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Abstract

This paper studies induced paths in strongly regular graphs. We give an elementary
proof that a strongly regular graph contains a path P4 as an induced subgraph if and
only if it is primitive, i.e. it is neither a complete multipartite graph nor its complement.
Also, we investigate when a strongly regular graph has an induced subgraph isomorphic
to P5 or its complement, considering several well-known families including Johnson and
Kneser graphs, Hamming graphs, Latin square graphs, and block-intersection graphs of
Steiner triple systems.
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1 Introduction

In this paper, all graphs are finite, with no loops or multiple edges. In particular, we are
concerned with the following class of graphs.

Definition 1. A graph G is strongly regular with parameters (n, k, λ, µ) if it has n vertices,
is regular with degree k, any two adjacent vertices have λ common neighbours, and any two
non-adjacent vertices have µ common neighbours.

It is well-known that G is strongly regular with parameters (n, k, λ, µ) if and only if
its complement G is strongly regular with parameters (n, k, λ, µ), where k = n − k − 1,
λ = n − 2k + µ − 2 and µ = n − 2k + λ. From the definition, it follows that a strongly
regular graph has diameter 2 unless µ = 0, whereby it must be disconnected.

A strongly regular graph is called primitive if it and its complement is both connected,
and imprimitive otherwise; it is well-known that the only imprimitive, connected strongly
regular graphs are the complete multipartite graphs Kr×m (with r parts of size m), which
have parameters (rm, (r − 1)m, (r − 2)m, (r − 1)m); their complements are the disjoint
union of r copies of Km. More information on strongly regular graphs can be found in [2, 3].

In this paper, we are concerned with strongly regular graphs with, our without, specific
induced subgraphs. The following definition is relevant here.
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Definition 2. A graph G is called H-free if it contains no induced subgraph isomorphic
to some graph H, and is called F-free if it contains no induced subgraph isomorphic to a
member of some family of graphs F .

A particularly important class of such graphs is as follows.

Definition 3. A graph G is a cograph if it contains no subgraph isomorphic to a path on
4 vertices, P4.

The name “cograph” is a shorthand for “complement reducible graph”, because of the
equivalence between graphs which are P4-free and graphs which may be reduced to isolated
vertices by recursively complementing all connected subgraphs. This equivalence forms part
of the “Fundamental Theorem on Cographs” of Corneil, Lerchs and Stewart Burlingham [8,
Theorem 2] (see also [1, Theorem 11.3.3]). Nowadays, having no induced P4 is frequently
taken as the definition of the term “cograph” (see, for instance, [4, 10, 12]).

Clearly, a connected P4-free graph necessarily has diameter at most 2, as is the case with
strongly regular graphs, so we begin with an examination of how these classes coincide.

2 Induced 4-paths

It is a simple exercise to see that a complete multipartite graph has no induced subgraphs
isomorphic to P4; thus, any imprimitive strongly regular graph is a cograph. Conversely,
it follows from the notion of complement-reducibility that a connected cograph must have
a disconnected complement, which shows that a primitive strongly regular graph is not a
cograph and thus contains P4 as an induced subgraph. The purpose of this section is to
give an elementary proof of this fact, using only the properties of strongly regular graphs,
which is the following result.

Theorem 4. Let G be a primitive strongly regular graph with parameters (n, k, λ, µ). Then
G contains an induced subgraph isomorphic to P4.

Proof. We consider different values for the parameters λ and µ. Since we are considering
primitive strongly regular graphs only, we know that 0 < µ < k. For any vertex u of a
graph G, we let Gi(u) denote the subset of vertices at distance i from u.

The easiest case is when λ = 0 and µ = 1, the so-called Moore graphs. In this case,
G has girth 5, and so clearly contains a 5-cycle as an induced subgraph, and thus also an
induced P4.

Next, we suppose that λ = 0 and µ > 1; in this case, G has girth 4. Choose vertices
u, v, w, where v ∈ G1(u) and w ∈ G2(u)∩G1(v), so that uvw is an induced P3. Now choose
some x ∈ G1(u) \G1(w): since µ < k we know that G1(u) \G1(w), which has size k− µ, is
non-empty. Then xuvw is an induced P4 in G.

