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Abstract

A resolving set for a graph Γ is a collection of vertices S, chosen so that for each
vertex v, the list of distances from v to the members of S uniquely specifies v. The
metric dimension of Γ is the smallest size of a resolving set for Γ. Much attention has
been paid to the metric dimension of distance-regular graphs. In this paper, we con-
sider the metric dimension of three families of imprimitive distance-regular graphs:
bipartite doubles, Taylor graphs, and the incidence graphs of symmeric designs. In
each case, we demonstrate a connection between the metric dimension of Γ to that of
a related primitive graph.
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1 Introduction

A resolving set for a graph Γ = (V,E) is a set of vertices R = {v1, . . . ,vk} such that for each
vertex w ∈ V , the list of distances (d(w,v1), . . . ,d(w,vk)) uniquely determines w. Equiv-
alently, R is a resolving set for Γ if, for any pair of vertices u,w ∈ V , there exists vi ∈ R
such that d(u,vi) 6= d(w,vi); we say that vi resolves u and w. The metric dimension of Γ is
the smallest size of a resolving set for Γ. This concept was introduced to the graph theory
literature in the 1970s by Harary and Melter [20] and, independently, Slater [25]; however,
in the context of arbitrary metric spaces, the concept dates back at least as far as the 1950s
(see Blumenthal [8], for instance). For further details, the reader is referred to the survey
paper [4].

When studying metric dimension, distance-regular graphs are a natural class of graphs
to consider. A graph Γ with diameter d is distance-regular if, for all i with 0 ≤ i ≤ d and
any vertices u,v with d(u,v) = i, the number of neighbours of v at distances i−1, i and i+1
from u depend only on the distance i, and not on the choices of u and v. These numbers are
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denoted by ci, ai and bi respectively, and are known as the parameters of Γ. It is easy to see
that c0, bd are undefined, a0 = 0, c1 = 1 and ci +ai +bi = k (where k is the valency of Γ).
We put the parameters into an array, called the intersection array of Γ,

∗ 1 c2 · · · cd−1 cd
0 a1 a2 · · · ad−1 ad
k b1 b2 · · · bd−1 ∗

 .

In the case where Γ has diameter 2, we have a strongly regular graph, and the intersec-
tion array may be determined from the number of vertices n, valency k, and the parame-
ters a = a1 and c = c2; in this case, we say (n,k,a,c) are the parameters of the strongly
regular graph. Another important special case of distance-regular graphs are the distance-
transitive graphs, i.e. those graphs Γ with the property that for any vertices u,v,u′,v′ such
that d(u,v) = d(u′,v′), there exists an automorphism g such that ug = u′ and vg = v′. For
more information about distance-regular graphs, see the book of Brouwer, Cohen and Neu-
maier [9] and the forthcoming survey paper by van Dam, Koolen and Tanaka [13]. In
recent years, a number of papers have been written on the subject of the metric dimension
of distance-regular graphs (and on the related problem of class dimension of association
schemes), by the present author and others: see [2, 3, 4, 5, 7, 14, 16, 17, 18, 19, 21], for
instance. In this paper, we shall focus on various classes of imprimitive distance-regular
graphs, which are explained below.

1.1 Imprimitive graphs

A distance regular graph Γ is primitive if and only if each of its distance-i graphs is con-
nected, and is imprimitive otherwise. A result known as Smith’s Theorem (after D. H. Smith,
who proved it for the distance-transitive case [26]) states that there are two ways for a
distance-regular graph to be imprimitive: either the graph is bipartite, or is antipodal. The
latter case arises when the distance-d graph (where d is the diameter of Γ) consists of a
disjoint union of cliques, so that the relation of being at maximum distance in Γ is an equiv-
alence relation on the vertex set. The vertices of these cliques are referred to as antipodal
classes; if the antipodal classes have size t, then we say Γ is t-antipodal. It is possible for
a graph to be both bipartite and antipodal, with the hypercubes providing straightforward
examples.

If Γ is a bipartite distance-regular graph, the distance-2 graph has two connected com-
ponents; these components are the halved graphs of Γ. If Γ is antipodal, the folded graph,
denoted Γ, of Γ is defined as having the antipodal classes of Γ as vertices, with two classes
being adjacent in Γ if and only if they contain adjacent vertices in Γ. The folded graph Γ is
also known as an antipodal quotient of Γ; conversely, Γ is an antipodal t-cover of Γ (where
t is the size of the antipodal classes). The operations of halving and folding may be used to
reduce imprimitive graphs to primitive ones: see [9, §4.2] for details.

