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I. Introduction
A. A nonexample

Nonexample (PJC and JIH 1984)

In a projective space P over D consider a chain of subspaces with
union P. Color the gaps between spaces alternately green and
white. Then every line of P has either 0 or 1 points that are green
or 0 or 1 points that are white.
Conversely, any green-white coloring of the points of P that has
this property comes about in this way.

Two difficulties: (1) If P has uncountable rank we have to be
careful about what we mean.

(2) What about D = F2 where lines only have three points?
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In the case D = F2 we get the same result with the same proof
provided we assume additionally:

In no projective plane of P are the green points or the white points
exactly the three points of a triangle.

. . . that is:

No projective plane has an orthogonal geometry of type O3(2)
induced upon it by the coloring.

PJC60, 24 August 2007 3 / 25



B. Definition(s)

An orthogonal geometry is a vector space V equipped with a
quadratic form Q or the associated projective space PV equipped
with the corresponding lattice of totally singular subspaces.
Over F2 the distinction is small since PV is essentially V \ {0}.

Definition

Let V be a vector space over the field F. A quadratic form is a
map Q : V −→ F with:

I Q( (x1, . . . , xi , . . .) ) =
∑

i≤j ai ,jxixj for fixed ai ,j ∈ F;

OR

I Q(ax) = a2Q(x), for all a ∈ F and x ∈ V ; and

B(x , y) = Q(x + y)− Q(x)− Q(y)

is an F-bilinear form.
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Remarks.

I If F has characterisitic not 2, then Q can be reconstructed
from the symmetric bilinear form B.

I If Char F = 2, then B is alternating (that is, symplectic).

I If F is perfect of characteristic 2 then the bilinear form

B(ax , by) = Q(ax + by)− a2Q(x)− b2Q(y)

gauges the extent to which Q fails to be a semilinear
transformation with respect to the Frobenius automorphism.

I If F = F2 then Q is defined by Q(0) = 0 and the biadditive
form

B(x , y) = Q(x + y) + Q(x) + Q(y)

which gauges how much Q fails to be a linear functional.
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Rewrite the defining equation as

Q(ax + by) = B(ax , by)− a2Q(x)− b2Q(y) .

The form Q is therefore uniquely determined by the form B and
the values of Q at any basis of V .

The radical of the form B is

Rad(B) = { v ∈ V |B(v , x) = 0, all x }

The rank of the forms B and Q is the codimension of Rad(B) in V .
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From now on we will assume our field is F2.

The restriction of Q to the radical Rad(B) is a linear functional.
Its kernel is the singular radical

SRad(Q) = { v ∈ V |Q(v) = 0, B(v , x) = 0, all x } ,

which therefore has codimension 0 or 1 in Rad(B).

We say that Q is nondegenerate if Rad(B) = 0 and nonsingular if
SRad(Q) = 0.

The form Q induces a nonsingular quadratic form on V / SRad(V ).
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Example

Types of forms in low dimension.

1. V = {0, v} of dimension 1 must have rank 0.
(i) Singular: Q(v) = 0, Q(0) = 0.
(ii) Nonsingular: Q(v) = 1, Q(0) = 0.

2. V = {0, v ,w , v + w} of dimension 2.
(i) Rank 0, totally singular: Q(v) = Q(w) = Q(v + w) = 0.
(ii) Rank 0, defective: Q(v) = 0, Q(w) = Q(v + w) = 1.
(iii) Rank 2, totally nonsingular :
Q(v) = Q(w) = Q(v + w) = 1.
(iv) Rank 2, hyperbolic : Q(v) = Q(w) = 0, Q(v + w) = 1.

3. V = 〈v ,w , x〉 of dimension 3.
(i) Rank 0, totally singular: Q(v) = Q(w) = Q(x) = 0.
(ii) Rank 0, defective: Q(v) = Q(w) = 0, Q(x) = 1.
(iii) Rank 2, degenerate: {0, x} = RadB with Q(x) = 0.
(iv) Rank 2, nonsingular: {0, x} = RadB with Q(x) = 1.
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C. Some areas of application

Questions involving orthogonal geometry over F2 have come in
varied contexts:

lie algebras singularity theory
group cohomology extraspecial groups
quantum error correction Moufang loops
pseudorandom sequences coding theory
Grassmann spaces translation planes
lattice theory mapping class groups
local graph theory cluster algebras

double Bruhat cells
vertex operator algebras
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II. Characterisations
A. Linear algebra

Call a function F : V −→ F2 k-even if on each k-subspace it takes
the value 1 an even number of times. By inclusion-exclusion, if F
is k-even, then it is m-even for all m ≥ k.