It remains to consider the graphs with girth 3, i.e. those with λ > 0. First, we suppose
that µ ≤ λ+1. Again, we choose vertices u, v, w such that v ∈ G1(u) and w ∈ G2(u)∩G1(v).
The aim is to construct an induced P4 of the form uvwx; the new vertex x must be a
neighbour of w, must lie in G2(u) (as otherwise, uvwx would contain a 4-cycle), and must
not be a neighbour of v (as otherwise, uvwx would contain a 3-cycle). Now, w has k
neighbours, of which µ lie in G1(u) and k − µ lie in G2(u). Also, v has k neighbours: as
well as u and w, these are λ vertices in G1(u), and a further k − λ − 2 vertices in G2(u).
Since µ ≤ λ + 1, we have k − µ > k − λ − 2, so by the pigeonhole principle, the set
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(G2(u) ∩G1(w)) \ (G2(u) ∩G1(v)) is non-empty. Hence, a suitable vertex x exists so that
uvwx is an induced P4 in G.

Finally, we suppose that µ ≥ λ+1. This time, let u, v, w be vertices such that w ∈ G1(u),
and v is not adjacent to either u or w. Our aim is to find a vertex x ∈ G1(u) ∩G1(v) but
where x 6∈ G1(w), so that wuxv is an induced P4 in G. Now, |G1(u) ∩ G1(v)| = µ, since
this is precisely the set of common neighbours of the non-adjacent vertices u, v. Also, w has
λ neighbours in G1(u), so x cannot be any of these vertices. However, since µ > λ, there
exists a suitable vertex x so that wuxv is an induced P4, as required.

This concludes the proof.

We remark that the latter part of the proof (where µ ≥ λ + 1) is really just applying
the previous argument to the complementary graph G, and constructing an induced P4,
namely uvwx, in G in exactly the same manner as is done in that part of the proof; since
P4 is self-complementary, the complement of the induced P4 in G is an induced P4 in G.
Also, either method can be used when µ = λ + 1, which is reassuring, given that if G and
G have the same parameters we necessarily have µ = λ+ 1 in that case.

As a consequence of the Theorem above, we have the following fact.

Corollary 5. A strongly regular graph G is P4-free if and only if it is imprimitive (i.e. a
complete multipartite graph or its complement).

3 Induced 5-paths

Given the straightforward characterization of P4-free strongly regular graphs, it seems natu-
ral to consider extensions of this question. Perhaps the most natural next step is to consider
those graphs which are P5-free, or those which are {P5, P5}-free. For further details on this
latter class, see Chudnovsky et al. [5], where an algorithmic characterization of such graphs
is obtained, analogous to that obtained by Corneil, Perl and Stewart for cographs [9].

Clearly, if a graph is P4-free, then it cannot contain an induced P5 or P5 either. However,
there are examples of primitive strongly regular graphs which are P5-free or P5-free: for
example, the Petersen graph has girth 5, so has no induced P5 (which is formed of a 3-cycle
and a 4-cycle with a edge in common); consequently, its complement (the Johnson graph
J(5, 2)) contains no induced P5. However, as we will see in the subsections below, many
well-known families of primitive strongly regular graphs do contain both induced P5 and P5

subgraphs.

3.1 Johnson, Kneser and Hamming graphs

The Johnson graph J(m, 2), also known as the triangular graph T (m), has as its vertices
the 2-subsets of {1, . . . ,m}, and two 2-subsets are adjacent if their intersection has size 1;
this graph is strongly regular with parameters

((
m
2

)
, 2(m− 2),m− 2, 4

)
. The complement

of J(m, 2) is the Kneser graph K(m, 2). Also, the Hamming graph H(2,m), also known as
the square lattice graph, has all ordered pairs of symbols from {0, . . . ,m− 1} as its vertices,
with two pairs adjacent whenever they agree in a single co-ordinate; it is strongly regular
with parameters (m2, 2(m− 1),m− 2, 2).

Proposition 6. The Johnson graph J(m, 2) contains an induced P5 if and only if m ≥ 6,
and an induced P5 if and only if m ≥ 5.
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Proof. For m ≤ 3, J(m, 2) has fewer than 5 vertices, while J(4, 2) is the complete multipar-
tite graph K2,2,2. So for m ≤ 4, J(m, 2) is {P5, P5}-free. For m ≥ 6, it is straightforward
to verify that the following is an induced P5 subgraph of J(m, 2),
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while for m ≥ 5, we have the following induced P5 in K(m, 2) (which yields an induced P5

in J(m, 2)).
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Finally, the Petersen graph K(5, 2) cannot contain an induced P5 (as we observed earlier),
and thus J(5, 2) has no induced P5. This completes the proof.

Proposition 7. The Hamming graph H(2,m) contains an induced P5 and an induced P5

if and only if m ≥ 3.

Proof. For m ≤ 2, H(2,m) has fewer than five vertices. For m ≥ 3, we have the following
induced P5 and P5 subgraphs.