In this paper, we shall consider the metric dimension of three types of imprimitive
distance-regular graphs: bipartite doubles, Taylor graphs, and the incidence graphs of sym-
metric designs. The first two types are both 2-antipodal, and we begin with a lemma about
such graphs in general.

2



1.2 A lemma about antipodal 2-covers

In a 2-antipodal graph, each vertex has a unique antipode (i.e. vertex at maximum distance),
so we may form a partition of the vertex set V+ ∪V− so that for any vertex in V+, the
antipode is in V−; for brevity, we refer to such a partition as a 2-antipodal partition for
Γ. Note that a 2-antipodal graph has many such partitions (we may take any transversal of
the antipodal classes, together with its complement), although in certain cases there natural
partition arising from how the graph is constructed.

For any vertex v, we denote by Γi(v) the set of vertices of Γ that are at distance i from v.

Lemma 1. Suppose that Γ is a 2-antipodal distance regular graph of diameter d, whose
vertex set has a 2-antipodal partition V+∪V−. Then, without loss of generality, a resolving
set for Γ̃ can be chosen just from vertices in V+.

Proof. We claim that if R is any resolving set for Γ and v− ∈R, then (R\{v−})∪{v+} is also
a resolving set. To show this, suppose that x,y are resolved by v−, i.e. dΓ(x,v−) 6= dΓ(y,v−).
Suppose that d(x,v+) = i, i.e. x ∈ Γi(v+). Since Γ is distance-regular, there exists a path
of length d− i to some vertex in Γd(v+); however, as v− is the unique vertex in Γd(v+),
it follows that dΓ(x,v−) = d− i, and so d(x,v+) + d(x,v−) = d. Therefore, dΓ(x,v+) =
d−dΓ(x,v−) 6= d−dΓ(y,v−) = dΓ(y,v+), and hence v+ also resolves x,y.

By repeating the above process as required, an arbitrary resolving set for Γ may be
transformed into a resolving set consisting only of vertices in V+, and the result follows.

2 Bipartite doubles

Definition 2. Let Γ = (V,E) be a graph. Then the bipartite double of Γ is the bipartite
graph Γ̃ whose vertex set consists of two disjoint copies of V , labelled V+ and V−, and
where u+ ∈V+ and w− ∈V− are adjacent in Γ̃ if and only if u and w are adjacent in Γ.

If Γ is itself bipartite, then Γ̃ consists of two disjoint copies of Γ, so we will assume
otherwise. The bipartite double of a complete graph Kn is the graph Kn,n− I, i.e. a complete
bipartite graph with a 1-factor removed. The bipartite double of the Petersen graph is known
as the Desargues graph.

If Γ is distance-regular, then there are two situations where its bipartite double Γ̃ will
also be distance-regular.

Theorem 3 (cf. [9, Theorem 1.11.1]). Suppose that Γ is distance-regular with diameter d.
Then the bipartite double Γ̃ is also distance-regular, provided that either:

(i) Γ has odd girth 2d +1, whence Γ̃ is distance-regular with diameter 2d +1; or

(ii) Γ has diameter d = 2 j, odd girth 2 j + 1, and its parameters satisfy a j = c j+1 and
b j−1 = c j+1 + a j+1 = c j+i+1 (for each i ∈ {1, . . . , j}), whence Γ̃ is distance-regular
with diameter d +1.

In case (i), the bipartite double Γ̃ is also an antipodal 2-cover of Γ; the bipartition
V+∪V− forms a 2-antipodal partition for Γ̃. The most important example of case (ii) arises
when Γ is strongly regular with parameters (n,k,a,a); in that case, the bipartite double is
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a bipartite distance regular graph of diameter 3, and is therefore the incidence graph of a
symmetric design. Graphs arising in this way will be discussed later, in Section 4.

The proof of Theorem 3(i) relies upon the following lemma, which while left as an
exercise to the reader, will be important in proving Theorem 5 below.

Lemma 4. Suppose that Γ is a distance-regular graph of diameter d with odd girth 2d+1.
Then for any vertices u,v of Γ, and any vertex x of Γ̃, we have:

(i) d
Γ̃
(x,v+)+d

Γ̃
(x,v−) = 2d +1;

(ii) d
Γ̃
(u+,v+) =

{
dΓ(u,v) if dΓ(u,v) is even,
2d +1−dΓ(u,v) if dΓ(u,v) is odd.

