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Trees within infinite primitive highly arc transitive digraphs
Daniela Amato

University of Oxford

The set of descendants of a vertexα in a digraphD is the set of vertices which
are reachable fromα by a directed path. We investigate the set of descendants of a
vertex in an infinite primitive highly arc transitive digraph with finite out-valency
m. Our results show that ifm is equal top, p2 or p3, wherep is prime, then the
set of descendants of a vertex is a (rooted) tree. Moreover, we conjecture that the
same is true whenm is equal topk for anyk∈ N.

Partial linear spaces and their applications to SOMAs
John Arhin

Queen Mary, University of London

A partial linear space S= (P,L) consists of a setP of pointswith a setL of
lines, where each line is a subset ofP (of cardinality greater than or equal to 2),
such that every pair of points is contained in at most one line.

A PLS(v,n; r) is a partial linear space where the set of points has sizev, each
line has sizen and every point is contained in exactlyr lines.

A decompositionof S= (P,L), a PLS(v,n; r), is a partition{L1, . . . ,Lm} of L,
such that every point ofP is contained in exactlyr i lines ofLi , for all i = 1, . . . ,m.
We note that if there existsL′ ⊆ L, where(P,L) is a PLS(v,n; r), such that every
point of P is contained in exactlyr ′ lines ofL′, then it is a simple exercise to show
that(P,L′) is a PLS(v,n; r ′).

Suppose that{L1, . . . ,Lm} is a decomposition ofS= (P,L), a PLS(v,n; r), such
that(P,Li) is a PLS(v,n; r i), for all i = 1, . . . ,m. Then if{Li} is the only decompo-
sition of the PLS(v,n; r i) (P,Li), for all i = 1, . . . ,m, then{L1, . . . ,Lm} is said to be
anunrefinable decompositionof S.

In this talk we will discuss the result that ifS= (P,L) is a PLS(v,n; r) with
v< n2, then{L} is an unique unrefinable decomposition ofS. Next, we will discuss
the result that every PLS(n2,n; r) has an unique unrefinable decomposition, and
provide an efficient algorithm for its computation. This particular result implies
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that every SOMA (a generalistion of mutually orthogonal Latin squares) must have
an unique unrefinable decomposition, which in turn answers a question of Soicher.
We then look at some generalisations of these results, and we find that in some
cases these results are best possible.

Error-correcting codes, permutation groups
and covering designs

Robert Bailey
Queen Mary, University of London

We move away from the traditional setting for error-correcting codes, namely
vector spaces over finite fields, and replace these with permutation groups. We
draw upon sharplyk-transitive groups and the general linear and affine general lin-
ear groups (among others) for examples, and describe a decoding algorithm which
uses the complements of the blocks of a covering design.

Graphs with the Erdos-Ko-Rado Property
Peter Borg

Open University

Let G be a graph and letr be an integer withr ≥ 1. We denote the family
of independentr-sets ofV(G) by I (r)(G). Let I (r)

v (G) := {A ∈ I (r)(G) : v ∈ A},
and call such a family astar. An anomaloussubfamily ofI (r)G is an intersecting
subfamily that is not a subfamily of any star.G is said to be (strictly) r-EKR if the
largest star is (strictly) larger than any anomalous subfamily. The Erdos-Ko-Rado
theorem states that ifEn is the empty graph of ordern, thenEn is r-EKRfor n≥ 2r
and strictly so forn > 2r. We will give a survey of other such results for certain
classes of graphs, and we will discuss open problems and current research in this
area.

