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Intersecting Permutations and Set Partitions

Motivation - Intersecting families of subsets

When it all began (for me)...

In a paper entitled `Permutations' by Peter Cameron, the following
question caught my attention:

Suppose A is a set of permutations of 1; : : : ; n such that any two
of them agree in at least t positions.

How large can jAj be?

What is the structure of such a family of maximum size?
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� 2[n] set of all subsets of [n] = f1; : : : ; ng.

�
�[n]
k

�
set of all k-subsets of [n].

A � 2[n] is intersecting if A \ B 6= ; for any distinct A;B 2 A.
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Intersecting family of subsets

Problem 1. (Non-uniform) What is the maximum size of an
intersecting family A?

Answer. jAj � 2n�1. (Since if A 2 A then complement A 62 A.)

Problem 2. (Uniform) What is the maximum jAj if A is an
intersecting family of k-subsets?

� k > n
2 . Then every two k-subset intersect. Answer.

�
n
k

�
.

� k � n
2 . Take A = fA : jAj = k ; x 2 Ag some �xed x . Then

jAj =
�
n�1
k�1

�
. Can we do better?
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Motivation - Intersecting families of subsets

The Erd}os-Ko-Rado Theorem

A �
�[n]
k

�
is t-intersecting if jA \ Bj � t for any A;B 2 A.

I (n; k ; t)=Set of all t-intersecting families of k-subsets if [n].

We are interested in the following function:

M(n; k ; t) = maxfjAj : A 2 I (n; k ; t)g, for 2k � t < n.
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Construction - Frankl Families

For 0 � r � n�t
2 , let

F r = Fn;k;t;r = fF 2

�
[n]

k

�
: jF \ [1; t + 2r ]j � t + rg:

F0 = Set of all k-subsets containing [1; t]
Call F0 trivial t-intersecting familiy.

� jF0j =
�
n�t
k�t

�
;

� jF0j = jF1j > jF2j > � � � when n = (t + 1)(k � t + 1);
� jF0j < jF1j when n < (t + 1)(k � t + 1);
� jF0j > jF1j > jF2j > � � � when n > (t + 1)(k � t + 1).
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Motivation - Intersecting families of subsets

Theorem (Erd}os-Ko-Rado, 1961)

For 1 � t � k and n � n0(k ; t),

M(n; k ; t) =

�
n � t

k � t

�
= jF0j:

� Frankl (1978) - n0(k ; t) = (t + 1)(k � t + 1) and t � 15;

� Rick Wilson (1984) - n0(k ; t) = (t + 1)(k � t + 1) for all t.

� for n > (t + 1)(k � t + 1), optimum families = F0 (up to
permutations);

� for n = (t + 1)(k � t + 1), optimum families = F0;F1 (up to
permutations).
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Technique - Shifting Operation

The well-known (i ; j)-shift Sij is de�ned as follows:

/ij(A) =

�
(A n fjg) [ fig if i 62 A; j 2 A

A otherwise:

Aij = fA 2 A : /ij(A) 62 Ag: (bad ones)

Sij(A) = (A n Aij)
[

f/ij(A) : A 2 Aijg:
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What is so nice about shifting

� jSij(A)j = jAj;

� If A �
�[n]
k

�
then Sij(A) �

�[n]
k

�
;

� If A 2 I (n; k ; t) then Sij(A) 2 I (n; k ; t).

Shifting preserves the problem!

A ! repeated shifting operations � � � ! A�

"

has `nice' properties

Sometimes, we can even `undo' the shiftings to say something
about A!
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Permutation Code and Anticode

Let Sym(n) denote the set of all permutations of [n].

We are working in the metric space (Sym([n]); dH), dH is the
Hamming distance.

� e.g. dH(51234; 12534) = 3. Formally,

dH(g ; h) = jfi : g(i) 6= h(i)gj

= n � jfi : g(i) = h(i)gj

= n � (g�1h);

where (g) = jfi : g(i) = igj.
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Intersecting Families of Permutations

Permutation Anticode

A � Sym([n]) is t-intersecting if, for any g ; h 2 A,

jfx : g(x) = h(x)gj � t;

or equivalently,
dH(g ; h) � n � t:

Problems.