The main result of this section concerns the graphs in case (i) of Theorem 3, relating the
metric dimension of Γ and Γ̃.

Theorem 5. Suppose that Γ is a distance-regular graph of diameter d with odd girth 2d+1.
Then the metric dimension of its bipartite double Γ̃ is equal to the metric dimension of Γ.

Proof. First, we recall from Lemma 1 that, since V+∪V− is a 2-antipodal partition for Γ̃,
we can assume without loss of generality that any resolving set for Γ̃ is contained within
V+.

Second, we show that if R is a resolving set for Γ, then R+ is a resolving set for Γ̃.
Suppose that R is a resolving set for Γ. If x,y∈V+, let x= u+ and y=w+, for some u,w∈V .
Then there exists v ∈ R satisfying dΓ(u,v) 6= dΓ(w,v). If these are both even, we have
d

Γ̃
(u+,v+) = dΓ(u,v) 6= dΓ(w,v) = d

Γ̃
(u+,v+). If these are both odd, we have d

Γ̃
(u+,v+) =

2d + 1− dΓ(u,v) 6= 2d + 1− dΓ(w,v) = d
Γ̃
(u+,v+). If these have different parities, then

(without loss of generality) we have 0≤ d
Γ̃
(u+,v+)≤ d and d +1≤ d

Γ̃
(w+,v+)≤ 2d +1,

and thus d
Γ̃
(u+,v+) 6= d

Γ̃
(w+,v+). In all cases, it follows that v+ resolves u+,w+. The same

argument shows that, if x,y∈V−, they will be resolved by a vertex v− ∈R−; by applying the
previous paragraph, they will also be resolved by the corresponding vertex v+ ∈ R+. Also,
we note that if x ∈V+ and y ∈V−, any vertex in V+ will resolve them, as the distances will
have different parities. Therefore R+ is a resolving set for Γ̃, and thus µ(Γ̃)≤ µ(Γ).

Finally, we show the converse of the above. Suppose that R+ is a resolving set for Γ̃,
with R+ ⊆V+. For all u+,w+ ∈V+, there exists v+ ∈ R+ with d

Γ̃
(u+,v+) 6= d

Γ̃
(w+,v+). If

these distances both lie in the interval 0, . . . ,d or are both in the interval d +1, . . . ,2d +1,
then clearly dΓ(u,v) 6= dΓ(w,v). Otherwise, we have (without loss of generality) that
0≤ d

Γ̃
(u+,v+)≤ d and d + 1 ≤ d

Γ̃
(w+,v+) ≤ 2d + 1, which implies that dΓ(u,v) is even

and dΓ(w,v) is odd. Therefore, R is a resolving set for Γ, and thus µ(Γ)≤ µ(Γ̃).
This completes the proof.

Immediately, we have the following corollary.

Corollary 6. The metric dimension of the graph Kn,n− I, i.e. a complete bipartite graph
with a 1-factor removed, is n−1.

Proof. This graph is the bipartite double of the complete graph Kn, which has diameter 1,
odd girth 3, and metric dimension n−1.
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The Odd graph Ok has as its vertex set the collection of all (k−1)-subsets of a (2k−1)-
set, with two vertices adjacent if and only if the corresponding (k−1)-sets are disjoint. The
Odd graph O3 is the Petersen graph. This graph is distance-regular, has diameter k−1 and
odd girth 2k− 1, so therefore satisfies the conditions of Theorem 3(i); its bipartite double
is known as the doubled Odd graph. (See [9, §9.1D] for further details.) Consequently, we
have another corollary to Theorem 5.

Corollary 7. The Odd graph Ok and doubled Odd graph Õk have equal metric dimension,
which is at most 2k−2.

Proof. It follows from [3, Theorem 6] that the Odd graph Ok has metric dimension at most
2k−2. Since this graph satisfies the hypotheses of Theorem 5, the result follows.

This latter corollary provides a slight improvement on Theorem 3.1 of Guo, Wang and
Li [18], who showed that µ(Õk)≤ 2k−1.

3 Taylor graphs

A Taylor graph is 2-antipodal distance regular graph on 2n+ 2 vertices, obtained via the
following construction, due to Taylor and Levingston [30]. Suppose that ∆ = (V,E) is a
strongly regular graph with parameters (n,2c,a,c). Construct a new graph Γ by taking two
copies of the set V labelled as V+,V−, along with two new vertices∞+,∞−, and defining
adjacency as follows: let∞+ be adjacent to all of V+,∞− be adjacent to all of V−, u+∼ v+

and u− ∼ v− (in Γ) if and only if u ∼ v (in ∆), and u+ ∼ v− if and only if u 6= v and u 6∼ v
(where ∼ denotes adjacency).

