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Abstract

Using a generalisation of Hamiltonian cycles to uniform hypergraphs due to Katona
and Kierstead, we define a new notion of a Hamiltonian decomposition of a uniform
hypergraph. We then consider the problem of constructing such decompositions for
complete uniform hypergraphs, and describe its relationship with other topics, such
as design theory.
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1 Introduction

A decomposition of a graph G = (V,E) is a partition of the edge-set E; a Hamilto-
nian decomposition of G is a decomposition into Hamiltonian cycles. The problem
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of constructing Hamiltonian decompositions is a long-standing and well-studied
one in graph theory; in particular, for the complete graph Kn, it was solved in the
1890s by Walecki. (See Lucas [18] or the recent articles by Alspach [1] and Bryant
[7] for details.) Walecki showed that Kn has a Hamiltonian decomposition if and
only if n is odd, while if n is even Kn has a decomposition into Hamiltonian cycles
and a perfect matching.

As with many problems in graph theory, it seems natural to attempt a generali-
sation to hypergraphs. Indeed, the notion of Hamiltonicity was first generalised to
uniform hypergraphs by Berge in his 1970 book [5]. His definition of a Hamilto-
nian cycle in a hypergraph H = (V,E) is a sequence (v0,e1,v1,e2, . . . ,vn−1,en,v0),
where {v0, . . . ,vn−1} = V , and e1, . . . ,en are distinct elements of E, such that the
hyperedge ei contains both vi−1 and vi (modulo n). The study of decompositions of
complete 3-uniform hypergraphs into cycles of this type was begun by Bermond et
al in the 1970s [6] and was completed by Verrall in 1994 [22]. We will consider
a different notion of Hamiltonicity which will be defined in the next section, al-
though there are others besides these, such as the loose Hamilton cycles defined by
Kühn and Osthus [17].

2 Definitions

We begin by defining the objects we’ll be discussing throughout the paper. A
hypergraph H = (V,E) consists of a finite set V of vertices with a family E of
subsets of V , called hyperedges (or simply edges). If each (hyper)edge has size
k, we say that H is a k-uniform hypergraph. In particular, the complete k-uniform
hypergraph on n vertices has all k-subsets of {1, . . . ,n} as edges; we denote this by
K(k)

n .
The notion of Hamiltonicity was generalised to k-uniform hypergraphs by G. Y.

Katona and Kierstead in their 1999 paper [15] as follows:

Definition 1. Let H = (V,E) be a k-uniform hypergraph. A Hamiltonian cycle in
H is a cyclic ordering of the elements of V such that each consecutive k-tuple of
vertices is an edge.

(In fact, Katona and Kierstead use the term Hamiltonian chain instead of Hamil-
tonian cycle.) We observe that one can define a cycle in general by considering an
arbitrary closed sequence of vertices. If one wishes to generalise the notion of an
Eulerian cycle to hypergraphs in this way, one obtains precisely a universal cycle;
these have been studied for K(k)

n by Chung, Diaconis and Graham [10] and by
Hurlbert [13], for example.
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Returning to Hamiltonicity, the following definition is an obvious generalisa-
tion of one for graphs.

Definition 2. A Hamiltonian decomposition of a hypergraph H is a partition of
the set of (hyper)edges of H into mutually-disjoint Hamiltonian cycles.

We are concerned with finding Hamiltonian decompositions of the complete
k-uniform hypergraph K(k)

n . We need only consider the case k ≥ 3, as k = 1 is a
degenerate case, while k = 2 (i.e. the complete graph) was solved by Walecki. Also,
we observe that by taking the complements of the edges in a Hamiltonian cycle in
K(k)

n we obtain a Hamiltonian cycle in K(n−k)
n ; hence if we have a Hamiltonian

decomposition of K(k)
n we also have one of K(n−k)

n . Thus it suffices to consider
3≤ k≤ n

2 . There are also obvious necessary numerical conditions, as we see below.

Lemma 3. If a Hamiltonian decomposition of K(k)
n exists, then n |

(n
k

)
.

Proof. Clearly, the number of edges in a Hamiltonian cycle (which is n) must
divide the total number of edges of K(k)

n (which is
(n

k

)
). Hence n |

(n
k

)
. Also,

the number of times a vertex v appears in an edge of a Hamiltonian cycle (which
is k) must divide the total number of edges containing v (which is

(n−1
k−1

)
). Hence

k |
(n−1

k−1

)
; however, this can easily be seen to be equivalent to n |

(n
k

)
.

