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My first reading matter in Oxford

Peter M. Neumann, Leonard L. Scott and Olaf Tamaschke,
Primitive permutation groups of degree 3p, unpublished
manuscript.
The group PSL(2, 19) acts as a primitive permutation group on
57 points.
The stabiliser of a point is isomorphic to PSL(2, 5). It has orbits
of sizes 1, 6, 20, 30, and is 2-transitive on the orbit of size 6.
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Orbital graphs

We construct a graph of valency 6 on 57 vertices by joining each
point α to the points in the Gα-orbit of size 6.
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The automorphism group of the graph is transitive on paths of
length 2. So there are no triangles, and the ends of the paths of
length 2 starting at α form a single Gα-orbit of size 6 · 5/k for
some k. Clearly k = 1.
Triangle-free graphs with a lot of symmetry will appear very
often in this talk!
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The Higman–Sims group

A better example is the Higman–Sims group.

This is a primitive permutation group on 100 points. The point
stabiliser is the Mathieu group M22, having orbits of sizes 1, 22
and 77, and acts 3-transitively on its orbit of size 22.
Note that 77 = 22 · 21/6, so two points at distance 2 in the
orbital graph of valency 22 have six common neighbours.
The Higman–Sims group acts transitively on 3-claws, on
4-cycles, and on paths of length 3 not contained in 4-cycles.
(The graph was constructed earlier by Dale Mesner, who never
thought to look at its automorphism group. The group was
constructed in a different action by Graham Higman.)
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Designs

Take a vertex of the Higman–Sims graph. Call its neighbours
points and its non-neighbours blocks; a point is incident with a
block if they are adjacent in the graph. The structure D satisfies

I there are 22 points;
I each block is incident with 6 points;
I any 3 points are incident with a unique block.

In other words, it is a 3-(22, 6, 1) design, the famous Witt
design. (This is how Higman and Sims constructed the graph!)

Note that, if β is a point of the design, then the number of
points different from β and the number of blocks incident with
β are both 21. In other words, D is an extension of a symmetric
design (the projective plane of order 4).
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Cameron’s Theorem

Theorem
If a 3-(v, k, λ) design is an extension of a symmetric 2-design then
one of the following holds:

I v = 4(λ + 1), k = 2(λ + 1) (Hadamard design);
I v = (λ + 1)(λ2 + 5λ + 5), k = (λ + 1)(λ + 2);
I v = 112, k = 12, λ = 1 (extension of projective plane of

order 10);
I v = 496, k = 40, λ = 3.

This is “Cameron’s Theorem” in the book Design Theory by
Hughes and Piper.
The only new thing we know now is that there is no projective
plane of order 10 (Lam et al.).
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Fun with permutation groups

Livingstone and Wagner showed that a (t + 1)-set transitive
permutation group of degree n ≥ 2t + 1 is t-set transitive.

I showed that such a group is primitive on t-sets, with known
exceptions (the most interesting being the Mathieu group M24
with t = 4).
The proof makes a long detour. First, a counterexample
preserves a parallelism of the t-subsets of {1, . . . , n}. From this
one constructs a symmetric triangle-free graph which is locally
like a cube. Then one shows that it is a quotient of a cube by a
subspace of GF(2)n. This subspace turns out to be an extension
of a perfect (t− 1)-error-correcting code; the theorem of van
Lint and Tietäväinen identifies the code and hence the group.
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The Cameron–Kantor Theorem

In the late 1970s, Bill Kantor and I proved a conjecture of
Marshall Hall:

Theorem
A 2-transitive subgroup of PΓL(n, q) either contains PSL(n, q) or is
A7 inside PSL(4, 2) ∼= A8.
The proof used a lot of nice geometry, including spreads in
projective space and generalised polygons (for which the
Feit–Higman theorem applies).
But this kind of fun was soon to come to an end!
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CFSG

In 1980, the Classification of Finite Simple Groups was
announced. The proof was admittedly incomplete (though I
think nobody expected it would take a quarter of a century to
finish it).

But people started using it right away. It has very powerful
consequences for the theory of finite permutation groups, some
of which appeared in my most cited paper in 1981.

In particular, all 2-transitive groups were now “known”
modulo CFSG, so proving theorems like those on the last two
slides would no longer bring promotion and pay!
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A new direction

Livingstone and Wagner had shown that a finite permutation
group of degree n ≥ 2t + 1 which is (t + 1)-set transitive is t-set
transitive, and is actually t-transitive if t ≥ 5.
John McDermott visited Oxford in the 1970s and provoked me
into thinking about an infinite version of this result.

Theorem
Let G be an infinite permutation group which is t-set transitive for all
natural numbers t. Then either

I G is t-transitive for all natural numbers t; or
I there is a linear or circular order preserved or reversed by G.



