$.

The colour classes are the orbitals of *G*.

association scheme	permutation group
$(\mathbf{i}) A_0 = I$	\iff transitivity
(ii) every A_i is symmetric	\iff the orbitals are self-paired
(iii) $A_i A_j = \sum_i p_{ij}^k A_k$	always satisfied
(iv) $\sum_{i} A_{i} = \overset{k}{J}$	always satisfied

Some of the theory extends if (ii) is weakened to 'if A_i is an adjacency matrix then so is A_i^{\top} ', which is true for permutation groups.

(i)
$$A_0 = I$$
;
(ii) every A_i is symmetric;
(iii) $A_i A_j = \sum_k p_{ij}^k A_k$;
(iv) $\sum_i A_i = J$ (all-1s matrix).

The set of all real linear combinations of the A_i forms a commutative algebra \mathscr{A} , the Bose–Mesner algebra of the association scheme.

(i)
$$A_0 = I$$
;
(ii) every A_i is symmetric;
(iii) $A_i A_j = \sum_k p_{ij}^k A_k$;
(iv) $\sum_i A_i = J$ (all-1s matrix).

The set of all real linear combinations of the A_i forms a commutative algebra \mathscr{A} , the Bose–Mesner algebra of the association scheme. It contains the projectors S_0, S_1, \ldots, S_r onto its mutual eigenspaces.

(i)
$$A_0 = I$$
;
(ii) every A_i is symmetric;
(iii) $A_i A_j = \sum_k p_{ij}^k A_k$;
(iv) $\sum_i A_i = J$ (all-1s matrix).

The set of all real linear combinations of the A_i forms a commutative algebra \mathscr{A} , the Bose–Mesner algebra of the association scheme. It contains the projectors S_0, S_1, \ldots, S_r onto its mutual eigenspaces. The character table gives each A_i as a linear combination of S_0, \ldots, S_r .

ション ふぼう ふほう ふほう しょうめん

(i)
$$A_0 = I$$
;
(ii) every A_i is symmetric;
(iii) $A_i A_j = \sum_k p_{ij}^k A_k$;
(iv) $\sum_i A_i = J$ (all-1s matrix).

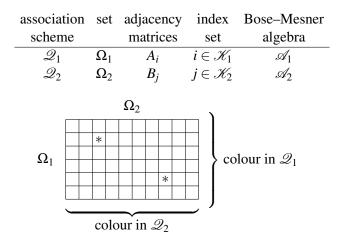
The set of all real linear combinations of the A_i forms a commutative algebra \mathscr{A} , the Bose–Mesner algebra of the association scheme. It contains the projectors S_0, S_1, \ldots, S_r onto its mutual eigenspaces. The character table gives each A_i as a linear combination of S_0, \ldots, S_r . Its inverse expresses each S_j as a linear combination of A_0, \ldots, A_r .

Direct product (crossing)

association	set	adjacency	index	Bose-Mesner
scheme		matrices	set	algebra
\mathscr{Q}_1	Ω_1	A_i	$i \in \mathscr{K}_1$	\mathscr{A}_1
\mathscr{Q}_2	Ω_2	B_j	$j \in \mathscr{K}_2$	\mathscr{A}_2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

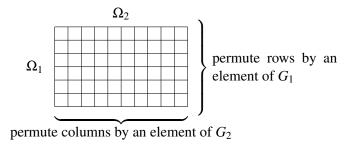
Direct product (crossing)



The underlying set of $\mathscr{Q}_1 \times \mathscr{Q}_2$ is $\Omega_1 \times \Omega_2$. The adjacency matrices of $\mathscr{Q}_1 \times \mathscr{Q}_2$ are $A_i \otimes B_j$ for *i* in \mathscr{K}_1 and *j* in \mathscr{K}_2 .

 $\mathscr{A} = \mathscr{A}_1 \otimes \mathscr{A}_2$

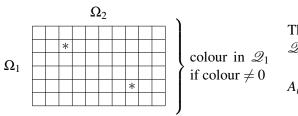
Direct product of permutation groups



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

If G_1 is transitive on Ω_1 with self-paired orbitals and association scheme \mathcal{Q}_1 , and G_2 is transitive on Ω_2 with self-paired orbitals and association scheme \mathcal{Q}_2 , then $G_1 \times G_2$ is transitive on $\Omega_1 \times \Omega_2$ with self-paired orbitals and association scheme $\mathcal{Q}_1 \times \mathcal{Q}_2$.