We call the parameters (n,k) feasible if the above condition is satisfied. Clearly,
(n,2) (and hence (n,n− 2)) are feasible if and only if n is odd, while (n,3) (and
hence (n,n−3)) are feasible if and only if n is not a multiple of 3.

Based on the evidence which follows in the remainder of this paper, we make
the following conjecture.

Conjecture. Let n ≥ 5 and 2 ≤ k ≤ n−2. Then there exists a Hamiltonian decom-
position of K(k)

n if and only if n |
(n

k

)
.

In other words, we conjecture that the obvious necessary condition is also suf-
ficient.

We conclude this section by remarking on a related conjecture of Baranyai and
G. O. H. Katona (see [14], Conjecture 4.1). Suppose k does not divide n. A wreath
in K(k)

n is a sequence of edges isomorphic to

{1, . . . ,k},{k +1, . . . ,2k}, . . . ,{(a−1)k, . . . ,ak}

(where a = lcm(n,k)/k, and addition is modulo n). If n and k are coprime, then
this is exactly a Hamiltonian cycle. Baranyai and Katona conjectured that K(k)

n

can be partitioned into disjoint wreaths, so when gcd(n,k) = 1 their conjecture is
equivalent to ours. However, when n and k are not coprime, the two conjectures
are quite different.
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3 Clique-finding

When presented with a question such as this, one might ask how to construct the
desired object by computer. A commonly-used technique is to devise a graph, and
to search the graph for a maximum clique (see the survey by Östergård [20] for
some examples). Our initial experiments in searching for Hamiltonian decomposi-
tions of K(k)

n utilised this approach.
We construct a graph Γn,k as follows. The vertex set of Γn,k will be the set of

all possible Hamiltonian cycles of K(k)
n . Hence the graph has 1

2(n− 1)! vertices,
as there are (n− 1)! cyclic orderings of n objects, and reversing the ordering of
a Hamiltonian cycle gives the same set of (hyper)edges. Then we join two ver-
tices in Γn,k if and only if the corresponding cycles are disjoint (i.e. they have no
(hyper)edge in common). Thus a clique in Γn,k corresponds to a set of mutually dis-
joint Hamiltonian cycles in K(k)

n . Furthermore, if there exists a clique of size
(n

k

)
/n,

then this corresponds to a Hamiltonian decomposition of K(k)
n (consequently, this

is the maximum possible size of a clique in Γn,k).
Using the GRAPE package [21] for the GAP computer algebra system [11], it is

straightforward to construct the graph Γn,k. Also, GRAPE has an in-built command,
CliquesOfGivenSize, to find cliques of a specified size in a given graph. Using
these commands, we were able to feed the feasible parameter sets (7,3), (8,3)
and (9,4) to a computer (these being the smallest cases not already handled by
Walecki’s result), and show that the complete hypergraphs K(3)

7 , K(3)
8 and K(4)

9 each
admit Hamiltonian decompositions.

Example 4. The following
(7

3

)
/7 = 5 orderings, viewed cyclically, give a Hamil-

tonian decomposition of K(3)
7 :

1 2 4 6 7 5 3

1 2 6 3 4 7 5

1 3 4 5 6 2 7

1 4 5 2 7 3 6

1 6 5 3 2 4 7

Examples of Hamiltonian decompositions of K(3)
8 and K(4)

9 are given in Ap-
pendix A.

Unfortunately for us, when running on a typical 2004-model desktop PC, this
approach runs out of steam after this stage: a combinatorial explosion means that
the number of vertices of Γn,k and the size of the clique being sought are too large
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for the computer to handle (in terms of both memory and time), so we had to
switch to a high-performance computing facility. At the time of writing, a search
for a clique in Γ10,4 is in progress. However, a different approach is really what is
needed.

4 Design theory: large sets

It is possible to rephrase the idea of a Hamiltonian cycle in a hypergraph in the
language of block designs. A t-(v,k,λ) design (V,B) consists of a set V of v points
together with a family B of k-subsets of V , called blocks, with the property that any
t-subset of points is contained in exactly λ blocks. So therefore any t-design is also
a k-uniform hypergraph, where points are vertices and blocks are (hyper)edges.