1. What is the size of a largest t-intersecting family of
permutations?

2. Can we characterize such extremal families?
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Intersecting Families of Permutations

Permutation Anticode

The Case t = 1

Theorem (Deza-Frankl, 1977)

A � Sym([n]) 1-intersecting. Then

jAj � (n � 1)!:

Note: The bound is sharp. Take a point stabilizer.

Theorem (Cameron-Ku, 2003; Larose-Malvenuto, 2004)

Equality holds if and only if A is a coset of a point stabilizer, i.e.

A = fg : g(x) = yg;

for some x ; y 2 [n].
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Design Theoretic Approach

Existence of a particular `design' implies good bounds for some
extremal problems.

Main problem: such design might not exist.
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Intersecting Families of Permutations

Permutation Anticode

Graphical Interpretation

Theorem (Clique-Coclique Bound)

G = (V ;E ) vertex-transitive. C complete subgraph, I independent

set. Then

jC j � jI j � jV (G )j: (1)

If equality holds in (1) then jC \ I j = 1.

To obtain good upper bound for jI j, we need to �nd a large C .

The statement of equality can be used to characterize extremal
families.
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Construct a graph G as follows:

� V (G ) = Sym([n]);

� E (G ) = ffg ; hg : dH(g ; h) = ng.

Observe that

� G is vertex-transitive.

� An independent set = an 1-intersecting family.

� A complete subgraph = rows of a Latin rectangle.
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A complete subgraph of size n exists - just take the rows of a Latin
square.

By Clique-Coclique Bound,

n � jAj � n!;

where A is an 1-intersecting family (independent set of G ) of
permutations of [n].
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Deza-Frankl (1977): Let q be a prime power.

`Design' n t upper bound for
t-intersecting family of permutations

Latin square all 1 (n � 1)! (sharp)
AGL(1; q) q 2 (n � 2)! (sharp)
PGL(2; q) q + 1 3 (n � 3)! (sharp)

Rick Wilson (personal communication): n = 10, t = 2. Largest
2-intersecting family has size (n � 2)!.
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Conjecture. (Deza-Frankl, 1977)

A � Sym([n]) t-intersecting. Then, for n � n0(t),

jAj � (n � t)!:

The conjecture is false if n is not too large in terms of t.

Example. Take n = 8, t = 4, and let A consists of the identity
and all transpositions intechanging i and j , i 6= j . Easy to check
that jAj = 1 +

�8
2

�
> (8� 4)! and A is 4-intersecting.
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A Stronger Intersection Condition

What if we require that any three permutations in A agree in at
least t positions?

Theorem (Deza-Frankl, 1983)

For n � n0(t), jAj � (n � t)!.

Theorem (Ku-Renshaw, 2007)

For n � n0(t) = O(t2), jAj � (n � t)!,

with equality if and only if A is a coset of the stabilizer of t points.
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Intersecting families in Other Base Groups

What happens if we replace Sym([n]) by the alternating group
Alt(n) or direct product of symmetric groups
Sym([n1])� � � �Sym([nq])?

Theorem (Ku-Wong, 2007)

Let n � 2. A � Alt(n) 1-intersecting. Then

jAj � (n � 1)!=2:

If n 6= 4, then equality holds i� A = fg 2 Alt(n) : g(x) = yg,

some x ; y 2 [n].
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The condition n 6= 4 is necessary:

f(1; 2; 3; 4); (1; 3; 4; 2); (2; 3; 1; 4)g:
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Theorem (Ku-Wong, 2007)

Let 2 � m � n. A � Sym(
1)� Sym(
2) 1-intersecting,
j
1j = m, j
2j = n. Then

jAj � (m � 1)!n!:

Moreover,

� if m < n, (m; n) 6= (2; 3), then equality holds i�

A = f(g ; h) : g(x) = yg, x ; y 2 
1;

� if m = n, (m; n) 6= (3; 3), then equality holds i�

A = f(g ; h) : g(x) = yg, x ; y 2 
1 or A = f(g ; h) : h(x) = yg,
x ; y 2 
2.
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Let 2 � n1 = � � � = np < np+1 � � � � � nq.