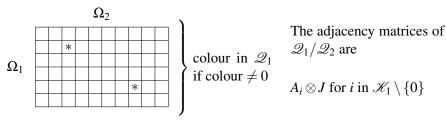
The underlying set of $\mathscr{Q}_1/\mathscr{Q}_2$ is $\Omega_1 \times \Omega_2$.

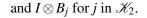


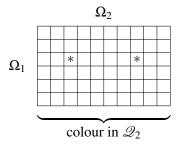
The adjacency matrices of $\mathscr{Q}_1/\mathscr{Q}_2$ are

 $A_i \otimes J$ for *i* in $\mathscr{K}_1 \setminus \{0\}$

The underlying set of $\mathscr{Q}_1/\mathscr{Q}_2$ is $\Omega_1 \times \Omega_2$.





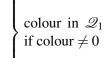


*

The underlying set of $\mathscr{Q}_1/\mathscr{Q}_2$ is $\Omega_1 \times \Omega_2$.

*

 Ω_2

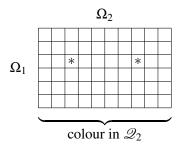


The adjacency matrices of $\mathcal{Q}_1/\mathcal{Q}_2$ are

 $A_i \otimes J$ for i in $\mathscr{K}_1 \setminus \{0\}$

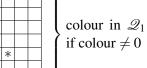
and $I \otimes B_j$ for j in \mathscr{K}_2 .

So $\mathscr{A} = \mathscr{A}_1 \otimes \langle J \rangle + \langle I \rangle \otimes \mathscr{A}_2$



*

The underlying set of $\mathscr{Q}_1/\mathscr{Q}_2$ is $\Omega_1 \times \Omega_2$.



The adjacency matrices of $\mathscr{Q}_1/\mathscr{Q}_2$ are

 $A_i \otimes J$ for i in $\mathscr{K}_1 \setminus \{0\}$

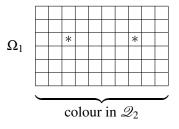
and $I \otimes B_j$ for j in \mathscr{K}_2 .

So $\mathscr{A} = \mathscr{A}_1 \otimes \langle J \rangle + \langle I \rangle \otimes \mathscr{A}_2$

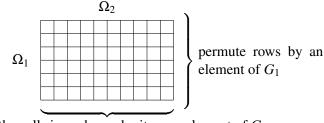
NB $\mathscr{A}_1\langle I\rangle = \mathscr{A}_1$ and

 $\langle J\rangle\mathscr{A}_2=\langle J\rangle$

 Ω_2



Wreath product of permutation groups



permute the cells in each row by its own element of G_2

If G_1 is transitive on Ω_1 with self-paired orbitals and association scheme \mathcal{Q}_1 , and G_2 is transitive on Ω_2 with self-paired orbitals and association scheme \mathcal{Q}_2 , then

 $G_2 \wr G_1$ is transitive on $\Omega_1 \times \Omega_2$ with self-paired orbitals and association scheme $\mathcal{Q}_1/\mathcal{Q}_2$.

 Pre-Cambrian: association schemes; transitive permutation groups; direct products (crossing); wreath products (nesting); partitions; orthogonal block structures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Pre-Cambrian: association schemes; transitive permutation groups; direct products (crossing); wreath products (nesting); partitions; orthogonal block structures
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme

A partition *F* of Ω is inherent in the association scheme \mathcal{Q} on Ω if there is a subset \mathcal{L} of the colours such that

 α and β are in the same part of $F \iff$ the colour of (α, β) is in \mathscr{L}

A partition *F* of Ω is inherent in the association scheme \mathcal{Q} on Ω if there is a subset \mathcal{L} of the colours such that

 α and β are in the same part of $F \iff$ the colour of (α, β) is in \mathscr{L}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

The relation matrix R_F for partition F is the $\Omega \times \Omega$ matrix with

$$R_F(\alpha,\beta) = \begin{cases} 1 & \text{if } \alpha \text{ and } \beta \text{ are in the same part of } F \\ 0 & \text{otherwise.} \end{cases}$$