Example

1. k = 1. On each 1-space {0, v} we have have F (0) = F (v).
That is, F is a constant function.

2. k = 2. Assume F (0) = 0. Then always

F (x + y) = F (x) + F (y) ,

and F is a linear functional.
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Theorem

Let V be a vector space of F2 and Q : V −→ F2 with Q(0) = 0.
Then Q is a quadratic form if and only if it is 3-even.

Proof. As Q(0) = 0 by assumption, we must prove that
B(x , y) = Q(x) + Q(y) + Q(x + y) is biadditiive. Clearly
B(x , y) = B(y , x) and B(x , x) = 0.

Since Q is 3-even, B(x + y , z) + B(x , z) + B(y , z) is a sum of an
even number of 1’s and so is 0.
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B. Incidence geometry

Consider partial linear spaces (collections of points and lines with
two lines meeting in at most one point) that mimic the set of
totally singular lines and the set of totally nonsingular lines.

That is, for a fixed α = 0, 1, consider a set of points P and set of
lines L such that each line is a 3-subset of P and for each line `
and point p /∈ ` we have

I α = 0 and p is collinear with either 1 or 3 points of `;

I α = 1 and p is collinear with either 0 or 2 points of `.

We hope to prove that there is a vector space V and quadratic
form Q with P the nonzero vectors with Q(v) = α.
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Let V0 = F2
P , and define the quadratic from Q0 on V0 by

Q0(x) = α , for x ∈ P , and

B(x , y) = α , for x , y collinear,

= 1− α , for x , y not collinear.

Lemma

If {x , y , z} is a line of L, then in V0 we have
x + y + z ∈ SRad(Q0).

Therefore V = V0/ SRad(Q0) equipped with the induced form Q
gives a nonsingular space in which each line of L become a line
(that is, a 2-space less 0) of the desired type.
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A nondegeneracy condition gives injectivity on P.

For α = 0 it is now possible to show that every vector of V is the
sum of at most three images of points, and we find

Shult’s Triangle Theorem

For α = 0 we have the singular points (1-spaces) and totally
singular lines (2-spaces) of a nonsingular quadratic form.

For α = 1 we are headed towards Shult’s Cotriangle Theorem, but
we cannot bound length. More examples than that of totally
nonsingular points and lines do occur.
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C. Group theory

Let the group G be generated by the conjugacy class D of
involutions. Then G (more properly, (G ,D)) is a 3-transposition
group provided:

for d , e ∈ D, |de| = 1, 2, or 3 .

The motivating example is given by the transposition class of the
symmetric group.

3-transposition groups were introduced by Bernd Fischer, and three
of the sporadic finite simple groups arise as examples.

The diagram of a set ∆ of 3-transpositions is the graph with the
set as vertices and two adjacent when their product has order 3.
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Theorem

The following are equivalent:
(1) A 3-transposition group (G ,D) in which, for d , e, f ∈ D, we
never have |〈d , e, f 〉| equal to 18 or 54.
(2) A connected partial linear space (P,L) in which the subspace
generated by a pair of intersecting lines is always dual affine of
order 2 (a Pasch configuration).

This result connects the present discussion with that of the
previous section since the spaces of (2) are examples of
cotriangular spaces—they satisfy the α = 1 condition.
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Proof.
(1) ⇐= (2): For each point p ∈ P let τp be the involutory
permuation of P that fixes p and all points not collinear with p
and switches the two remaining points on all lines on p. Then
D = { τp | p ∈ P } is a class of 3-transpositions in Aut(P,L).

(1) =⇒ (2): The point set P is D and a line of L consists of the
three 3-transpositions in a subgroup Sym(3).

Three 3-transpositions have a diagram that either is a spherical
Dynkin diagram or is affine of type Ã2. The weird numerology
implies that in that last case, the three must generate Sym(4) (or
Sym(3)).

The 3-transposition groups satisfying the condition (1) are usually
called symplectic 3-transposition groups.
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Remarks.

I The symmetric group satisfies the numerology. That is, the
symmetric group is a symplectic 3-transposition group.

I (P,L) satisfies the earlier condition for α = 1.