A large set of t-designs is a partition of the complete k-uniform hypergraph on
v vertices (often called the complete design in this context) into t-(v,k,λ) designs;
see the survey by Khosrovshahi and Tayfeh-Rezaie [16] for full details.

We notice a Hamiltonian cycle in K(k)
n is an example of a 1-(n,k,k) design;

clearly, each vertex (i.e. point) lies in exactly k edges. Therefore a Hamiltonian
decomposition of K(k)

n is, in the language of design theory, a large set of 1-(n,k,k)
designs. So one may ask what known results in the design theory literature may be
of use to us here.

In 1987, Hartman [12] showed that large sets of 1-(v,k,λ) designs exist if and
only if the obvious necessary numerical conditions (that is, a more general version
of our Lemma 3) are satisfied. Hartman proves this as a corollary to Baranyai’s
Partition Theorem [4] (see also Cameron [8]).

Unfortunately, as Baranyai’s theorem has a non-constructive existence proof,
Hartman’s result doesn’t give any hint as to the structure of the 1-designs obtained,
or even if the 1-designs in a large set can be assumed to be isomorphic. Con-
sequently, it seems unlikely that Hartman’s approach can be modified in order to
demonstrate the existence of Hamiltonian decompositions. However, it does give
some credence to our conjecture: if Hartman’s theorem showed that there were fea-
sible parameter sets that did not admit large sets of 1-(v,k,k) designs, then those
parameters would therefore not admit Hamiltonian decompositions (and thus pro-
vide counterexamples to our conjecture).

One point of interest concerns large sets of 1-(7,3,3) designs. The Fano plane
is an example of a 1-(7,3,3) design, and it was shown by Cayley in 1850 that a
large set of Fano planes does not exist [9]. However, as shown in the previous
section, there does exist a large set of 1-(7,3,3) designs which are Hamiltonian
cycles.
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5 Difference patterns

If we regard the n vertices of K(k)
n as the integers modulo n, the extra structure may

be of use to us. Consider the following definition:

Definition 5. A directed terrace for Zn is an ordering of the elements so that the
set of differences between consecutive elements contains all the non-zero elements
exactly once.

Directed terraces, and the more general notion of terraces, were defined by
R. A. Bailey in 1984 [2], for arbitrary finite groups (not just Zn). The following is
an example of a directed terrace for Z12:

0 11 1 10 2 9 3 8 4 7 5 6

We can verify that it is indeed a directed terrace by looking at the list of differences:

11 2 9 4 7 6 5 8 3 10 1

As is explained by Bailey, Ollis and Preece [3], Walecki’s construction of a
Hamiltonian decomposition of the complete graph Kn is equivalent to a type of
directed terrace for Zn−1. Roughly speaking, the translation to graphs is done by
labelling vertices with elements of Zn−1 (with the remaining vertex labelled ∞), and
labelling edges by differences. As this is a useful way of constructing Hamiltonian
decompositions of graphs, we may ask if there is a similar method for hypergraphs.

For the rest of this section, we consider only 3-uniform hypergraphs. Now
that a (hyper)edge is a triple rather than a pair of vertices, there is more than one
difference to consider. Thus we make the following definition.

Definition 6. Let T = {a,b,c} be a triple of distinct elements of Zn. Then its dif-
ference pattern, π(T ), is the equivalence class of ordered triples containing cyclic
rotations of (b−a,c−b,a− c) and (c−a,b− c,a−b) (where the differences are
taken modulo n).

The reason for including both of the cyclic rotations in π(T ) is that the order of
the elements of T does not matter. However in our Hamiltonian cycles, each triple
will appear with a fixed order. So we use the difference pattern π(T ) as a formal
means to move between the ordered and unordered objects.

Clearly, the three differences sum to zero, so therefore if we know that the first
two differences are x and y, then the third is n−x−y. By a slight abuse of notation
we use (x,y,n− x− y) to denote the whole equivalence class that contains it.

We can also think of difference patterns in terms of orbits. Let g be the cyclic
permutation g : x 7→ x+1 (mod n) of Zn. The group 〈g〉 acts on the set of all triples
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in Zn, and the orbit containing a given triple T contains precisely all those triples
with the difference pattern π(T ). Thus each difference pattern corresponds to an
orbit of 〈g〉 on triples.

Let C be a Hamiltonian cycle in K(3)
n . Then each edge of C has a difference

pattern, and we call the list of all of these the difference type of C, denoted τ(C).
Note that each translate of C, that is the cycle C + i obtained by adding i (modulo
n) to each vertex, has the same difference type as C (i.e. τ(C + i) = τ(C) for all i).