A new direction

Livingstone and Wagner had shown that a finite permutation
group of degree n ≥ 2t + 1 which is (t + 1)-set transitive is t-set
transitive, and is actually t-transitive if t ≥ 5.

John McDermott visited Oxford in the 1970s and provoked me
into thinking about an infinite version of this result.

Theorem
Let G be an infinite permutation group which is t-set transitive for all
natural numbers t. Then either

I G is t-transitive for all natural numbers t; or
I there is a linear or circular order preserved or reversed by G.



A new direction

Livingstone and Wagner had shown that a finite permutation
group of degree n ≥ 2t + 1 which is (t + 1)-set transitive is t-set
transitive, and is actually t-transitive if t ≥ 5.
John McDermott visited Oxford in the 1970s and provoked me
into thinking about an infinite version of this result.

Theorem
Let G be an infinite permutation group which is t-set transitive for all
natural numbers t. Then either

I G is t-transitive for all natural numbers t; or
I there is a linear or circular order preserved or reversed by G.



A new direction

Livingstone and Wagner had shown that a finite permutation
group of degree n ≥ 2t + 1 which is (t + 1)-set transitive is t-set
transitive, and is actually t-transitive if t ≥ 5.
John McDermott visited Oxford in the 1970s and provoked me
into thinking about an infinite version of this result.

Theorem
Let G be an infinite permutation group which is t-set transitive for all
natural numbers t. Then either

I G is t-transitive for all natural numbers t; or
I there is a linear or circular order preserved or reversed by G.



An infinite HS-like graph

At the British Combinatorial Conference in London in 1977, I
talked about (among other things) the Higman–Sims graph.
The next time the Conference was held in London, in 1987, I
talked about a countably infinite graph with strikingly similar
properties. This graph H was discovered by Ward Henson and
characterised by Robert Woodrow.

I H is triangle-free;
I every finite triangle-free graph is embeddable in H;
I the automorphism group of H is transitive on induced

subgraphs of any given isomorphism type (that is, H is
homogeneous).

Woodrow showed that, with some trivial exceptions, the first
and third properties characterise H.
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The “random graph”

In fact, there is an even more interesting countable graph R,
characterised by Erdős and Rényi and constructed by Rado.

I every finite graph is embeddable in R;
I the automorphism group of H is transitive on induced

subgraphs of any given isomorphism type (that is, H is
homogeneous).

Erdős and Rényi showed:

Theorem
If a countable random graph is chosen by selecting edges
independently with probability 1

2 from all pairs of vertices, the
resulting graph is isomorphic to R with probability 1.
In other words, R is the countable random graph.
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Erdős and Rényi showed:

Theorem
If a countable random graph is chosen by selecting edges
independently with probability 1

2 from all pairs of vertices, the
resulting graph is isomorphic to R with probability 1.
In other words, R is the countable random graph.



The “random graph”

In fact, there is an even more interesting countable graph R,
characterised by Erdős and Rényi and constructed by Rado.

I every finite graph is embeddable in R;
I the automorphism group of H is transitive on induced

subgraphs of any given isomorphism type (that is, H is
homogeneous).
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Cyclic automorphisms

Henson showed that both the graphs R and H have cyclic
automorphisms (permuting all vertices in a single cycle).

Since R is the random graph, we’d like to use random methods
to prove this.

A graph with a cyclic automorphism is a Cayley graph for Z,
say Cay(Z, S ∪ (−S)) for some set S of positive integers; in
other words, the vertex set is Z, and we join x and y if and only
if |x− y| ∈ S. The cyclic shift x 7→ x + 1 is an automorphism.

Theorem
Choose S at random by including positive integers independently
with probability 1

2 . Then, with probability 1, Cay(Z, S ∪ (−S)) ∼= R.
In other words, R is the random Cayley graph for Z.
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Cayley graphs and B-groups

More generally, Ken Johnson and I showed:

Theorem
Let X be a countable group with the property that X cannot be
written as the union of finitely many translates of square root sets and
a finite set. Then, with probability 1, a random Cayley graph for X is
isomorphic to R.

A B-group is a group X with the property that any primitive
group G which contains X acting regularly is 2-transitive.
Burnside and Schur showed that an cyclic group of prime
power, non-prime order is a B-group.

Problem
Is there a countable B-group?

Corollary

A countable group satisfying the conditions of the theorem above is
not a B-group.
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Cyclic automorphisms of H

let S be a set of positive integers. Then Cay(Z, S ∪ (−S)) is
triangle-free if and only if S is sum-free, that is,
x, y ∈ S ⇒ x + y /∈ S.

Call a sum-free set S sf-universal if Cay(Z, S ∪ (−S)) ∼= H. This
can be phrased otherwise: any pattern of membership in S of
an interval in N, which is not obviously excluded, occurs in S.