Codes meeting the Grey-Rankin bound
from quasi-symmetric designs

Carl Bracken
National University of Ireland, Maynooth

Given any 4n by 4n Hadamard matrix we can constuct a quasi-symmetric de-
sign with parameters(32n2−4n,16n2−4n,16n2−4n−1), the incidence matrix
of which yields a binary code with parameters(32n2−4n,128n2,16n2−4n). This
code will meet the Grey-Rankin bound (an upper bound on the number of words in
a self-complimentary code) with equality.
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Can colouring hypergraphs help to prevent fires?
David Cariolaro

University of Reading

In firefighting it is extremely important to have full information about danger-
ous or hazardous materials (or combinations or those) in factories and private or
public buildings well before the occurrence of a real emergency. Indeed, every
factory, supermarket, school, etc. is required by law to fill a detailed list of all
chemicals, explosives, flammable or toxic materials which are temporarily or per-
manently stored in the building, and a long list of prohibited substances is made
available annually by the local Fire Brigade. Developing a systematic, precise and
consistent notation to represent dangerous or potentially dangerous situations is, in
fire prevention, a must. In this talk we shall attempt to support by real examples the
claim that hypergraph colouring is the most natural way to study, mathematically,
problems of this kind.

L(2,1)-labellings of graphs
Luis Cereceda

London School of Economics

Given a graphG = (V,E), an L(2,1) labelling of G is a functionl : V → N
satisfying the following two conditions:

1. |l(u)− l(v)| ≥ 2 for all uv∈ E

2. |l(u)− l(v)| ≥ 1 for all u,v∈V with d(u,v) = 2

whered(u,v) denotes the distance between verticesu andv. The difference be-
tween the largest and smallest labels (numbers) used inl is called thespanof the
labelling, and the minimum span over all labellings ofG is called thelambda num-
ber of G, λ(G).

The problem of computingλ(G) for a given graph, which arises naturally in
the context of frequency assignment, is in general NP-hard (as is to be expected,
sinceL(2,1) labellings generalise graph colouring). We examine exact results,
bounds and algorithms forλ(G) for specific classes of graphs, as well as some
open problems.
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Genetic Algorithms for search problems in Vershik groups
Matthew Craven

UMIST

Genetic algorithms were introduced by Holland in 1975 and after initial theo-
retical research, started to be used in applications from the early 1980s onwards,
achieving some striking results. It is only recently that they have been applied to
combinatorial group theory by Borovik and Myasnikov.

The theory of traces has many applications in mathematics and computer sci-
ence, including concurrent systems and graph theory. They come from the com-
binatorial algebra of free and commutation monoids, where the use for algebraic
means was introduced by Cartier and Foata. The latter monoid is where we apply
solely commutator relations between some generators, but no other relations. We
extend this to a group structure. We call these the trace groups, which are otherwise
known as graph groups, right-angled Artin groups and free partially commutative
groups.

We focus on Vershik groups, a subclass of trace groups, and examine the double
coset problem in this setting. This problem has links in cryptography, which sug-
gests possible attacks on group-theoretic problems across wider classes of groups.

Some results are presented, which suggests that the GA in the case of this
problem may converge to a deterministic algorithm.

Whist tournaments
Leigh Ellison

University of Glasgow

Whist is a game involving four players split into two teams of two. A great deal
of work has been done with regards to proving the existence of different kinds of
tournaments of this type. This talk is going to focus onZ-cyclic ordered/directed
triplewhist tournaments, and some recent results involving them. Generalised whist
tournaments will also be discussed in passing.

Distance and fractional isomorphism in Steiner triple systems
Tony Forbes

Open University
Joint work with M. J. Grannell and T. S. Griggs

For the purpose of this talk, aconfigurationis a finite set of triples of points
where two triples intersect in at most one point. Two configurationsC and D
are isomorphic, C ∼= D, if there is a permutation of the points,φ :

S
C →

S
D,

which preserves triples; i.e.T ∈ C iff φ(T) ∈D. A Steiner triple systemof orderv
(STS(v)), is a pair(V,B) whereV is a set of points,v= |V| andB is a configuration
in which each pair of distinct elements ofV occurs in precisely one triple.
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Given two Steiner triple systemsS= (V,B) andS′ = (V,B ′) on the same base
setV, the distance between them is the smallest number of triples that need to be
changed to transformS to a system isomorphic toS′. The natural object to study
distance is atrade; that is, a pair of disjoint configurations{C ,D}, which cover
the same pairs. Thus|C |= |D| and a pair of points appears in a triple ofC iff it is
present in a triple ofD.