Having defined difference patterns, it is natural to ask how many of them there
are. This is answered below.

Lemma 7. Suppose n is not a multiple of 3. Then the number of distinct difference
patterns of triples of elements of Zn is

(n
3

)
/n.

Proof. First, there are
(n

3

)
triples of elements of Zn. Suppose (x,y,n− x− y) is the

difference pattern of a 3-subset T (i.e. π(T ) = (x,y,n− x− y)). We observe that
any other triple T ′ with π(T ′) = π(T ) must therefore be of the form T + i for some
i ∈ Zn; since n is not a multiple of 3, these are all distinct. Hence there are exactly
n triples with that difference pattern, and so there must be

(n
3

)
/n distinct difference

patterns altogether.

As a consequence, we notice that the number of cycles in a Hamiltonian de-
composition of K(3)

n is equal to the number of distinct difference patterns of triples
of elements of Zn. So we aim to construct some kind of bijection between the two.
To this end, we make the following definition.

Definition 8. We call a cyclic ordering of Zn multifarious if its n difference patterns
are all distinct.

Example 9. The following is an example of a multifarious ordering of Z10:

0 1 8 4 2 3 6 7 9 5

By checking the 10 difference patterns (e.g. (1,7,2), (7,6,7), (6,8,6), etc.), we
see that they are all distinct.

This definition is a kind of generalisation of directed terraces to consider triples,
rather than pairs, of adjacent elements. However, we recall that directed terraces
are defined for linear orderings, rather than cyclic orderings. Also, we remark that
multifarious orderings can only exist for n ≥ 10, as we require

(n
3

)
/n ≥ n.

Recall that the group generated by the permutation g : x 7→ x+1 acts on the set
of all triples. For any triple T , the proof of Lemma 7 shows that the orbit of 〈g〉
containing T has size n. However, 〈g〉 also acts on the set of all cyclic orderings.
For a given cyclic ordering C, the orbit of 〈g〉 containing C is the set of translates
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of C, {C + i | i ∈ Zn}. Now suppose C is a multifarious ordering; this forces the
orbit of 〈g〉 (on orderings) containing C to have size n. Thus the set of translates
{C + i | i ∈ Zn} contains n2 distinct triples.

At the opposite end of the scale, we also have the following.

Definition 10. We call a cyclic ordering of Zn unary if its difference type con-
tains only one difference pattern, and binary if it contains exactly two difference
patterns.

The single difference pattern found in a unary ordering is necessarily of the
form (x,x,n−2x). To see this, consider a unary ordering (0,x,y,z,w, . . .). For the
first two difference patterns to be the same, we require that either z = 0, which is a
contradiction, or z = x + y. Similarly, for the next difference triple to be the same
we obtain either that w = x = 2y, again a contradiction, or that y = 2x and w = 4x. A
similar argument shows that if C is a binary cyclic ordering then the two difference
patterns it contains must be of the form (x,y,n− x− y) and (y,x,n− x− y).

At this point, we introduce some more terminology.

• We call the single difference pattern (x,x,n− 2x) of a unary ordering an
isosceles difference pattern.

• We call the two difference patterns (x,y,n− x− y) and (y,x,n− x− y) of a
binary ordering a conjugate pair.

Once again, we can think of these in terms of orbits of 〈g〉 on cyclic orderings.
A unary cyclic ordering is in an orbit of size 1, which contains all n triples with the
isosceles difference pattern (x,x,n− 2x). Similarly, a binary cyclic ordering is in
an orbit of size 2, and those two Hamiltonian cycles contain all 2n triples from the
orbits corresponding to that conjugate pair of difference patterns.

Lemma 11. A unary ordering with difference pattern (x,x,n− 2x) exists if and
only if gcd(n,x) = 1.

Proof. A unary ordering with difference pattern (x,x,n−2x) is necessarily of the
form

0 x 2x · · · (n−1)x

(modulo n). Hence we require these n scalar multiples of x to all be distinct, i.e. that
x is a generator for the additive group Zn. This happens if and only if n and x are
coprime.