From the construction, one may verify that Γ is indeed distance-regular, 2-antipodal,
and that the antipodal quotient is a complete graph Kn+1. The given labelling of the vertices
ensures that v+ is the unique antipode of v−, for all v ∈ V ∪{∞}. For any vertex x of Γ,
let Γ[x] denote the subgraph of Γ induced on the set of neighbours of x. The construction
ensures that ∆ is isomorphic to both Γ[∞+] and Γ[∞+]; for any other vertex x, Γ[x] is also
strongly regular with the same parameters, but need not be isomorphic to ∆. As a simple
example, one may use this construction to obtain the icosahedron from a 5-cycle.

A two-graph D is a pair (Ω,B), where Ω is a set and B is a collection of 3-subsets of
Ω, with the property that any 4-subset of Ω contains an even number of members of B . One
may construct a two-graph from a graph with vertex set Ω, by taking the triples of vertices
which contain an odd number of edges. Then there is an equivalence between two-graphs
and equivalence class of graphs under the operation of Seidel switching: this operation
partitions the vertex set into two parts, retaining all edges within each part, and “switching”
the edges across the partition by interchanging edges and non-edges. Conversely, from any
element x ∈Ω, one may form a graph with vertex set Ω by deleting x from all triples which
contain it, and taking the resulting pairs as edges; such a graph is a descendant of D . The
descendants of Ω are precisely the members of the corresponding switching class which
contain an isolated vertex. By abuse of terminology, we will use the term “descendant” to
refer to the graph with the isolated vertex removed. For more information on two-graphs
and switching classes, see [24, 28].
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A two-graph is regular if every 2-subset of Ω occurs in a constant number of members
of B . In [29], Taylor proved that the descendants of a regular two-graph on n+ 1 points
are necessarily strongly regular graphs with parameters (n,2c,a,c), and any such graphs
in the same switching class give rise to the same two-graph. Taylor and Levingston [30]
subsequently showed the following; see also [9, §1.5] for an account of their work.

Theorem 8 (Taylor and Levingston [30]).

(i) An antipodal 2-cover of Kn+1 is necessarily a Taylor graph.

(ii) There exists a one-to-one correspondence between Taylor graphs and regular two-
graphs on n+1 points.

(iii) The isomorphism classes of descendants of a regular two-graph D , i.e. the members
of a switching class of strongly regular graphs with parameters (n,2c,a,c), are pre-
cisely the isomorphism classes of induced subgraphs Γ[v] of the corresponding Taylor
graph Γ.

To confuse matters, the strongly regular graphs which are the descendants of a regular
two-graph arising from the group PSU(3,q2), as discovered by Taylor [29], are sometimes
referred to as “Taylor’s graph”: see [27].

The main result of this section is to relate the resolving sets for a Taylor graph with
those for the descendants of the corresponding regular two-graph.

Theorem 9. Let D be a regular two-graph with corresponding Taylor graph Γ, and let
{∆1, . . . ,∆s} be the switching class of descendants of D . Choose a descendant ∆ with the
smallest metric dimension, i.e. µ(∆)≤ µ(∆i) for all descendants ∆i. Then we have:

(i) µ(Γ) = µ(∆)+1; and

(ii) µ(∆i) ∈ {µ(∆), µ(∆)+1} for all descendants ∆i.

Proof. First, we show that µ(Γ)≤ µ(∆)+1. Label the vertices of Γ as V+∪V−∪{∞+,∞−},
as described above, and choose a smallest resolving set R⊆V for ∆.

We will show that R+∪{∞+} is a resolving set for Γ. Since R is a resolving set for ∆,
then for any pair of distinct vertices u,v ∈V , there exists x ∈ R such that d∆(u,x) 6= d∆(v,x).
Since d∆(u,x) = dΓ(u+,x+) and d∆(v,x) = dΓ(v+,x+), it follows that x+ resolves the pair
(u+,v+). Likewise, x− resolves the pair (u−,v−); however, since Γ is 2-antipodal, Lemma 1
shows that x+ will also resolve the pair (u−,v−). Any pair of vertices of the form (u+,v−)
will be resolved by∞+, as dΓ(u+,∞+) = 1 for any u+ ∈V+, and dΓ(v−,∞+) = 2 for any
v− ∈V−. Finally, any pair involving one of∞+ or∞− will be resolved by∞+, since∞−
is the unique vertex at distance 3 from∞+.