We now can state

Shult’s Cotriangle Theorem

For α = 1 we have the nonsingular points and totally nonsingular
lines of a nonsingular quadratic form or we have the 2-subsets
(points) and 3-subsets (lines) of a set.

Remember that we have an (unstated) nondegeneracy condition.
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D. Groups generated by orthogonal transvections

Let x be a nonsingular vector for the quadratic form Q on the
F2-vector space V . Then the linear transformation

τx : v 7→ v + B(v , x)x

is an orthogonal transvection. It is an isometry of Q in that

Q(v) = Q(v .τx)

for all v ∈ V .

We write Oε
n(2) for the isometry group of a nonsingular form in

dimension n with type ε. (If n is odd, then ε is not necessary.)
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And the choice of notation is not a coincidence. The
3-transposition permutation τp that we saw earlier induces the
appropriate orthogonal transvection on the space V constructed
from the cotriangular space.

Indeed the class of orthogonal transvections in Oε
n(2) is a

generating conjugacy class of 3-transpositions of symplectic type.

Conversely it can be shown that the symplectic 3-transposition
groups and cotriangular spaces of the TFAE Theorem are precisely
those associated with groups generated by orthogonal
transvections.
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The appropriate classification (now with no degeneracy
restrictions) is then:

Theorem

Let Q be a quadratic form on the F2-space V . Let G be an
isometry group of V generated by a G-conjugacy class of
orthogonal reflections and having [V ,G ] = V . Then

I G = E o X with E an elementary abelian 2-group.

I X is isomorphic to Oε
n(2) or Sym(n + 1).

I E is a direct sum of m copies of the natural n dimensional
F2-module for X with dimF2 V = n + m.

Results of this type go back to McLaughlin.

Examples: W(An) = Sym(n + 1), W(Dn) = 2n−1 o Sym(n),
W(E6) = O−6 (2).
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III. Applications
A. Double Bruhat cells

Let G be an R-split simply connected algebraic group with split
torus H and Weyl group W = NG (H)/H. Let B+ and B− be two
opposite Borel subgroups with B+ ∩ B− = H.

A double Bruhat cell is any one of the intersections

G (u,v) = B+uB+ ∩ B−vB−

with (by slight abuse) (u, v) ∈ W ×W . Thus

G =
⋃

(u,v)∈W×W

G (u,v) .

The group H is regular on each double Bruhat cell with a natural
section being given by the reduced double Bruhat cell

L(u,v) = N+uN+ ∩ B−vB−

where N+ is the unipotent radical of B+. (more abuse)
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It turns out (work of many) that the number of connected
components of L(u,v) is equal to the number of orbits of a certain
group generated by orthogonal transvections acting on
V = F2

`(u)+`(v).
The calculation is relevant for

I total positivity in semisimple groups

I symplectic leaves in semisimple groups

I classifying cluster algebras of finite/infinite type

A small gem that came up in this work:

Seven’s Lemma

For a connected diagram ∆, the corresponding group generated by
orthogonal transvections of ∆ is of orthogonal (rather than
symmetric) type if and only if ∆ has a six vertex subdiagram ∆0

whose transvections generate a subgroup O−6 (2).
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B. Vertex operator algebras

Let V =
⊕

n≥0 V(n) be a graded C-space having a positive definite
form and with V(0) = C1 and V(1) = 0.
We can (almost) give V the structure of a vertex operator algebra by
defining a C-algebra multiplication

V ((z))⊗ V ((z)) −→ V ((z))

with certain properties:

1. z i · z j = z i+j .

2. 1 “is” an identity element.

3. For Y (A, z) the endomorphism of V ((z)) given by fixing A of
V , “we have” for sufficiently large N

(z − w)NY (A, z)Y (B,w) = (z − w)NY (B,w)Y (A, z) .

4. There are elements e ∈ V(2) that generate a Virasoro
subalgebra acting on V .
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Virasoro algebras are infinite dimension Lie algebras and have only
three types of irreducible modules:

L(1/2, 0), L(1/2, 1/2), L(1/2, 1/16) .

Consider the collection of all e as in the last axiom which in their
action on V have no constituents L(1/2, 1/16). Define

τe = +id on each constituent L(1/2, 0)

τe = −id on each constituent L(1/2, 1/2).

Then

Miyamoto, Matsuo

The collection of all such τe form a conjugacy class of
3-transpositions of symplectic type.
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