A partition *F* of Ω is inherent in the association scheme \mathcal{Q} on Ω if there is a subset \mathcal{L} of the colours such that

 α and β are in the same part of $F \iff$ the colour of (α, β) is in \mathscr{L}

The relation matrix R_F for partition F is the $\Omega \times \Omega$ matrix with

$$R_F(\alpha,\beta) = \begin{cases} 1 & \text{if } \alpha \text{ and } \beta \text{ are in the same part of } F \\ 0 & \text{otherwise.} \end{cases}$$

If *F* is inherent then
$$R_F = \sum_{i \in \mathscr{L}} A_i$$
.

There are two trivial partitions.

► *U* is the universal partition, with a single part:

$$R_U = J = \sum_{\text{all } i} A_i.$$

• *E* is the equality partition, whose parts are singletons.

$$R_E = I = A_0.$$

ション ふぼう ふほう ふほう しょうめん

These are inherent in every association scheme.

Idea to generalize both types of product

Let *F* be an inherent partition in \mathcal{Q}_1 , with corresponding subset \mathcal{L} of the colours.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

Let *F* be an inherent partition in \mathcal{Q}_1 , with corresponding subset \mathcal{L} of the colours.

Take the adjacency matrices on $\Omega_1\times\Omega_2$ to be

$$\begin{array}{ll} A_i \otimes B_j & \text{ for } i \in \mathscr{L} \text{ and } j \in \mathscr{K}_2 \\ A_i \otimes J & \text{ for } i \in \mathscr{K}_1 \setminus \mathscr{L} \end{array}$$

Let *F* be an inherent partition in \mathcal{Q}_1 , with corresponding subset \mathcal{L} of the colours.

Take the adjacency matrices on $\Omega_1 \times \Omega_2$ to be

$$\begin{array}{ll} A_i \otimes B_j & \text{ for } i \in \mathscr{L} \text{ and } j \in \mathscr{K}_2 \\ A_i \otimes J & \text{ for } i \in \mathscr{K}_1 \setminus \mathscr{L} \end{array}$$

Then $\mathscr{A} = \mathscr{A}_1|_F \otimes \mathscr{A}_2 + \mathscr{A}_1 \otimes \langle J \rangle$ where $\mathscr{A}_1|_F = \{A_i : i \in \mathscr{L}\}.$

Let *F* be an inherent partition in \mathcal{Q}_1 , with corresponding subset \mathcal{L} of the colours.

Take the adjacency matrices on $\Omega_1 \times \Omega_2$ to be

$$\begin{array}{ll} A_i \otimes B_j & \text{ for } i \in \mathscr{L} \text{ and } j \in \mathscr{K}_2 \\ A_i \otimes J & \text{ for } i \in \mathscr{K}_1 \setminus \mathscr{L} \end{array}$$

Then $\mathscr{A} = \mathscr{A}_1|_F \otimes \mathscr{A}_2 + \mathscr{A}_1 \otimes \langle J \rangle$ where $\mathscr{A}_1|_F = \{A_i : i \in \mathscr{L}\}.$

 $\mathscr{A}_1|_F < \mathscr{A}_1$ and $\langle J \rangle \lhd \mathscr{A}_2$

ション ふぼう ふほう ふほう しょうめん

- Pre-Cambrian: association schemes; transitive permutation groups; direct products (crossing); wreath products (nesting); partitions; orthogonal block structures
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Pre-Cambrian: association schemes; transitive permutation groups; direct products (crossing); wreath products (nesting); partitions; orthogonal block structures
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- April 2001: PJC riposte—use a partition in the bottom scheme too

Theorem (P. J. Cameron, J.-M. Goethals & J. J. Seidel, 1978) If F is an inherent partition in an association scheme \mathcal{Q} on Ω with Bose–Mesner algebra \mathcal{A} then