A � Sym(
1)� � � � � Sym(
q) 1-intersecting, j
i j = ni . Then

jAj � (n1 � 1)!

qY
i=2

ni !:

Except for the following cases:

� n1 = � � � = np = 2 < np+1 = 3 � np+2 � � � � � nq, 1 � p < q;

� n1 = n2 = 3 � n3 � � � � � nq;

� n1 = n2 = n3 = 2 � n4 � � � � � nq;

Equality holds i� A = f(g1; : : : ; gq) : gi (x) = yg, some 1 � i � p,

x ; y 2 
i .
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Cycle-Intersecting Permutations

A collection A � Sym(n) of permutations is t-cycle-intersecting if
any two permutations in A (when written in its cycle
decomposition) have at least t common cycles.

If A is t-cycle-intersecting then it is t-intersecting. The converse is
not true.

The stabilizer of t points is t-cycle-interseting.
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Example. Stabilizer of t points - S0 = fg : g(i) = i 81 � i � tg.

I (n; t) = Set of all t-cycle-intersecting families of permutations.

We are interested in the following function:

M(n; t) = max fjAj : A 2 Ig.
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Fixing Operation - Shifting Analogue

For i ; j 2 [n], i 6= j and g 2 Sym(n), de�ne the ij-�xing of g to be
the permutation /ij(g) such that

� if g(i) 6= j , then /ij(g) = g ;

� if g(i) = j , then

/ijg(x) =

8<
:

i if x = i ;
j if x = g�1(i);
g(x) otherwise

Aij = fg 2 A : /ij(g) 62 Ag:

Fij(A) = (A n Aij)
[

f/ij(g) : g 2 Aijg:
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What is so nice about �xing

� jFij(A)j = jAj;

� If A � Sym(n) then Fij(A) � Sym(n);

� If A 2 I (n; t) then Fij(A) 2 I (n; t).
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Let A � Sym(n) be t-cycle-intersecting. For n � n0(t),

jAj � (n � t)!;

with equality i� A is the stabilizer of t points.
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Intersecting Set Partitions

A set partition of [n] is a set of disjoint subsets (called blocks) of
[n] whose union is [n]

B(n) = set of all set partitions of [n].

A k-partition of [n] is a set partition containing k blocks.

P(n; k) = set of all k-partitions of [n].

When k divides n, set c = n=k to be the size of each block,

U(n; k) = set of all k-partitions of [n] such that k divides n.
(Uniform Set Partitions).
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Intersecting Families of Set Partitions

Examples.

� n = 6, k = 3 : 12� 345� 6 2 P(6; 3).

� n = 6, k = 3 : 12� 34� 56 2 U(6; 3).

Problem 1. What is the maximum size of a t-intersecting family
in B(n) or P(n; k) or U(n; k)?

Problem 2. Can we characterize the extremal families for these
problems?
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Suppose A � P(n; k) is t-intersecting. For n � n0(t),
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u(n; k) = jU(n; k)j = 1
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A � U(n; k) is t-intersecting if any two member of A have at least
t common blocks.

Example. A = fP 2 U(n; k) : f1; : : : ; cg is a block of Pg.

This family has size jAj = u(n � c ; k � 1).
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Theorem (Meagher-Moura, 2005)

Let n � k � 1, n = kc. Then

A � U(n; k) 1� intersecting =) jAj � u(n � c ; k � 1):

Equality holds i� A is isomorphic to

fP 2 U(n; k) : f1; : : : ; cg is a block of Pg:
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jAj � u(n � ct; k � t):

Equality holds i� A consists of t �xed blocks.
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Non-Uniform Set Partitions

A set partition of [n] is a set of disjoint subsets (called blocks) of
[n] whose union is [n]

Let B(n) denote the set of all set partitions of [n].

jB(n)j = n-th Bell number B(n).

