Optimal partitions of finite sets: a report on unfinished work in progress PJC60 at Ambleside: Thursday, 23 August 2007 Peter M Neumann: Queen's College, Oxford

- Introduction: set partitions and Bell numbers
- Optimal partitions and the main problem
- Inequalities
- Some near-theorems and computations
- Conclusion

Introduction: the Bell numbers

Throughout n is a natural number, X a finite set of size n.

Recall the Bell number $B_n :=$ number of set-partitions of X.

Recall that

$$\mathrm{e}^{\mathrm{e}^z - 1} = \sum_{n \ge 0} \frac{B_n}{n!} z^n.$$

Introduction: a useful function

Define $\lambda(n)$ by $\lambda e^{\lambda} = n$.

Then

$$\lambda(n) = \log n - \log \log n + \frac{\log \log n}{\log n} + O\left(\left(\frac{\log \log n}{\log n}\right)^2\right).$$

In fact

$$\lambda(n) = \log n - \log \log n + \sum_{k \ge 1} \frac{p_k(\log \log n)}{(\log n)^k},$$

where $p_k(t)$ is a polynomial of degree k; leading term t^k/k ; alternating signs; obtainable by "boot-strapping".

Introduction: estimates for Bell numbers

Many asymptotic estimates for the Bell numbers are known. E.g.

Lovász:
$$B_n \sim n^{-\frac{1}{2}} \lambda(n)^{n+\frac{1}{2}} e^{\lambda(n)-n-1}$$
;

De Bruijn:
$$\frac{\log B_n}{n} = \log n - \log \log n - 1 + \frac{\log \log n}{\log n} + \frac{1}{\log n} + \frac{1}{\log n} + \frac{1}{2} \left(\frac{\log \log n}{\log n}\right)^2 + O\left(\left(\frac{\log \log n}{(\log n)^2}\right)\right).$$

Optimal partitions: notation

For a partition $\mu \vdash n$ write $\mu = [m_1, m_2, \dots, m_k]$ to mean:

- μ has m_r parts of size r, so $n = \sum r m_r$;
- k is its largest part, so $m_k \ge 1$.

Then define

$$A(\mu) := \prod r!^{m_r} m_r!.$$

So if ρ is a set-partition of X of shape μ then $A(\mu) = |\operatorname{Aut}(X; \rho)|$.

Note.
$$B_n = \sum_{\mu \vdash n} \frac{n!}{A(\mu)}.$$

4

Optimal partitions: the main problem

Call μ optimal if it minimises $A(\mu)$.

Problem. Which partitions μ of n are optimal?

What do they look like asymptotically?

How can we compute them for sizable values of n?

Optimal partitions: basic inequalities

Proposition. If $\mu = [m_1, m_2, \dots, m_k] \vdash n$ and μ is optimal then $\binom{r+s}{r} m_{r+s} \leq (m_r+1)(m_s+1)$ if $r \neq s$, $\binom{2r}{r} m_{2r} \leq (m_r+1)(m_r+2)$, $\binom{r+s}{r} (m_{r+s}+1) \geq m_r m_s$ if $r \neq s$, $\binom{2r}{r} m_{2r} \geq m_r (m_r-1)$.

Note. Call these 3-part inequalities: there are also 4-part inequalities, 5-part inequalities, etc.; sometimes useful.

Some near-theorems, I

Near-Theorem. Suppose that n is large, $\mu=[m_1,m_2,\ldots,m_k]\vdash n$, and μ is optimal. Let $c:=m_1$. Then

$$c e^{c-2} \leq n \leq (c+1) e^{c+2},$$

 $c e \leq k \leq (c+\log c) e.$

Comment. Too crude!

Some near-theorems, II

Near-Theorem [K. Körner]. Suppose that n is large, $\mu = [m_1, m_2, \dots, m_k] \vdash n$, and μ is optimal. Let $c := m_1$. Then

 $m_1 < m_2 < \cdots < m_{c-1} \leqslant m_c$

and

$$m_c \ge m_{c+1} > m_{c+2} > \cdots > m_{k-1} > m_k > 0$$
.

That is, μ is **unimodal**.

A method of computation

To seek optimal μ for n in the range $n_0 \leq n \leq n_1$ do: find possibilities for m_1 ; then find possibilities for m_2 ; etc.; for each n, for those μ that emerge, find smallest $A(\mu)$.

Example [Π MN, hand calculation] for n = 10,000. If $m_1 \leq 6$ then $n \leq 9327$; if $m_1 \geq 8$ then $n \geq 19,354$; so $m_1 = 7$. Then find $m_2 = 25$ or $m_2 = 26$; If $m_2 = 25$ then $m_3 \in \{63, 64\}$, if $m_2 = 26$ then $m_3 \in \{62, 63, 64\}$; etc.

Some computations

Computations [K. Körner, using MAPLE on a PC]:

- All optimal partitions tabulated for $n \leq 1100$.
- All optimal partitions tabulated for $10,000 \le n \le 10,100$;
- Method should do $10^5 \le n \le 10^5 + 100$ or even $10^6 \le n \le 10^6 + 100$ in a few hours of computation.

Fully prove the near-theorems.

Fully prove the near-theorems.

Refine and extend the computations.

Fully prove the near-theorems.

Refine and extend the computations.

Conjecture. For very large n, if $\mu = [m_1, m_2, \dots, m_k] \vdash n$ and μ is optimal then m_r is close to $\lambda(n)^r/r!$.

What does "close to" mean? Certainly $c_1 \leq m_r \div \lambda(n)^r/r! \leq c_2$, perhaps even $|m_r - \lambda(n)^r/r!| \leq c_3$.

Fully prove the near-theorems.

Refine and extend the computations.

Conjecture. For very large n, if $\mu = [m_1, m_2, \dots, m_k] \vdash n$ and μ is optimal then m_r is close to $\lambda(n)^r/r!$.

What does "close to" mean? Certainly $c_1 \leq m_r \div \lambda(n)^r/r! \leq c_2$, perhaps even $|m_r - \lambda(n)^r/r!| \leq c_3$.

Apply to estimates for Bell numbers B_n .

Fully prove the near-theorems.

Refine and extend the computations.

Conjecture. For very large n, if $\mu = [m_1, m_2, \dots, m_k] \vdash n$ and μ is optimal then m_r is close to $\lambda(n)^r/r!$.

What does "close to" mean? Certainly $c_1 \leq m_r \div \lambda(n)^r/r! \leq c_2$, perhaps even $|m_r - \lambda(n)^r/r!| \leq c_3$.

Apply to estimates for Bell numbers B_n .

Happy sixties, Peter