1. the restriction of *Q* to any part of *F* is a subscheme of *Q*, whose Bose–Mesner algebra is isomorphic to

$$\operatorname{span} \{A_i : i \in \mathcal{L}\} = \mathcal{A}|_F;$$

2. there is a quotient scheme on Ω/F , whose Bose–Mesner algebra, pulled back to Ω , is the ideal

$$R_F \mathscr{A} = \mathscr{A}|^F$$

ション ふぼう ふほう ふほう しょうめん

Theorem (P. J. Cameron, J.-M. Goethals & J. J. Seidel, 1978) If F is an inherent partition in an association scheme \mathcal{Q} on Ω with Bose–Mesner algebra \mathcal{A} then

1. the restriction of *Q* to any part of *F* is a subscheme of *Q*, whose Bose–Mesner algebra is isomorphic to

 $\operatorname{span} \{A_i : i \in \mathcal{L}\} = \mathcal{A}|_F;$

2. there is a quotient scheme on Ω/F , whose Bose–Mesner algebra, pulled back to Ω , is the ideal

$$R_F \mathscr{A} = \mathscr{A}|^F$$

'The Krein condition, spherical designs, Norton algebras and permutation groups'

"Good stuff in an old paper with one of my five Belgian co-authors and one of my eight Dutch co-authors"

Crested product

association	set	adjacency	index	Bose–Mesner	inherent
scheme		matrices	set	algebra	partition
\mathscr{Q}_1	Ω_1	A_i	$i \in \mathscr{K}_1$	\mathscr{A}_1	F_1
\mathscr{Q}_2	Ω_2	B_j	$j \in \mathscr{K}_2$	\mathscr{A}_2	F_2

The underlying set of the crested product of \mathcal{Q}_1 and \mathcal{Q}_2 with respect to F_1 and F_2 is $\Omega_1 \times \Omega_2$. The adjacency matrices are

$A_i \otimes B_j$	for <i>i</i> in \mathscr{L} and <i>j</i> in \mathscr{K}_2 ,
$A_i \otimes C$	for <i>i</i> in $\mathscr{K}_1 \setminus \mathscr{L}$ and <i>C</i> a pullback of an adjacency
	matrix of the quotient scheme on Ω_2/F_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Crested product

association	set	adjacency	index	Bose-Mesner	inherent
scheme		matrices	set	algebra	partition
\mathscr{Q}_1	Ω_1	A_i	$i \in \mathscr{K}_1$	\mathscr{A}_1	F_1
\mathscr{Q}_2	Ω_2	B_j	$j \in \mathscr{K}_2$	\mathscr{A}_2	F_2

The underlying set of the crested product of \mathcal{Q}_1 and \mathcal{Q}_2 with respect to F_1 and F_2 is $\Omega_1 \times \Omega_2$. The adjacency matrices are

 $\begin{array}{ll} A_i \otimes B_j & \text{ for } i \text{ in } \mathscr{L} \text{ and } j \text{ in } \mathscr{K}_2, \\ A_i \otimes C & \text{ for } i \text{ in } \mathscr{K}_1 \setminus \mathscr{L} \text{ and } C \text{ a pullback of an adjacency } \\ & \text{ matrix of the quotient scheme on } \Omega_2/F_2. \end{array}$

$$\mathscr{A} = \mathscr{A}_1|_{F_1} \otimes \mathscr{A}_2 + \mathscr{A}_1 \otimes \mathscr{A}_2|^{F_2}$$

Crested product

association	set	adjacency	index	Bose-Mesner	inherent
scheme		matrices	set	algebra	partition
\mathscr{Q}_1	Ω_1	A_i	$i \in \mathscr{K}_1$	\mathscr{A}_1	F_1
\mathscr{Q}_2	Ω_2	B_j	$j \in \mathscr{K}_2$	\mathscr{A}_2	F_2

The underlying set of the crested product of \mathcal{Q}_1 and \mathcal{Q}_2 with respect to F_1 and F_2 is $\Omega_1 \times \Omega_2$. The adjacency matrices are

- $A_i \otimes B_j$ for *i* in \mathscr{L} and *j* in \mathscr{K}_2 ,
- $A_i \otimes C$ for *i* in $\mathscr{K}_1 \setminus \mathscr{L}$ and *C* a pullback of an adjacency matrix of the quotient scheme on Ω_2/F_2 .

$$\mathscr{A} = \mathscr{A}_1|_{F_1} \otimes \mathscr{A}_2 + \mathscr{A}_1 \otimes \mathscr{A}_2|^{F_2}$$

If $F_1 = U_1$ or $F_2 = E_2$, the product is $\mathcal{Q}_1 \times \mathcal{Q}_2$. If $F_1 = E_1$ and $F_2 = U_2$, the product is $\mathcal{Q}_1/\mathcal{Q}_2$.