We present a complete ‘distance table’ for the 80 Steiner triple systems of order
15.

All trades where|C | ≤ 8 have isomorphic configurations,C ∼= D, but this is
not true in general. We are interested the effect on the STS(15) distance table if
trades are restricted to those whereC ∼= D.

Closely related to trades is the concept offractional isomorphism, introduced
by Quattrocchi and Rinaldi in a paper of 1997. Two configurationsC and D
are said to ben−1-isomorphic if there are partitions{C1,C2, . . . ,Cn} of C and
{D1,D2, . . . ,Dn} of D such thatCi

∼= Di for i = 1,2, . . . ,n. Two Steiner triple
systems,(V,B) and(V ′,B ′), aren−1-isomorphic ifB andB ′ aren−1-isomorphic.
We make use of the distance tables to investigate fractional isomorphism between
pairs of Steiner triple systems of order 15.

An application of the FKG inequality to embeddings
of rooted binary trees

Nicholas Georgiou
London School of Economics

If F is a finite distributive lattice andµ,α,β are non-negative functions onF
such thatµ( f )µ(g)≤ µ( f ∨g)µ( f ∧g) for all f ,g∈ F , andα,β are both increasing
(or both decreasing), then

∑
f∈F

µ( f )α( f ) ∑
f∈F

µ( f )β( f )≤ ∑
f∈F

µ( f ) ∑
f∈F

µ( f )α( f )β( f ).

This powerful result is known as the FKG inequality and it has been used to obtain
many results of a probabilistic nature.

Let Tn be the complete binary tree of heightn, with root 1n as the maximum
element. LetT be an arbitrary rooted binary tree. An embedding ofT into Tn is a
mapφ from T to Tn such thatx > y in T if and only if φ(x) > φ(y) in Tn.

We show that it is possible to place a distributive lattice structure on the set
of all embeddings ofT into Tn. Using the FKG inequality, we show that certain
events on the lattice are positively correlated. We also show how this approach
gives a simpler proof of a related theorem of Kubicki, Lehel and Morayne on the
number of embeddings that map the root ofT to 1n.
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Stable sets of maximal size in Kneser-type graphs
Cheng Yeaw Ku

Queen Mary, University of London

We introduce a family of vertex-transitive graphs with specified subgroups of
automorphisms which generalise Kneser graphs and Cayley graphs of permuta-
tions. We give some results on the characterisation of stable sets of maximal size
in these graphs.

The total-chromatic number of Paley graphs of square order
Eleni Maistrelli

University of Essex

For a prime powerq≡ 1 (mod 4), a Paley graphPq is the graph with vertex
set the finite field onq elements,Fq, and an edge between two of its vertices if and
only if their difference is a non-zero square inFq.

The total-chromatic numberχ′′(G) of a graphG is the least number of colours
needed to colour the vertices and edges ofG so that adjacent vertices, incident
edges and edges and their incident vertices receive different colours.

In this talk we are going to briefly explore the total-chromatic number and
present a ‘nice’ proof about it in the special case of Paley graphs of square order.

Colouring random geometric graphs
Tobias M̈uller

University of Oxford

A random geometric graph is obtained by taking its vertices to be a sample
{X1, . . . ,Xn} from some probability measureν onRd and puttingXi ∼ Xj for i 6= j
wheneverl(Xi−Xj) < r = r(n), wherel is some norm onRd andr → 0 asn→∞.
Such graphs have for instance been studied in connection with the spread of epi-
demics, wireless computer networks and the channel assignment problem in mo-
bile telecommunications. In this talk we will investigate the asymptotic behaviour
of the chromatic number of these graphs asn→∞. We will establish various al-
most sure convergence results for the chromatic number and we will find that (the
asymptotic behaviour of) the chromatic number can be characterised in terms of the
the maximum densityνmax of ν, the quantitynrd (which is related to the average
degree), and the packing density of thel -unit ball (that is{x∈ Rd : l(x) < 1}). It
turns out that the chromatic number undergoes a “phase change” when the average
degree isΘ(ln(n)).
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Discrete analysis
Tomas Nilsson

Mid-Sweden University

A sequence ofn+1 points corresponds to a unique polynomial inPn. We use
difference tables to expose this relationship. Some applications of these tables will
be outlined briefly, e.g. interpolation and a kind of ‘discrete analysis’. Alternatively
we could just find some nice identities.