Now we will establish the reverse inequality, i.e. µ(Γ) ≥ µ(∆)+1. Choose a resolving
set S for Γ of size µ(Γ). Now choose some vertex x ∈ S, and consider the subgraph Γ[x]
induced on the set N(x) of neighbours of x. Since Γ is a Taylor graph, Γ[x] must be isomor-
phic to a descendent ∆i of the regular two-graph D , and thus has diameter 2. Furthermore,
the vertices in {x}∪N(x) form one part of a 2-antipodal partition, so by applying Lemma 1,
we may assume that the remaining vertices of S are all neighbours of x.
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Since S is a resolving set for Γ, then for any u,v ∈ N(x), there exists a vertex w ∈ S
that resolves the pair (u,v); note that w 6= x, as x is clearly adjacent to all of its neighbours.
Furthermore, for any pair of vertices u,v ∈ N(x), we have that dΓ(u,v) = dΓ[x](u,v): since
Γ[x] is an induced subgraph, u and v are adjacent in Γ if and only if they are adjacent in
Γ[x], while if u and v are not adjacent, they have distance 2 in Γ (in a path through x) and
distance 2 in Γ[x] (since it has diameter 2). As we assumed that S \{x} ⊆ N(x), this shows
that S\{x} is a resolving set of size µ(Γ)−1 for Γ[x].

Consequently, we have

µ(∆)≤ µ(∆i) = µ(Γ[x])≤ µ(Γ)−1,

as required, and this concludes the proof of part (i).
To prove part (ii), we note that a given descendant ∆i need not arise in the manner

described above, i.e. induced on the set of neighbours of a vertex x of a minimum resolving
set for Γ. However, any resolving set for Γ may be used to construct a resolving set of the
same size for ∆i. Suppose that ∆i ∼= Γ[w] for some vertex w. If S is a minimum resolving set
for Γ that does not contain w, then we can still apply Lemma 1 to assume that S ⊆ N(w),
and the same argument as above shows that S is also a resolving set for Γ[w]. Therefore,
µ(∆i)≤ µ(Γ), and we have

µ(∆)≤ µ(∆i)≤ µ(Γ) = µ(∆)+1,

and part (ii) follows.

We remark that in the case of distance-transitive Taylor graphs (such as those obtained
from Paley graphs), all descendants are isomorphic, and the result simply states µ(Γ) =
µ(∆)+1.

The result in part (ii) of Theorem 9 seems a little unsatisfactory: a better result would be
that all strongly regular graphs in the same switching class have the same metric dimension,
although the author was unable to show this. There is computational evidence to support
such a claim. It is known that strongly regular graphs with the same parameters need not
have the same metric dimension: the Paley graph on 29 vertices has metric dimension 6,
while the other strongly regular graphs with parameters (29,14,6,7), which fall into five
switching classes, all have metric dimension 5 (see [2, Table 2]). Furthermore, the 3854
strongly regular graphs with parameters (35,16,6,8), which fall into exactly 227 switch-
ing classes [23], all have metric dimension 6 (see [2, Table 13]). (As an application of
Theorem 9, we know that all 227 Taylor graphs on 72 vertices have metric dimension 7.)

It is known that primitive strongly regular graphs (i.e. those which are not complete mul-
tipartite graphs) have metric dimension logarithmic in the number of vertices: see [4, §3.7]
for a discussion of this. Consequently, we can combine this with Theorem 9 to obtain an
asymptotic result on the metric dimension of Taylor graphs.

Corollary 10. Suppose that Γ is a Taylor graph with 2n+2 vertices. Then µ(Γ) = Θ(logn).

Proof. Suppose ∆ is a descendant with the smallest metric dimension. Since ∆ has diame-
ter 2, it follows that n ≤ µ(∆)+2µ(∆) (cf. [4, Proposition 3.6]), and thus µ(∆) > log2 n−1.
Also, a result of Babai [1] (see also [4, Theorem 3.31]) implies that, since ∆ is strongly
regular, µ(∆)< 8logn. Since µ(Γ) = µ(∆)+1, the result follows.
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In particular, in the case of Paley graphs, the constant in the upper bound can be im-
proved from 8 to 2 (see Fijavž and Mohar [15]), which gives a tighter bound on the metric
dimension of the corresponding Taylor graphs.

