
Constraints, and how to satisfy
them:

Symmetry & Search

Colva M. Roney-Dougal
University of St Andrews

From Higman-Sims to Urysohn

CMRD, 24.8.07

Gracefully labelling a graph

A vertex labelling of a simple connected graph G =
(V,E) with distinct integers from {0, . . . , |E|} is
graceful if

{|v − w| : {v, w} ∈ E} = {1, . . . , |E|}.

Suppose we wish to gracefully label K4.

v1

v2

v3

v4

• Variables: v1, v2, v3, v4.

• Values: {0, . . . , 6}.
• Constraints:

• AllDifferent(v1, v2, v3, v4).
• {vi, vj} 6= {vk, vl} ∈ E ⇒ |vi − vj| 6= |vk − vl|.

Want to find one or all assignments of values to
variables that satisfy the constraints.

This is a constraint satisfaction problem.

CMRD, 24.8.07 1

Constraint Satisfaction Problems

Defn: A (finite domain) constraint satisfaction
problem (CSP) is a triple P = (V,D, C) where:

• V – finite set of variables.

• D – finite set of values; domain of the variables.

• C – set of constraints on the variables.

Constraint C = (S, R):
S – scope, a sequence of variables.
R ⊆ D|S| – permitted values of variables in S.
Constraints normally stated intensionally : x < y.

Standard applications: airline scheduling, hospital
rostering, assigning of tasks to machines in factories.
NP-complete to solve.
Can apply to any combinatorial problem in NP.

Assignment – {(v1, a1), . . . , (vk, ak) : vi ∈ V, vi 6=
vj, ai ∈ D}. Full assignment – size |V |.

Solution – full assignment satisfying all constraints.

CMRD, 24.8.07 2

How to solve a CSP

Backtrack search for all, or some, solutions.
Use inference to reduce search.

e.g: Colour K2; colours {b, g} for v1, and {b} for v2.
V = {v1, v2}, D = {b, g}, C = {v2 6= g, v1 6= v2}.

assign (v1, g)

assign (v2, b)

(v2, g) violates constraint; delete;
v2 has smallest domain

(v1, b) violates constraint; delete

Simplify tree to: node ↔ variable; edge ↔ value.
In practice search uses binary branching.

CMRD, 24.8.07 3

Symmetry in CSPs

Recall graceful K4 problem:

For 1 6 i 6 4, require vi ∈ {0, . . . , 6}, s.t. vi 6= vj

for i 6= j and |vi − vj| 6= |vk − vl| for {i, j} 6= {k, l}.

Only search inequivalent assignments: all vertices are
interchangeable.
Important to minimise search of assignments that
don’t extend to solutions – most full assignments are
non-solutions.

Definition 1 A full assignment symmetry is a
bijection from the set of full assignments to itself
that setwise stabilises the solutions.

• Symmetry group is Sym(solutions)×Sym(nonsolutions).
• Can’t find symmetries until have found some

solutions/nonsolutions.

• Only a subset of this leads to an action on partial
assignments which can reduce search.

CMRD, 24.8.07 4

Constraint symmetries

Let symmetries act on literals: χ := V ×D.

Definition 2 A constraint symmetry is an element
of Sym(χ) that stabilises the set of constraints.

Interchanging ((vi, α), (vj, α)) ∀ α ∈ {0, . . . , 6} is a
constraint symmetry in graceful K4 problem.

4 queens Place 4 queens on a 4 × 4 chessboard so
that no two queens attack one another.

Model: V = {r1, r2, r3, r4} = rows;
D = {1, 2, 3, 4} = column containing queen;
C = no two queens in same column or diagonal.

Rotation by 90◦ maps the first column constraint to
a statement that only one queen in r1.

NOT a constraint symmetry: doesn’t even stabilise
the set of full assignments.

Status of symmetries depends on model: but some
models are better for search.

CMRD, 24.8.07 5

Solution symmetries

Definition 3 A solution symmetry is an element of
Sym(χ) whose induced action on sets of literals of
size |V | setwise stabilises the solutions.

May map assignments that extend to no solution to
sets of literals with repeated variables.