00 01

11 12

22

00 01 02

10 11

3.2 Latin square graphs

Recall that a Latin square of order m is an m ×m array filled with symbols from the set
{0, . . . ,m−1}, so that each symbol occurs exactly once in each row and once in each column.
From a Latin square, the Latin square graph has m2 vertices corresponding to the cells of
the array, with two cells being adjacent whenever they are in the same row, are in same
column, or are filled with the same symbol. These are well-known to be strongly regular
with parameters (m2, 3(m − 1),m, 6). The next two results give sufficient conditions for
such a graph to have induced P5 and P5 subgraphs.

Proposition 8. Let L be a Latin square of order m ≥ 5. The then corresponding Latin
square graph contains an induced P5 subgraph.
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Proof. We will directly construct a suitable P5 subgraph. Without loss of generality, we can
assume that the first row of L contains the symbols 0, 1, . . . ,m−1 in order, so we choose the
first two cells as the first two vertices of our path. Next, the second column must contain
the symbol 2 in some cell, so we choose this cell as the third vertex (by permuting rows if
necessary, we may assume that this cell is in the second row). The next vertex will also be
in the second row, but it cannot be in the first column, nor can it contain the symbols 0 or
1; of the remaining m− 1 cells in that row, at most three are unavailable, but since m ≥ 5
we have that m − 4 > 0, so at least one cell will be available. Choose one of these cells,
and suppose that symbol 3 occurs in it. For the fifth vertex, we will choose a cell which
also contains symbol 3. We cannot choose a cell from the first row or the first two columns,
which leaves m− 4 possible cells to choose from, and since m− 4 > 0 we are done.

Proposition 9. Let L be a Latin square of order m ≥ 6. The then corresponding Latin
square graph contains an induced P5 subgraph.

Proof. As with Proposition 8, we will construct a suitable P5 directly. Again, we assume
that the first row of L contains the symbols 0, 1, . . . ,m−1 in order; we choose the first three
cells (with symbols 0, 1, 2) to form the 3-cycle in our P5. For the remaining two vertices,
we will choose two which are in the first two columns and share a row. However, we cannot
choose cells containing symbols 1 or 2 from the first column, or 0 or 2 from the second
column, which means that, of the m− 1 remaining rows, at most four are unavailable. But
since m ≥ 6, we have m − 5 > 0, so there must be at least one row containing two new
symbols in the first two columns. We choose the first two cells in such a row, and we are
done.

We demonstrate these methods in the following example.

Example 10. In the cyclic Latin square of order 6 as shown below, the highlighted cells
on the left yield an induced P5, while those on the right yield an induced P5.

0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 1 2 3

5 0 1 2 3 4

0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 1 2 3

5 0 1 2 3 4

What happens for the remaining values of m? For m ≤ 2, there are fewer than five
vertices, while for m = 3 the graph which arises is a complete multipartite graph, so no
induced P5 or P5 is possible. For m = 4 and m = 5, there are exactly two main classes
(see [7, §III.1]) of Latin squares of each order, and thus two non-isomorphic Latin square
graphs for these orders; a slight modification of the method is required, but induced P5 and
P5 subgraphs can be found in each case, which is left as an exercise for the reader, using
the examples in [7, §III.1].

For the next family, we recall that two Latin squares L,M of the same order are orthog-
onal if, when superimposed, each ordered pair of symbols occurs in exactly one cell of the
array. From this, we obtain a strongly regular graph (also known as a Latin square graph) on
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the set of cells, where two cells are adjacent if they are in the same row, in the same column,
share a symbol in L, or share a symbol in M ; the parameters are

(
m2, 4(m− 1),m+ 4, 12

)
.1

Proposition 11. Let L and M be orthogonal Latin squares of order m ≥ 8. The then
corresponding Latin square graph contains an induced P5 subgraph.

Proof. We will construct an induced P5 in a similar manner to the proof of Proposition 8.
Without loss of generality, we can assume that the first rows of L and M both contain the
symbols 0, 1, . . . ,m − 1 in order. Thinking of the vertices as the cells of an m ×m array
whose entries are ordered pairs of symbols, we assume that the first two vertices of our path
are the cells 00 and 11 in the first row, and that the third vertex is in the second row and
contains two new symbols, e.g. 23. For the fourth vertex, in the second row we take a vertex
which cannot have 0 or 1 in either coordinate, and cannot be in the first two columns, so
there are at most six cells we must avoid. But since m ≥ 8, we have m− 6 > 0, so there is
a cell we can choose.

Suppose without loss of generality that the fourth vertex is 45. For the fifth vertex, we
will choose a vertex with 4 in the first co-ordinate, that is not adjacent to the first three
vertices. Taking rows, columns and entries into consideration, there are at most seven cells
we must avoid, but since m ≥ 8, a suitable cell is guaranteed to exist.