4 Incidence graphs of symmetric designs

A symmetric design (or square 2-design) with parameters (v,k,λ) is a pair (X ,B), where X
is a set of v points, and B is a family of k-subsets of X , called blocks, such that any pair of
distinct points are contained in exactly λ blocks, and that any pair of distinct blocks intersect
in exactly λ points. It follows that |B| = v. The incidence graph of a symmetric design is
the bipartite graph with vertex set X ∪B , with a point x ∈ X adjacent to block B ∈ B if and
only if x ∈ B. It is straightforward to show that the incidence graph of a symmetric design is
a bipartite distance-regular graph with diameter 3. The converse is also true (see [9, §1.6]):
any bipartite distance-regular graph of diameter 3 gives rise to a symmetric design.

The dual of a symmetric design is the design obtained from the incidence graph by
reversing the roles of points and blocks; (X ,B) and its dual both have the same parame-
ters. The complement of a symmetric design (X ,B) has the same point set X , and block
set B = {X \B : B ∈ B}. The incidence graph of (X ,B) is obtained from that of (X ,B) by
interchanging edges and non-edges across the bipartition (i.e. taking the “bipartite comple-
ment”). If (X ,B) has parameters (v,k,λ), then (X ,B) has parameters (v,v− k,v−2k+λ).

Suppose Γ is the incidence graph of (X ,B). We note that distances in Γ are as follows:

dΓ(x,B) =

{
1 if x ∈ B,
3 if x 6∈ B,

dΓ(x,y) = 2,

dΓ(A,B) = 2,

for any distinct points x,y∈ X and any distinct blocks A,B∈B . It follows that the incidence
graph of a symmetric design and that of ts complement have the same metric dimension;
clearly, this holds for the incidence graph of a symmetric design and its dual, as the inci-
dence graphs are isomorphic.

The distance-2 graph of Γ is the disjoint union of two complete graphs Kv; consequently,
if a resolving set R for Γ is contained entirely within X or entirely within B , we have
|R| ≥ v− 1. In the case of the trivial symmetric design with k = v− 1, where the blocks
are all the (v−1)-subsets, the graph obtained is Kv,v− I, which has metric dimension v−1
by Corollary 6. However, for non-trivial symmetric designs, it is natural to ask if smaller
resolving sets exist, which must therefore contain both types of vertex. A natural way to
construct a resolving set is as follows.

Suppose Γ is the incidence graph of a symmetric design (X ,B). A split resolving set for
Γ is a set R = RX ∪RB , where RX ⊆ X and RB ⊆ B , chosen so that any two points x,y are
resolved by a vertex in RB , and any two blocks A,B are resolved by a vertex in RX . We call
RX and RB semi-resolving sets. The smallest size of a split resolving set will be denoted by
µ∗(Γ). We note that a split resolving set is itself a resolving set, as any vertex will resolve a
pair x,B, given that the parities of the distances to x and to B will be different; therefore, we
only need consider resolving point/block pairs. Clearly, we have µ(Γ)≤ µ∗(Γ).
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A straightforward observation is that, for any two blocks A,B, the point x resolves the
blocks A,B if and only if x lies in exactly one of the two blocks (i.e. x ∈ A and x 6∈ B, or
vice-versa), and a block B resolves the points x,y if and only if exactly one of x,y lies in B.

4.1 Projective planes

A symmetric design with λ = 1 is a projective plane. In this case, the blocks of the design
are usually referred to as lines, and are denoted by L . It is known that, for a projective plane
to exist, we have v = q2 + q+ 1 and k = q+ 1 for some integer q, called the order of the
projective plane.

A blocking set for a projective plane Π = (P,L) of order q is a subset of points S ⊆ P
chosen so that every line L ∈ L contains at least one point in S; moreover, S is a double
blocking set if every line L contains at least two points in S. Ball and Blokhuis [6] showed
that, for q > 3, a double blocking set has size at least 2(q+

√
q+1), with equality occurring

in the plane PG(2,q) when q is a square. Also, one can easily construct a double blocking
set of size 3q by taking the points of three non-concurrent lines. Double blocking sets and
semi-resolving sets are related by the following straightforward proposition.

Proposition 11. A double blocking set with a single point removed forms a semi-resolving
set for the lines of a projective plane.