If an assignment A extends to a solution then all
images of A are assignments of size |A|.

Theorem [Cohen–Jeavons–Jefferson–Petrie–Smith’06]
The group of constraint symmetries is a subgroup
of the group of solution symmetries. Each is the
automorphism group of a graph naturally associated
with the CSP.

• Hard to find symmetries, work with what you see.

• Often solution symmetries that are not constraint
symmetries are most useful during search.

• Let Aut(P) be group of solution symmetries of
P .

CMRD, 24.8.07 6

Value and variable symmetries

Value symmetry – symmetry preserving partition of
χ by variables. L(P) – group of value symmetries.

Pure value symmetry – value symmetry s.t. if
(v, α)f = (v, β) then (z, α)f = (z, β) for all z ∈ V .
PL(P) – pure value symmetries, natural induced
action on D.

Graceful K4 problem has pure value symmetry
interchanging α with 6− α for α ∈ {0, . . . , 6}.

Variable symmetry – symmetry preserving partition
of χ by values. R(P) – group of variable symmetries.

Pure variable symmetry – variable symmetry s.t. if
(v, α)f = (w,α) then (v, β)f = (w, β) for all β ∈ D.
PR(P) – pure variable symmetries, natural induced
action on V .

Graceful K4 problem has pure variable symmetries
permuting vertices.

CMRD, 24.8.07 7

The structure of Aut(P)

Lemma [Kelsey–Linton–CMRD ’04]
1. PL(P) 6 NAut(P)(R(P)).
2. PR(P) 6 NAut(P)(L(P)).
3. PL(P) 6 {(σ, . . . , σ) ∈ Sym(D)|V |} 6 Sym(χ).
4. L(P) 6 Sym(D)|V | 6 Sym(χ).
5. Similar statements for variable symmetries.
6. PL(P)× PR(P) 6 Aut(P).

Lemma
B – literals occurring in every solution of P ; B –
literals occurring in none.
Sym(B)× Sym(B) 6 Aut(P).

Open problems:
1. Which CSPs have automorphism group generated
by value and variable symmetries?
2. Restriction to symmetries mapping assignments
to assignments gives product action embedding. Are
there any similar embeddings for weaker restrictions?

CMRD, 24.8.07 8

Breaking symmetries

A Group Equivalence tree (GE-tree) for a CSP
P with respect to G 6 Aut(P) is any search tree
satisfying the following:

(i) No node is isomorphic under G to any other node.

(ii) Given a full assignment A, there is at least one
leaf of the tree which lies in AG.

GE-tree is minimal if the deletion of any node (and its
descendants) will delete at least one full assignment.

Want to reduce search to a GE-tree without
excessive complexity overhead.

CMRD, 24.8.07 9

Symmetry breaking during search

Post additional constraints during search to prevent
exploration of symmetric partial assignments.

P = (V,D, C), G 6 Aut(P), A – assignment.

Suppose have explored A ∧ (v, a), conclude A ⇒
¬(v, a).
Let C := C ∪ {Ag ⇒ ¬(v, a)g : g ∈ G}.

• No restriction on structure of G.

• Produces a GE-tree.

• Results in exponential number of constraints.

Problem: Characterise minimal/small sets of
symmetries that restrict search to a GE-tree.

• Breaking generators insufficient.

• Random selection not good. [McDonald–
Smith’02]

• If Sn
∼= PR(P) = Aut(P), sufficient to use all

transpositions (subject to sensible search order).

CMRD, 24.8.07 10

A polynomial-time approach for value
symmetries

[Gent–Kelsey–Linton–CMRD ’04]

Lemma Let A = {(vi, αi) : 1 6 i 6 k} be a partial
assignment. Then L(P){A} = L(P)(A).

Assume G = Aut(P) = L(P). We describe how to
construct the inequivalent descendants of A.

1 Select any vk+1 6∈ V (A).
2 For each orbit of G(A) on {(vk+1, α) : α ∈ D}:

(a) Select a representative β and add an edge
from A labelled (vk+1, β).

Theorem A tree T constructed as in the preceding
paragraph is a minimal GE-tree.