Proposition 12. Let L and M be orthogonal Latin squares of order m ≥ 10. The then
corresponding Latin square graph contains an induced P5 subgraph.

Proof. The proof is very similar to that of Proposition 9: we label the vertices in the same
manner as in Proposition 11, choose vertices 00, 11 and 22 from the first row, and two
vertices from the first two columns in the same row. This time, there are at most eight
other rows we must avoid, but since m ≥ 10, a suitable row exists, and thus we are able to
construct an induced P5.

We remark that the “threshold” values form which appear in the proofs of Propositions 8
to 12 are probably artificially high; it may be possible to adapt the proofs to cover more
cases. Also, the method of proof appears as if it should generalize, i.e. that for each t, there
should be some value Nt(m) such that for all m ≥ Nt(m), any Latin square graph arising
from a set of t mutually orthogonal Latin squares of order m contains an induced P5, and
likewise for induced P5 subgraphs.

3.3 Block-intersection graphs of Steiner triple systems

A Steiner triple system of order m, or STS(m), is a pair (X,B) where X is a set of m points,
and B is a collection of 3-subsets of X, called blocks, with the property that any pair of
points from X lies in exactly one block in B. It is well-known that a Steiner triple system
exists if and only if m ≡ 1 or 3 mod 6. There are unique Steiner triple systems of orders
3, 7 and 9, two of order 13, and 80 of order 15 (see [14]); for larger orders the number of
systems is in the billions. For more information, see [7, §II.2].

1In general, given a collection of t mutually orthogonal Latin squares, or MOLS, of order m,
a Latin square graph has the m2 cells as vertices, and two cells are adjacent if they are in the
same row or column, or share a symbol in one of the Latin squares. This graph has parameters(
m2, (t+ 2)(m− 1),m− 2 + t(t+ 1), (t+ 1)(t+ 2)

)
; a graph with these parameters, but not necessarily

arising from MOLS, is a pseudo-Latin square graph.
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The block-intersection graph of a Steiner triple system has vertex set B, and two blocks
are adjacent if their intersection is non-empty. It is straightforward to show that this graph
is strongly regular, with parameters

(
1
6m(m− 1), 3

2(v − 3), 1
2(v + 3), 9

)
. We note that the

block-intersection graphs of the unique STS(3), STS(7) and STS(9) are K1, K7 and K3,3,3,3

respectively, none of which can contain an induced P5 or P5.
For the block-intersection graphs of the two STS(13)s, we have induced P5 and P5

subgraphs as follows.

Example 13. The blocks of the two STS(13)s, with point set {1, . . . 13}, are given below:

1 2 3 1 4 5 1 6 11 1 7 8 1 9 10 1 12 13 2 4 8
2 5 7 2 6 10 2 9 12 2 11 13 3 4 11 3 5 10 3 6 12
3 7 9 3 8 13 4 6 7 4 9 13 4 10 12 5 6 13 5 8 12
5 9 11 6 8 9 7 10 13 7 11 12 8 10 11

and
1 2 3 1 4 5 1 6 11 1 7 8 1 9 10 1 12 13 2 4 8
2 5 9 2 6 10 2 7 13 2 11 12 3 4 11 3 5 10 3 6 12
3 7 9 3 8 13 4 6 7 4 9 12 4 10 13 5 6 13 5 7 11
5 8 12 6 8 9 7 10 12 8 10 11 9 11 13

Both of these have 1 2 3, 1 4 5, 4 6 7, 6 8 9, 8 10 11 as an induced P5 in their block-intersection
graphs. Also, they each have 1 2 3, 1 4 5, 1 9 10, 2 4 8, 4 6 7 as an induced P5.

For the 80 distinct STS(15)s, we were able to verify the existence of induced P5 subgraphs
computationally, using the GAP computer algebra system [11]: first, we constructed the 80
systems using the DESIGN package [15], and obtained their block-intersection graphs with
the GRAPE package [16]. Then for each graph, by enumerating 5-subsets of vertices and
examining the corresponding induced subgraphs, we could quickly verify (in GRAPE) the
existence of an induced P5 in each of them. (We will see below that this computation was
unnecessary for induced P5 subgraphs.)

In our next two results, we will use the following terminology: in an STS(m), given a
pair of distinct points x, y, we call the unique block containing x and y the completion of
x y.

Theorem 14. The block intersection graph of a Steiner triple system of order m contains
an induced P5 if and only if m ≥ 13.

Proof. We already known that the block-intersection graph of an STS(m) is P5-free for
m < 13, and contains an induced P5 for m = 13 and m = 15; from now on, we will assume
that m ≥ 19.