Theorem
Almost every sum-free set (in the sense of Baire category) is
sf-universal.
So H has many cyclic automorphisms.
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Combinatorial number theory

Van der Waerden’s theorem states that, if N is partitioned into
finitely many classes, then some class contains arbitrarily long
arithmetic progressions.
Szemerédi proved a “density” version of this theorem: a set of
natural numbers which does not contain arbitrarily long
arithmetic progressions must have density zero.
Schur’s theorem states that, if N is partitioned into finitely
many classes, then some class is not sum-free.
There is no density version of Schur’s theorem. The odd
numbers have density 1

2 and clearly form a sum-free set.
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But what if . . . ?

Maybe there is almost a density version of Schur’s Theorem.

Problem
Prove that a sf-universal set has density zero.
This would imply that almost all sum-free sets (in the sense of
Baire category) have density zero.
What happens if we use measure instead of category?
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Random sum-free sets
Choose S by considering the natural numbers in turn. When
considering n, if n = x + y with x, y ∈ S, then n /∈ S; otherwise
toss a fair coin to decide.

Experimentally, the density of a large random sum-free set
looks like this:
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Sum-free sets

The probability that a random sum-free set consists entirely of
odd numbers is non-zero (roughly 0.218 . . . ).
Almost all sum-free sets consisting of odd numbers have
density 1

4 . This explains the big spike on the right of the picture.
The next spike comes from sets all of whose elements are
congruent to 1 or 4 mod 5, or to 2 or 3 mod 5 (these almost all
have density 1

5 . Then come {1, 4, 7} mod 8 and {3, 4, 5} mod 8,
with density 3

16 ; and so on.
But that is not all. Neil Calkin and I showed that the event that
2 is the only even number in a random sum-free set has
positive (though quite small) probability. There are other
similar sets with positive probability.
Maybe the density spectrum has a continuous part???
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Erdős number 1

How many sum-free subsets of {1, . . . , n} are there?
Paul Erdős and I conjectured that the number is asymptotically
ce2n/2 or co2n/2 as n → ∞ through even or odd values
respectively. Moreover, almost all of these sets either consist of
odd numbers, or contain no member smaller than n/3.
This conjecture was proved by Ben Green, and independently
by Sasha Sapozhenko.
The numbers ce ≈ 6.0 and co ≈ 6.8 are two of “Cameron’s
sum-free set constants” in Steven Finch’s book Mathematical
Constants.
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The Urysohn space

In 2000 I lectured about the random graph at the ECM in
Barcelona. Anatoly Vershik came to my talk. Afterwards he
told me about the Urysohn metric space.

A Polish space is a complete separable metric space. In a
posthumous paper in 1927, Urysohn proved:

Theorem
There is a Polish space U with the properties

I U is universal (it contains an isometric copy of every Polish
space);

I U is homogeneous (any isometry between finite subsets of U can
be extended to an isometry of the whole space).

Moreover, a space with these properties is unique up to isometry.
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Metric spaces

A graph of diameter 2 is the same as a metric space in which the
metric takes only the values 1 and 2. The graph R is the unique
countable homogeneous metric space with these properties.

By the same methods we can construct countable universal
homogeneous metric spaces with other sets of values of the
metric:

I {1, 2, . . . , d} for any d ≥ 2;
I the positive integers;
I the positive rationals.

In the first two cases we can modify the construction to
produce the analogue of Henson’s graph (i.e. no equilateral
triangles with side 1), or a bipartite graph (all triangles have
even perimeter).

Problem
What are the countable homogeneous metric spaces?
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The Urysohn space

The Urysohn space U can be defined to be the completion of
the countable homogeneous universal rational metric space.
Despite different language, this is not so different from
Urysohn’s original construction.

Vershik showed that “almost all” Polish spaces are isomorphic
to U, in each of two senses. A Polish space is the completion of
a countable metric space, and the latter can be constructed by
adding points one at a time, so the notions of Baire category
and measure can both be applied to the product space. Now U

is residual in the sense of Baire category, and is the random
Polish space for any of a wide variety of measures on the set of
possible points that can be added at each stage.
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Isometries of U

Any isometry of the universal rational metric space QU can be
extended to an isometry of its completion U.

There is an isometry σ of QU permuting all its points in a
single cycle (analogous to the cyclic automorphism of the
random graph).
The isometry of U induced by σ has the property that all its
orbits are dense.

Problem
What other countable groups have this property?
All we know is that the elementary abelian 2-group has this
property but the elementary abelian 3-group does not.
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Abelian group structure of U

The closure of 〈σ〉 is an abelian group acting transitively on U

(so U has an abelian group structure).

There are many such σ, and so the abelian group structure of U

is not canonical.

Problem
What isomorphism types of abelian groups can occur as the closure of
〈σ〉?
The closure of the countable elementary abelian 2-group with
dense orbits is an elementary abelian 2-group acting
transitively on U.
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