A � B(n) is t-intersecting if any two set partitions in A have at
least t blocks in common.
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Intersecting Families of Set Partitions

Example. A consists of all set partitions containing t singletons
(block of size 1).

I (n; t) = Set of all t-intersecting families of set partitions of [n].

We are interested in the following function

M(n; t) = max fjAj : A 2 I (n; t)g.

Conjecture. (Peter Cameron) For su�ciently large n,

M(n; t) � B(n � t):
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Splitting Operation - Shifting Analogue

For i ; j 2 [n], i 6= j and P 2 B(n), de�ne the ij-splitting of P to be
the set partition /ij(P) such that

� if i and j belong to di�erent blocks, then /ij(P) = P;

� otherwise, assuming b is the block of P which contains i and j ,
set

/ij(P) = P n fbg [ fb n fig; figg:

Aij = fP 2 A : /ij(P) 62 Ag:

Sij(A) = (A n Aij)
[

f/ij(P) : P 2 Aijg:
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Intersecting Families of Set Partitions

Theorem (Ku-Renshaw, 2007)

Let n � 2. Let A � B(n) be 1-intersecting. Then

jAj � B(n � 1);

with equality i� A consists of set partitions containing one �xed

singleton.
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Let A � B(n) be t{intersecting. For n � n0(t),

jAj � jB(n � t)j = B(n � t);

with equality i� A consists of set partitions containing t �xed

singletons.

We require n to be large enough:

n = 6, t = 2.

There are B(4) = 15 set partitions of [6] containing 2 �xed
singletons.

There are 16 set partitions of [6] with 4 or more singletons.
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Intersecting Families of Set Partitions

Many problems remain

1. Determine the best possible n0(t) wich appeared in the
preceding results.

For n large,

2. What is the size and the structure of a largest 1-intersecting
family of permutations not contained in a coset of a point
stabilizer?

3. What is the size and the structure of a largest
t-cycle-intersecting family of permutations not contained in the
stabilizer of t points?

4. What is the size and the structure of a largest t-intersecting
family of set partitions not �xing t singletons?
bb
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Intersecting Families of Set Partitions

Non-Trivial 1-Cycle-Intersecting Families

Hilton-Milner type construction.

Hy = fg 2 Sym(n) : g(1) = 1; g(i) = i for some i > 2g

[
f(1 2)g:

jHyj = (n � 1)!� d(n � 1)� d(n � 2) + 1 � (1� 1
e
)(n � 1)!

d(n) is the number of derangements on n elements.
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Intersecting Families of Set Partitions

Theorem (Ku-Renshaw, 2007)

Let n � 194 and A � Sym(n) be non-trivial 1-cycle-intersecting.
Then

jAj � jHyj:

Conjecture.

� Equality holds i� A = Hy (up to permutations).

� Result holds for all n
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Intersecting Families of Set Partitions

Outline of Proof

A non-trivial cycle-intersecting

after �nitely many �xing operations

R

Case I. Fab(R) is contained in the Case II. Otherwise.
trivial family for some a 6= b.
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Case I. Case I never occurs.

apply ij � �xing i ; j 62 fa; bg G

to R� carefully constructed from R

G
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Intersecting Permutations and Set Partitions

Intersecting Families of Set Partitions

In both cases, G has the following property:

� jGj = jAj.

� G is non-trivial cycle-intersecting.

� Fix(G) = fFix(g) : g 2 Gg is intersecting,
where Fix(g) = fx : g(x) = xg.

jGj �
P

F2Fix(G)(n � jF j)!: We can do slightly better .....
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Let F = fF 2 Fix(G) :6 9F 0 2 Fix(G) such that F 0 � Fg.

Note that F is an intersecting antichain of subsets.

Finally, use LYM-type inequalities and the structure of F to show
that

jGj �
X
F2F

(n � jF j)! � jHyj: �
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