We remark that because (x,x,n−2x) and (n− x,n− x,2x) belong to the same
equivalence class of orderings, they denote the same difference pattern. Thus the
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number of isosceles difference patterns (x,x,n− 2x) with gcd(n,x) = 1 is 1
2 φ(n)

(where φ denotes Euler’s totient function).
Having characterised the unary orderings, we also have the following construc-

tion for binary orderings.

Lemma 12. Suppose n is even, x,y ∈ Zn are both odd and that gcd(x + y,n) = 2.
Then

0 x x+ y 2x+ y 2x+2y · · · nx+(n−1)y

is a binary ordering of Zn.

Proof. Since gcd(x + y,n) = 2, the subgroup H ≤ Zn generated by x + y has order
n
2 . Thus H contains all the even numbers in Zn. Since x is odd, the coset H +x must
contain all the odd numbers in Zn, and thus the list given is indeed an ordering of
Zn.

To see that this ordering is binary, we observe that the differences between
successive elements are alternately x and y. Thus the only difference patterns of
triples that can appear are (x,y,n− x− y) and (y,x,n− x− y), so the ordering must
be binary.

Lemma 13. Let x, y and n be as in Lemma 12 above, and let C be the ordering of Zn

constructed there. Then C and its translate C +1 between them contain all triples
with the conjugate pair of difference patterns (x,y,n− x− y) and (y,x,n− x− y).

Proof. We observe that there are n/2 occurrences of each of the two specified
difference patterns in each of C and C + 1. Also, no triple with one of those two
difference patterns can appear in both orderings. Thus the set of triples in C with
difference pattern (x,y,n− x− y) is precisely

{{a,a+ x,a+ x+ y} | a ∈ Zn is even} ,

while the set of triples in C +1 with difference pattern (x,y,n− x− y) is precisely

{{b,b+ x,b+ x+ y} | b ∈ Zn is odd} .

A similar argument works for the conjugate difference pattern (y,x,n− x− y).

So we are now almost ready to describe our difference pattern-based approach
for finding Hamiltonian decompositions of K(3)

n . However, we need one more def-
inition before we continue:

Definition 14. A set of multifarious orderings {C1, . . . ,Cr} (for some r) is called
compatible if, for each i 6= j, τ(Ci)∩ τ(C j) = ∅.
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Consequently, the total number of difference patterns accounted for by a com-
patible set of size r is rn.

Now, our strategy for finding a Hamiltonian decomposition is as follows:

Step 1. Find as large a set of r compatible multifarious orderings as possible, then
take all n translates of each of these, to obtain rn Hamiltonian cycles which
contain rn2 distinct triples.

Step 2. Examine the difference patterns that are “left over” (i.e. those which do not
appear the the difference types of the compatible set), and if possible use the
constructions for Hamiltonian cycles in Lemmas 11 and 12 to account for
these.

This then gives us a more efficient method than clique-finding to carry out com-
puter searches; again, we use GAP [11] to perform these. Consider the following
examples.

Example 15. Let n = 10. Then
(10

3

)
/10 = 12, so we would need only one multi-

farious ordering (and thus the issue of compatability does not arise), and then need
to account for two “left over” difference patterns. If these are both isosceles, or
(since 10 is even) form a conjugate pair (in each case, satisfying the appropriate
conditions), then we can apply either Lemma 11 or Lemma 12.

Using GAP to enumerate one example of each possible difference type of mul-
tifarious ordering, we find there are 36 cases to check. Four of these leave suitable
conjugate pairs left over, while only one leaves two isosceles difference patterns
left over.

One such example which leaves a conjugate pair left over is

0 1 8 4 2 3 6 7 9 5

so the 10 translates of this gives us 10 of the 12 Hamiltonian cycles we need. The
leftover difference patterns are (3,5,2) and (5,3,2); using Lemma 12 we obtain
the orderings

0 3 8 1 6 9 4 7 2 5 and

1 4 9 2 7 0 5 8 3 6

One can then verify that these 12 orderings (i.e. Hamiltonian cycles) do indeed give
a Hamiltonian decomposition of K(3)

10 .
Alternatively, the ordering

0 1 3 5 6 9 4 8 2 7
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leaves the isosceles difference patterns (1,1,8) and (3,3,4) leftover, so the 10
translates of this, together with

0 1 2 3 4 5 6 7 8 9 and

0 3 6 9 2 5 8 1 4 7

yield a different Hamiltonian decomposition of K(3)
10 .