Derangements in the affine general linear group
Pablo Spiga

Queen Mary, University of London

We will compute explicitly the number of derangements of the affine general
linear group, in its natural action, using combinatorial properties of partitions of
integers.

Countable homogeneous coloured partial orders
Susana Torrez̃ao de Sousa

University of Leeds

We give an initial description of the countable homogeneous coloured partial
orders, countable partial orders with a colour function for which any finite isomor-
phism extends to an automorphism of the whole structure. These results extend
Schmerl’s classification in the countable case and provide interesting examples to-
wards a full classification. The classification is divided into two major cases, the
first of which, the “interdense case”, in which all colours occur interdensely, gives
rise to somewhat similar structures to those in the monochromatic case. The other
case is handled by use of a suitable equivalence relation that recognises interdense
components of the previous kind. It is then necessary to determine in what ways
they fit together. Fraisse’s construction plays an important role in the systematic
analysis of some of these cases, giving rise to structures with interesting properties.

Witness sets for vectors
Ben Veal

London School of Economics

A witness set for a vectorx∈V is a set of coordinates that distinguishx from all
other vectors inV. These sets are studied in learning theory where they represent
a set of questions that may be used to distinguish a concept from other concepts in
their class. I will present some results on witness sets of minimal cardinality for
arbitrary length vectors, and would be interested to know of any applications/links
with other areas of mathematics e.g. coding theory.
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Discrete Morse theory on infinite complexes
Jose A. Vilches

Universidad de Sevilla

We extend to the one-dimensional infinite case a theorem due to R. Forman
which characterises discrete gradient fields on finite complexes.

TBA
Peter Wagner

University of Cambridge

Let sandt be integers satisfyings≥ 2 andt ≥ 2. LetSbe a tree of sizes, and let
Pt be the path of lengtht. I will show that, for every edge-colouring of the complete
graph onn vertices, wheren = 224(s−1)2t , there is either a monochromatic copy
of Sor a rainbow copy ofPt . So, in particular, the number of vertices needed grows
only linearly int.

A brief introduction to Mono-Rainbow Ramsey numbers will also be given.

Consecutive choosability and a new graph invariant
Rob Waters

University of Nottingham

List colouring is a generalisation of ordinary graph colouring, in which the
colour of each vertex must be chosen from a list of colours assigned to that ver-
tex. We consider a variation of the list colouring problem, in which the lists are
restricted to sets of consecutive integers, and the colours at adjacent vertices must
differ by at least a fixed integers.

For any graphG, we show that the ratio of the required list size to the separation
s tends to a limitτ(G) ass→∞, which we call theconsecutive choosability ratio.
We obtain general bounds onτ(G) as well as exact values for various classes of
graphs.

Semi-total colourings and theβ parameter
Jini Williams

Open University

Let G be any graph and letµbe a semi-total colouring ofG using∆+1 colours.
A beta edgeof G (with respect toµ) is an edgee= wvsuch thatµ(v) = µ(w). Where
βµ is the number of such edges, and that

β = min{βµ : µ a semi-total colouring ofG using∆+1 colours}.
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By a near Type 1graph we mean a connected graphG with χ′′ > ∆ + 1 such that
χ′′(G− e) = ∆ + 1 for some edgee of G. (In particular, critical graphs are near
Type 1.) The main result of this talk is that, for any near Type 1 graph,

β≤max{∆,2∆−4},

unless every total colouring ofG−e has distinct colours atv1, v2 and the spines
at these vertices, and a certain sequence of Kempe chains exists, in which case we
still have an upper bound for which will be presented.
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