- Pre-Cambrian: association schemes; transitive permutation groups; direct products (crossing); wreath products (nesting); partitions; orthogonal block structures
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- April 2001: PJC riposte—use a partition in the bottom scheme too

- Pre-Cambrian: association schemes; transitive permutation groups; direct products (crossing); wreath products (nesting); partitions; orthogonal block structures
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- April 2001: PJC riposte—use a partition in the bottom scheme too

 July 2001: 18th British Combinatorial Conference, Sussex RAB finds very natural expression for orthogonal block structures

More than one partition

Let *F* and *H* be partitions of Ω , with relation matrices R_F and R_H .

More than one partition

Let *F* and *H* be partitions of Ω , with relation matrices R_F and R_H .

 $F \text{ is uniform} \iff \text{ all parts of } F \text{ have the same size} \\ \iff R_F \text{ commutes with } J.$

 $F \text{ is uniform} \iff \text{all parts of } F \text{ have the same size} \\ \iff R_F \text{ commutes with } J.$

F is finer than $H(F \leq H) \iff$ each part of *F* is a subset of a part of *H*.

 $F \text{ is uniform} \iff \text{all parts of } F \text{ have the same size} \\ \iff R_F \text{ commutes with } J.$

F is finer than $H(F \leq H) \iff$ each part of *F* is a subset of a part of *H*.

 $F \lor H$ is the finest partition coarser than both F and H.

 $F \text{ is uniform} \iff \text{all parts of } F \text{ have the same size} \\ \iff R_F \text{ commutes with } J.$

F is finer than $H(F \leq H) \iff$ each part of *F* is a subset of a part of *H*.

 $F \lor H$ is the finest partition coarser than both F and H.

 $F \wedge H$ is the coarsest partition finer than both F and H.

 $F \text{ is uniform} \iff \text{all parts of } F \text{ have the same size} \\ \iff R_F \text{ commutes with } J.$

F is finer than $H(F \leq H) \iff$ each part of *F* is a subset of a part of *H*.

 $F \lor H$ is the finest partition coarser than both F and H.

 $F \wedge H$ is the coarsest partition finer than both F and H.

$$R_{F\wedge H}=R_F\circ R_H$$

 $F \text{ is uniform} \iff \text{ all parts of } F \text{ have the same size} \\ \iff R_F \text{ commutes with } J.$

F is finer than $H(F \leq H) \iff$ each part of *F* is a subset of a part of *H*.

 $F \lor H$ is the finest partition coarser than both F and H.

 $F \wedge H$ is the coarsest partition finer than both F and H.

$$R_{F\wedge H}=R_F\circ R_H$$

If R_F commutes with R_H , and F and H are both uniform, then $R_{F \lor H}$ is a scalar multiple of $R_F R_H$.

Orthogonal block structures

An orthogonal block structure on a finite set Ω is a family \mathscr{H} of uniform partitions of Ω such that

- 1. the trivial partitions U and E are in \mathcal{H} ;
- 2. \mathscr{H} is closed under \lor and \land ;
- 3. if *F* and *H* are in \mathscr{H} then R_F commutes with R_H .

Orthogonal block structures

An orthogonal block structure on a finite set Ω is a family \mathscr{H} of uniform partitions of Ω such that

- 1. the trivial partitions U and E are in \mathcal{H} ;
- 2. \mathscr{H} is closed under \lor and \land ;
- 3. if *F* and *H* are in \mathscr{H} then R_F commutes with R_H .

An orthogonal block stucture defines an association scheme, whose Bose–Mesner algebra is spanned by its relation matrices.

An orthogonal block structure on a finite set Ω is a family \mathscr{H} of uniform partitions of Ω such that

- 1. the trivial partitions U and E are in \mathcal{H} ;
- 2. \mathscr{H} is closed under \lor and \land ;
- 3. if *F* and *H* are in \mathscr{H} then R_F commutes with R_H .