Theorem The immediate descendants of each node
can be constructed in polynomial time.

CMRD, 24.8.07 11

A polynomial-time approach for
AllDifferent on variables

Lemma P – CSP with AllDifferent on variables.
A – assignment. Then R(P){A} = R(P)(A).

Example: Suppose that P has PR(P) = D2×4 6
Sym(V), and AllDifferent on variables.

v1

v2

v4

v3

To break symmetry, first assume that v1 < v2, v1 <
v3 and v1 < v4.

After fixing v1, can still swap v2 and v4, so assume
v2 < v4. Transitivity ⇒ can remove v1 < v4.

To break all of D2×4 post: v1 < v2, v1 < v3, v2 < v4.

Theorem [Puget ‘04] Let P = (V,D, C) be a CSP
with AllDifferent on variables. Then in polynomial
time we can construct at most |V | − 1 binary <
constraints that break all symmetries of PR(P).

CMRD, 24.8.07 12

Static symmetry breaking without
AllDifferent

Static – removing symmetry before search, typically
by adding constraints. e.g. previous slide.

Sometimes can remodel problem.

Theorem [Crawford–Ginsberg–Luks–Roy ‘96]
P = (V,D, C); V = {v1, . . . , vn}; G 6 PR(P). Let
C′ = {v1 . . . vn 6lex v1g−1 . . . vng−1 : g ∈ G}.
Then (V,D, C ∪C′) has one solution for each orbit of
solutions of P under G.

• Works for all pure variable symmetries.

• Doesn’t restrict search order.

• Produces exponentially many symmetry breaking
constraints.

Problem: Characterise minimal sufficient sets of
elements of G to break all of G.

Lex constraints – set of lexicographic constraints
produced as in theorem.

CMRD, 24.8.07 13

Complexity issues

Theorem [Luks–Roy ’04]
There are an infinite number of pure variable
symmetry groups that require exponentially many
lex constraints.

Theorem [Luks–Roy ’04]
If |V | = n and PR(P) is abelian then there exists an
ordering on V s.t. O(n3 log n) lex constraints suffice.

Problem: Characterise the groups for which
polynomially many lex constraints suffice.
Characterise the optimal variable ordering.

CMRD, 24.8.07 14

Minimal sets of lex constraints

Lemma [Frisch–Harvey’03/Öhrman’05/Jefferson–
Grayland–Miguel–CMRD ’07]
v, w – variables; A,B, C, D – strings of variables; C
– lex constraints.
1. If C = C′ ∪ {Av 6lex Bw} and C′ ∪ {A = B} ⇒
v 6 w then

C ⇔ C′ ∪ {A 6lex B}.

2. If C = C′ ∪ {AvB 6lex CwD} and C′ ∪ {A =
C} ⇒ v = w then

C ⇔ C′ ∪ {AB 6lex CD}.

Set of lex constraints is minimal if these reduction
rules do not apply.

Lemma [Jefferson–Grayland–Miguel–CMRD ’07]
These rules are not confluent.

Question: Are they confluent for lex constraints for
transitive groups? Are there other reduction rules?

CMRD, 24.8.07 15

Some families of variable symmetries
[Jefferson–Grayland–Miguel–CMRD’07]

Proposition
1. Let PR(P) = Sn. A minimal set of lex constraints
for PR(P) is {vi 6 vi+1 : 1 6 i 6 n− 1}.
2. Let PR(P) = An. A minimal set of lex constraints
for PR(P) is:
vivn−1 6lex vi+1vn (1 6 i 6 n− 3),
vn−2 6 vn−1, vn−2vn−1 6lex vnvn−2.
Minimal sets known for Cn, Dn.

Proposition
Let G×H 6 PR(P), disjoint action on V = V1∪V2.
X – minimal set of lex constraints for G on V1.
Y – minimal set of lex constraints for H on V2.
A minimal set of lex constraints for G×H is X ∪Y .
Construction known for imprimitive wreath product
– may not result in minimality.

Investigating product action wreath product –
variable ordering significant.

CMRD, 24.8.07 16

Happy birthday Peter!

CMRD, 24.8.07 17