Let S be an STS(m), with point set {1, . . . ,m} and block set B. Without loss of
generality, we can assume that S contains blocks A = 1 2 3 and B = 1 4 5. We can also
assume that there is a block C = 4 6 7: there are m−3

2 blocks of the form 4 i j distinct from
B (completions of the pair 4 i where i 6∈ {1, 2, 3}), but only two of these can intersect with
A; since m ≥ 19 we must have m−3

2 > 2, so a suitable block exists.
We will find blocks D and E which satisfy the following: (i) D intersects C but neither

A nor B, and (ii) E intersects D but none of A, B or C. (These will yield an induced P5

in the block-intersection graph of S.) Without loss of generality, assume that 6 ∈ D. Now,
there are m−3

2 blocks containing 6 other than C; these include the completions of 1 6, 2 6,
3 6 and 5 6, which intersect with A or B. So there are at most four blocks which we cannot
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choose as D; however, since m ≥ 19 we have that m−3
2 > 4, so such a block D must exist.

By relabelling points if necessary, we may assume that D = 6 8 9.
The argument to find E is similar: assume that 8 ∈ E. There are m−3

2 blocks contain-
ing 8 other than D; this time, to avoid intersecting with A, B or C, we cannot use the
completions of 1 8, . . . , 5 8 or 7 8, which yield at most six blocks. However, since m ≥ 19
we have that m−3

2 > 6, and such a block exists. Again by relabelling, we may assume that
E = 8 10 11.

The proof for the existence of induced P5 subgraphs is similar, but this time we do not
need to treat m = 13 or 15 separately.

Theorem 15. The block intersection graph of a Steiner triple system of order m contains
an induced P5 if and only if m ≥ 13.

Proof. Let S be an STS(m) as in the proof of Theorem 14; again we can assume that there
are blocks A = 1 2 3, B = 1 4 5 and C = 4 6 7 in S. This time, we will obtain blocks D and
E which satisfy the following: (i) D intersects A and C but not B, and (ii) E intersects A
and B but neither C nor D. (These will yield an induced P5 in the block-intersection graph
of S.)

For a block D to satisfy (i), it must be the completion of a pair 2 6, 2 7, 3 6 or 3 7; i.e. a
block of the form 2 6x, 2 7 y, 3 6 z or 3 7w for some points x, y, z, w. Now, we cannot have
x, y, z, w ∈ {1, 2, 3, 4, 6, 7}, as this would repeat a pair that appears in A, B or C. Also,
we cannot have x = y = z = w = a5, as this would cause some of the pairs 2 5, 3 5, 5 6 or
5 7 to be repeated. Consequently, at least one of these completions must use a new point;
without loss of generality we may assume that x = 8, i.e. that D = 2 6 8.

To obtain a block E which satisfies (ii), we show that there exists a block 1 a b with
the desired property. There are m−1

2 blocks containing the point 1, namely A, B and m−5
2

others. These others include the completions of 1 6, 1 7 or 1 8, which we cannot choose as
E. But since m ≥ 13, we must have that m−5

2 > 3, and so a suitable block must exist. By
relabelling points if necessary, we may assume that E = 1 9 10.

4 Conclusion

It would be desirable to obtain a complete characterization of the primitive strongly reg-
ular graphs which contain an induced P5 or P5, analogous to Theorem 4 for induced P4

subgraphs. As we have already seen, if a graph contains no triangles, it cannot have an
induced P5; for strongly regular graphs, such a graph has λ = 0, and there are exactly seven
examples known: the 5-cycle C5, and the Petersen, Clebsch, Hoffman–Singleton, Gewirtz,
M22 and Higman–Sims graphs, which have 5, 10, 16, 50, 56, 77 and 100 vertices respectively.
While none of these can contain an induced P5, using GAP it can be shown that (other
than C5) all have an induced P5.

Also, using GAP (and the libraries available at www.distanceregular.org), we were
able to test all primitive strongly regular graphs on up to 28 vertices; apart from C5, all
have an induced P5, and the only examples without an induced P5 are the triangle-free
examples mentioned above. So perhaps it is the case that λ > 0 is sufficient for a strongly
regular graph to have an induced P5, and having λ > 0 (i.e. λ in the complement graph) is
sufficient to have an induced P5?

Of course, there are plenty of other induced subgraphs one could look for (or look to
exclude), such as longer paths, or the “gem” on five vertices formed by taking a P4 and
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adding a new vertex adjacent to all others. (The classes of {gem, gem}-free and {P5, gem}-
free graphs have been of recent interest, for example in [6, 13].)
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