An orthogonal block stucture defines an association scheme, whose Bose–Mesner algebra is spanned by its relation matrices.

Theorem

For i = 1, 2, let \mathscr{H}_i be an orthogonal block structure on Ω_i with corresponding association scheme \mathscr{Q}_i , and let $F_i \in \mathscr{H}_i$. Then

 $\{H_1 \times H_2 : H_1 \in \mathscr{H}_1, H_2 \in \mathscr{H}_2, H_1 \preceq F_1 \text{ or } F_2 \preceq H_2\}$

is an orthogonal block structure on $\Omega_1 \times \Omega_2$ and its corresponding association scheme is the crested product of \mathcal{Q}_1 and \mathcal{Q}_2 with respect to F_1 and F_2 .

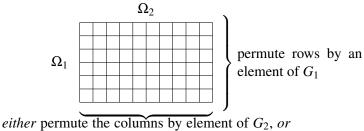
- Pre-Cambrian: association schemes; transitive permutation groups; direct products (crossing); wreath products (nesting); partitions; orthogonal block structures
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- April 2001: PJC riposte—use a partition in the bottom scheme too

 July 2001: 18th British Combinatorial Conference, Sussex RAB finds very natural expression for orthogonal block structures

- Pre-Cambrian: association schemes; transitive permutation groups; direct products (crossing); wreath products (nesting); partitions; orthogonal block structures
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- April 2001: PJC riposte—use a partition in the bottom scheme too
- July 2001: 18th British Combinatorial Conference, Sussex RAB finds very natural expression for orthogonal block structures
- July 2001: Durham Symposium on Groups, Geometry and Combinatorics
 RAB does character table; PJC does permutation groups

Crested product of permutation groups

 F_1 is a partition of Ω_1 preserved by G_1 ; F_2 is the orbit partition (of Ω_2) of a normal subgroup N of G_2 .



for each part of F_1 , permute the cells in each row by an element of N

Theorem

If \mathcal{Q}_i is the assocation scheme defined by G_i on Ω_i , for i = 1, 2, then the crested product of \mathcal{Q}_1 and \mathcal{Q}_2 with respect to F_1 and F_2 is the association scheme of the crested product of G_1 and G_2 with respect to F_1 and N.

"I typed my part in LATEX on my Psion without making a single typo!"

・ロト・日本・日本・日本・日本

- Pre-Cambrian: association schemes; permutation groups; ...
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- April 2001: PJC adds—use a partition in the bottom scheme too
- July 2001: 18th British Combinatorial Conference, Sussex RAB finds natural expression for orthogonal block structures
- July 2001: Durham Symposium
 RAB does character table; PJC does permutation groups ...

- Pre-Cambrian: association schemes; permutation groups; ...
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- ► April 2001: PJC adds—use a partition in the bottom scheme too
- July 2001: 18th British Combinatorial Conference, Sussex RAB finds natural expression for orthogonal block structures
- July 2001: Durham Symposium RAB does character table; PJC does permutation groups ... and hints at another way of doing it

- Pre-Cambrian: association schemes; permutation groups; ...
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- ► April 2001: PJC adds—use a partition in the bottom scheme too
- July 2001: 18th British Combinatorial Conference, Sussex RAB finds natural expression for orthogonal block structures
- July 2001: Durham Symposium RAB does character table; PJC does permutation groups ... and hints at another way of doing it
- Late 2001? RAB experiments with names at QM Combinatorics Study Group

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Pre-Cambrian: association schemes; permutation groups; ...
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- ► April 2001: PJC adds—use a partition in the bottom scheme too
- July 2001: 18th British Combinatorial Conference, Sussex RAB finds natural expression for orthogonal block structures
- July 2001: Durham Symposium RAB does character table; PJC does permutation groups ... and hints at another way of doing it
- Late 2001? RAB experiments with names at QM Combinatorics Study Group

 January 2002: RAB talk to QM Pure seminar; 'crested' not 'nossing'