Proof. Let S be a double blocking set for Π = (P,L). Any pair of distinct lines L1,L2
intersects in a unique point x. Since S is a double blocking set, there exists y ∈ L1 \{x} such
that y ∈ S and y 6∈ L2. Hence y resolves the lines L1,L2. By the same argument, there also
exists z ∈ L2 \ {x} such that z ∈ S and z 6∈ L1. This redundancy allows us to delete a point
from S and still have a semi-resolving set; however, deleting two points from S may prevent
us from resolving some pairs of lines.

By taking a semi-resolving set of this form for the points, along with the dual of such a
set, we obtain a split resolving set for ΓΠ of size (τ2(Π)−1)+(τ2(Π

⊥)−1) (where τ2(Π)
denotes the smallest size of a double blocking set in Π, and Π⊥ denotes the dual plane);
if Π is self-dual then this simplifies as 2(τ2(Π)− 1). At the problem session of the 2011
British Combinatorial Conference, the author asked whether this was best possible. In 2012,
the question was answered by Héger and Takáts [21] for the Desarguesian plane PG(2,q).

Theorem 12 (Héger and Takáts [21, Theorem 4]). A semi-resolving set for PG(2,q) has
size at least min{2q+ q/4− 3, τ2(PG(2,q))− 2}; for a square prime power q ≥ 121, this
is at least q+

√
q.

Of course, a minimum resolving set for ΓΠ need not be a split resolving set. W. J. Martin
(personal comunication) was able to construct a non-split resolving set for ΓΠ of size 4q−4
(see [21, Figure 1]), and conjectured that this was best possible (except for small orders).
This conjecture was also proved in the 2012 paper of Héger and Takáts [21].

Theorem 13 (Héger and Takáts [21, Theorem 2]). For a projective plane Π of order q≥ 23,
the metric dimension of its incidence graph ΓΠ is µ(ΓΠ) = 4q−4.

Héger and Takáts also gave a complete description of all resolving sets of this size:
see [21, §3].
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4.2 Biplanes

Symmetric designs with λ = 2 are known as biplanes [11]. For a biplane to exist, we must
have v =

(k
2

)
+1. Unlike the case of projective planes, there are no known infinite families

of biplanes. In fact only 16 examples are known (see [22]), the largest having v = 79 points
and lines of size k = 13 (we continue with the geometric terminolgy here). Nevertheless, a
split resolving set for a biplane is quite straightforward to construct.

Proposition 14. Let Γ be the incidence graph of a (v,k,2) biplane (X ,L) with k ≥ 4. Then
any k−1 collinear points form a semi-resolving set for the lines of (X ,L), and thus µ(Γ)≤
µ∗(Γ)≤ 2k−2.

Proof. Choose a distinguished line L and any (k−1)-subset RX ⊂ L. We will show that for
any two lines L1,L2 ∈ L that there exists a point in RX which resolves L1,L2, i.e. which lies
on exactly one of the two lines.

First, if L = L1, then L contains only two points of L2, and so there exist points in
RX ⊂ L not on L2; the case L = L2 works similarly. So we suppose L, L1 and L2 are all
distinct. There can exist at most one point lying on all three lines, so we consider the two
cases separately. First, suppose L∩L1 = {x,y} and L∩L2 = {a,b} (where a,b,x,y are all
distinct). Any of these four points lies on exactly one of the lines L1,L2, and thus resolves
this pair of lines; at most one of these points is not in RX . Second, if L∩L1 = {x,y} and
L∩L2 = {x,z} (where x,y,z are all distinct), then L1,L2 can be resolved by either y or z, and
again at most one of these is not in RX .

By taking this semi-resolving set, along with an equivalent semi-resolving set in the
dual design (i.e. a collection of k− 1 concurrent lines), we obtain a split resolving set of
size 2k−2.

This result gives an upper bound on µ(Γ) of O(
√

v). However, in certain situations, we
can actually improve this to Θ(logv), as the next section demonstrates.

4.3 Symmetric designs with a null polarity

A polarity of a symmetric design (X ,B) is a bijection σ : X → B which preserves the
point/block incidence relation. It is straightforward to see that (X ,B) admits a polarity if
and only if there is an ordering of the points and blocks so that the incidence matrix of
the design is symmetric. A point is called absolute if it is incident to its image under σ.
A polarity σ is said to be null if no points are absolute.1 In this situation, the incidence
matrix has zero diagonal, and so is the adjacency matrix of a graph ∆; this graph is strongly
regular with parameters (v,k,λ,λ). We observe that a symmetric design (X ,B) may admit
more than one null polarity, and the corresponding strongly regular graphs need not be
isomorphic. (See Cameron and van Lint [12] for more details on these topics.)