The cases n = 11 and n = 16 can be handled similarly. When n = 11, we have(11
3

)
/11 = 15, so again we only need one multifarious ordering, and will have four

“leftovers”.

Example 16. Let n = 11. Enumerating the possibilities of multifarious orderings
of Z11 shows that there 861 possible difference types. Of these, five leave only
isosceles difference patterns left over. One such ordering is

0 1 5 7 2 8 4 9 6 10 3

which leaves the difference patterns (1,1,9), (2,2,7), (3,3,5) and (4,4,3) left
over, which can easily be dealt with by using unary orderings.

When n = 16, we have
(16

3

)
/16 = 35, so this time we will need a set of two

compatible multifarious orderings, which will leave three difference patterns left
over.

Example 17. Let n = 16. We find that the following set of compatible multifarious
orderings

0 1 13 3 10 15 2 4 6 9 14 5 11 7 8 12 and

0 1 9 15 8 10 7 14 5 2 4 13 3 11 12 6

leaves (1,1,14), (3,3,10) and (5,5,6) left over. Again, these can be dealt with
using unary orderings.

However, this method is not without its limitations. There are cases where
Step 2 is not possible: the number of “left over” difference patterns can be more
than the number that can be handled by our lemmas above. The first such case is
n = 13: since

(13
3

)
/13 = 22, we would need to account for 22− 13 = 9 leftover

difference patterns. As 13 is odd, we can only use unary orderings, but there are
only φ(13)/2 = 6 possibilities for isosceles difference patterns. The case n = 14
also fails, as in each case there are not enough conjugate pairs available to us.
Modifying our method to use Zn−1 ∪ {∞} or Zn−2 ∪ {∞1,∞2} could potentially
solve these cases, and we are investigating this.
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6 Conclusion

The ideas in this paper were presented at the Ontario Combinatorics Workshop in
May 2008, and subsequently at the Combinatorics 2008 conference in June 2008.
At the latter meeting, A. Rosa communicated to the authors that he and M. Meszka
had obtained, by computer search, Hamiltonian decompositions of K(3)

n for all fea-
sible values of n ≤ 32. Their results appear in [19].

We conclude the paper by summarising which sets of parameters (n,k) we have
obtained Hamiltonian decompositions for K(k)

n in the table below:

n/k 2 3 4 5 6 7 8 9 10 11 12 13 14
5 W W
6 - - -
7 W C C W
8 - C - C -
9 W - C C - W

10 - D ? - ? D -
11 W D ? ? ? ? D W
12 - - - ? ? ? - - -
13 W MR ? ? ? ? ? ? MR W
14 - MR - ? - - - ? - MR -
15 W - ? - - ? ? - - ? - W
16 - D - ? - ? - ? - ? - D -

In the table above, the letters W, C, D and MR denote the method by which a
Hamiltonian decomposition was found: W denotes Walecki’s construction, C de-
notes the “clique-finding” method in Section 3, and D denotes the “difference pat-
tern” method in Section 5, while MR denotes examples found by Meszka and Rosa
[19]. A dash denotes an infeasible parameter set, while a question mark denotes
that the parameters are feasible but no decomposition is known.

For all n ≥ 16, apart from those examples (mentioned above) due to Meszka
and Rosa, the problem of finding a Hamiltonian decomposition of K(k)

n (except for
k = 2 and k = n−2) remains open.
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Appendix A: Further examples

Example 18. An example of a Hamiltonian decomposition of K(3)
8 :

1 2 5 3 8 7 4 6

1 3 5 7 8 6 4 2

1 4 5 2 8 3 6 7

1 5 7 4 3 2 6 8

1 6 5 8 4 2 7 3

1 7 2 5 6 4 3 8

1 8 2 7 6 5 3 4

Example 19. An example of a Hamiltonian decomposition of K(4)
9 :

1 2 3 7 9 8 4 5 6

1 2 5 4 8 7 6 3 9

1 2 7 8 3 4 5 6 9

1 3 5 7 9 8 6 4 2

1 4 5 7 6 2 3 9 8

1 4 7 8 2 6 3 5 9

1 6 3 4 9 8 2 7 5

1 6 3 7 4 9 2 5 8

1 6 7 4 9 5 3 8 2

1 7 8 5 6 2 4 3 9

1 7 9 5 2 3 4 8 6

1 8 2 9 6 7 5 3 4

1 8 5 9 6 2 4 7 3

1 9 6 8 3 5 7 2 4
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