- Pre-Cambrian: association schemes; permutation groups; ...
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- ► April 2001: PJC adds—use a partition in the bottom scheme too
- July 2001: 18th British Combinatorial Conference, Sussex RAB finds natural expression for orthogonal block structures
- July 2001: Durham Symposium RAB does character table; PJC does permutation groups ... and hints at another way of doing it
- Late 2001? RAB experiments with names at QM Combinatorics Study Group
- January 2002: RAB talk to QM Pure seminar; 'crested' not 'nossing'
- October 2003: American Mathematical Society meeting on association schemes, Chapel Hill RAB does extended crested products of association schemes

Extended crested products of association schemes

Given a collection \mathcal{H}_i of inherent partitions of \mathcal{Q}_i satisfying suitable conditions,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Extended crested products of association schemes

Given a collection \mathcal{H}_i of inherent partitions of \mathcal{Q}_i satisfying suitable conditions, and a map $\psi \colon \mathcal{H}_1 \to \mathcal{H}_2$ satisfying suitable conditions,

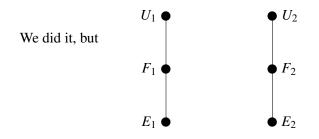
and a map $\psi \colon \mathscr{H}_1 \to \mathscr{H}_2$ satisfying suitable conditions, find a way of defining a new association scheme on $\Omega_1 \times \Omega_2$ in such a

way that reasonable theorems work.

and a map $\psi: \mathscr{H}_1 \to \mathscr{H}_2$ satisfying suitable conditions, find a way of defining a new association scheme on $\Omega_1 \times \Omega_2$ in such a way that reasonable theorems work.

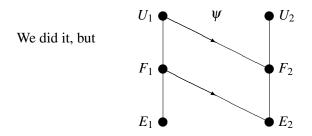
We did it, but

and a map $\psi \colon \mathscr{H}_1 \to \mathscr{H}_2$ satisfying suitable conditions, find a way of defining a new association scheme on $\Omega_1 \times \Omega_2$ in such a way that reasonable theorems work.

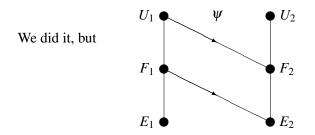


and a map $\psi \colon \mathscr{H}_1 \to \mathscr{H}_2$ satisfying suitable conditions, find a way of defining a new association scheme on $\Omega_1 \times \Omega_2$ in such a way that reasonable theorems work.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●



and a map $\psi \colon \mathscr{H}_1 \to \mathscr{H}_2$ satisfying suitable conditions, find a way of defining a new association scheme on $\Omega_1 \times \Omega_2$ in such a way that reasonable theorems work.



How to do the permutation group theory to match?

"You've gone too far this time. It simply isn't possible to define a way of combining two permutation groups to match what happens in an arbitrary pair of association schemes."

- Pre-Cambrian: association schemes; permutation groups; ...
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- ► April 2001: PJC adds—use a partition in the bottom scheme too
- July 2001: 18th British Combinatorial Conference, Sussex RAB finds natural expression for orthogonal block structures
- July 2001: Durham Symposium RAB does character table; PJC does permutation groups ... and hints at another way of doing it
- Late 2001? QM Combinatorics Study Group
- January 2002: RAB talk to QM Pure seminar; 'crested' not 'nossing'
- October 2003: American Mathematical Society meeting on association schemes, Chapel Hill
 RAB does extended crested products of association schemes

- Pre-Cambrian: association schemes; permutation groups; ...
- March 1999: 45th German Biometric Colloquium, Dortmund RAB idea!—use a partition in the top scheme
- ► April 2001: PJC adds—use a partition in the bottom scheme too
- July 2001: 18th British Combinatorial Conference, Sussex RAB finds natural expression for orthogonal block structures
- July 2001: Durham Symposium RAB does character table; PJC does permutation groups ... and hints at another way of doing it
- Late 2001? QM Combinatorics Study Group
- January 2002: RAB talk to QM Pure seminar; 'crested' not 'nossing'
- October 2003: American Mathematical Society meeting on association schemes, Chapel Hill
 RAB does extended crested products of association schemes
- November 2003: PJC and RAB do extended crested products of permutation groups

A wonderful piece of theory, and the association scheme of the extended crested product of two permutation groups is indeed the extended crested product of the association schemes of the two permutation groups, but this slide is too small to ...

The story goes on ...

(ロ)