Conversely, if one has a strongly regular graph ∆ = (V,E) with parameters (v,k,λ,λ),
the bipartite double of that graph (recall Section 2) is the incidence graph of a symmetric
design with parameters (v,k,λ), which admits a null polarity in an obvious way: the points

1Sometimes, the term “null polarity” is used when all points are absolute; however, this is equivalent to the
complement of the design having no absolute points.
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and blocks may be labelled by V+ and V− respectively, and the map σ : v+ 7→ v− is a null
polarity. We note that non-isomorphic graphs may give rise to the same symmetric design:
for instance, the 4×4 lattice H(2,4) and the Shrikhande graph are non-isomorphic strongly
regular graphs with parameters (16,6,2,2), yet their bipartite doubles are isomorphic (and
give rise to a biplane).

Given this relationship with bipartite doubles, one may ask if there is a result similar to
Theorem 5 which can be applied here to find the metric dimension of Γ, and we have the
following theorem.

Theorem 15. Let Γ be the incidence graph of a non-trivial (v,k,λ) symmetric design
with a null polarity, and let ∆ be a corresponding strongly regular graph with parameters
(v,k,λ,λ). Then µ(Γ)≤ 2µ(∆).

Proof. Since Γ is the bipartite double of ∆, we will label the points and blocks of the design
by V+ and V− respectively. Suppose R ⊆ V is a resolving set for ∆; we will show that
R+∪R− is a resolving set for Γ. Now, distances in Γ are as follows:

dΓ(u+,w−) =

{
1 if u∼ w in ∆,
3 if u 6∼ w in ∆,

dΓ(u+,w+) = 2,

dΓ(u−,w−) = 2,

where u 6= w. Clearly, any vertex resolves u+,w− (as the distances will have different
parities), so it suffices to consider resolving pairs of vertices of the form u+,w+ and u−,w−.

If u ∈ R, then clearly u+ resolves the pair u+,w+ and u− resolves the pair u−,w− (and
likewise if w ∈ R), so we assume that u,w 6∈ R. Since R is a resolving set for ∆, there
exists x ∈ R where d∆(u,x) 6= d∆(w,x); without loss of generality, this implies that u ∼ x
and w 6∼ x, so therefore dΓ(u+,x−) = 1 and dΓ(w+,x−) = 3, and thus x− resolves the pair
u+,w+. Similarly, x+ resolves the pair u−,w−. Hence any pair of vertices of Γ is resolved
by a vertex in R+∪R−, and we are done.

Immediately, we have the following corollary, which is reminiscent of Corollary 10 for
Taylor graphs.

Corollary 16. Let Γ be the incidence graph of a non-trivial (v,k,λ) symmetric design with
a null polarity. Then µ(Γ) = Θ(logv).

Proof. Since Γ has 2v vertices and diameter 3, we have 2v≤ µ(Γ)+3µ(Γ), and thus µ(Γ)>
log3(2v)−1. By the result of Babai [1], the strongly regular graph ∆ satisfies µ(∆)< 8logv.
Since µ(Γ)≤ 2µ(∆), the result follows.

We remark that this result can never be applied to the incidence graphs of projective
planes, since it is known that any polarity of a projective plane of order q has between
q + 1 and q

√
q + 1 absolute points (see [10, Proposition 4.10.1]), and thus a projective

plane cannot admit a null polarity. Therefore, the fact that the metric dimension of the
incidence graph of a projective plane has size Θ(

√
v) (from Theorem 13) is not contradicted

here. However, there do exist biplanes which admit a null polarity, such as the biplane with
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parameters (16,6,2) referred to above, or a (56,11,2) biplane arising from the Gewirtz
graph. (Whether there exist infinite families of biplanes, for which an asymptotic result
would make sense, is unknown.)

5 Conclusion

The underlying theme behind all of the main results of this paper is one of reducing imprim-
itive graphs to primitive ones: we were able to obtain results about the metric dimension
of various classes of imprimitive distance-regular graphs by indicating a connection to the
metric dimension of related primitive distance-regular (or strongly regular) graphs. It seems
plausible that this is part of a deeper theory: the results in this paper are intended as the
beginnings of such a study. It may be that some of the results can be strengthened to weaker
hypotheses: for instance, one could ask if µ(Γ) = Θ(logv) for the incidence graphs of arbi-
trary (v,k,λ) symmetric designs with λ > 1, without the assumption of a null polarity.
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