
On the metric dimension of Grassmann graphs

Robert F. Bailey and Karen Meagher∗

November 24, 2011

Abstract

The metric dimension of a graph Γ is the least number of vertices in a set with the
property that the list of distances from any vertex to those in the set uniquely iden-
tifies that vertex. We consider the Grassmann graph Gq(n,k) (whose vertices are the
k-subspaces of Fn

q, and are adjacent if they intersect in a (k− 1)-subspace) for k ≥ 2.
We find an upper bound on its metric dimension, which is equal to the number of 1-
dimensional subspaces of Fn

q. We also give a construction of a resolving set of this size
in the case where k +1 divides n, and a related construction in other cases.

1 Introduction

In this paper, we are concerned with finding an upper bound on the metric dimension of
Grassmann graphs. We use the notation of [3]. To define the metric dimension of a graph,
we need the following concept.

Definition 1. A resolving set for a graph Γ = (V,E) is a set of vertices S = {v1, . . . ,vk} such
that for all w ∈V , the list of distances D(w|S) = (d(w,v1), . . . ,d(w,vk)) uniquely determines
w.

That is, S is a resolving set for Γ if for any pair of vertices u,w, D(u|S) = D(w|S) if
and only if u = w. We call the list of distances D(w|S) the code of the vertex w, so S is a
resolving set if and only if each vertex has a different code.

Definition 2. The metric dimension of Γ, denoted µ(Γ), is the smallest size of a resolving
set for Γ.

Metric dimension was first introduced in the 1970s, independently by Harary and Melter
[8] and by Slater [10]. In recent years, a considerable literature has developed (see [3] for
details). A particularly interesting case is that of distance-regular graphs (we refer the reader
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to the book by Brouwer, Cohen and Neumaier [5] for background on this topic). In fact, in
the case of primitive distance-regular graphs, bounds on a parameter equivalent to the metric
dimension were obtained in 1981 by Babai [1] (where they were used to obtain combinatorial
bounds on the possible orders of primitive permutation groups: see [3] for further details).

Many families of distance-regular graphs are so-called “graphs with classical param-
eters” (see [5, Chapter 9]): these include the well-known Hamming graphs and Johnson
graphs, for which metric dimension has already been studied. In the case of Hamming
graphs, various results on the metric dimension have been obtained (although not always
phrased in these terms: see [3]). For the Johnson graphs J(n,k), where the vertices are k-
subsets of an n-set, and two k-subsets are adjacent if they intersect in a (k−1)-set, the exact
value is known for k = 2: this was obtained by Cameron and the first author in [3]. For k≥ 3
bounds have been obtained by the authors and others in [2, 6]; the following result appears
in [2].

Theorem 3. The metric dimension of the Johnson graph J(n,k) is at most n.

After the Johnson graphs, the obvious next family to consider is the Grassmann graphs.
Throughout this paper, V (n,q) denotes the n-dimensional vector space over the finite field
Fq.

Definition 4. The Grassmann graph Gq(n,k) has as its vertex set the set of all k-dimensional
subspaces of V (n,q), and two vertices are adjacent if the corresponding subspaces intersect
in a subspace of dimension k−1.

Note that if k = 1, we have a complete graph, so we shall assume that k ≥ 2. Also, it
is not difficult to show that Gq(n,k) ∼= Gq(n,n− k), so it suffices to consider k ≤ n/2. The
number of vertices is simply the Gaussian binomial coefficient:[

n
k

]
q
=

k−1

∏
i=0

(qn−qi)
(qk−qi)

.

The Grassmann graph is a distance-regular graph of diameter k: the distance between two
vertices X and Y is k− dim(X ∩Y ). It is considered to be the “q-analogue” of the Johnson
graph J(n,k).

Having defined the Grassmann graphs, we are now ready to state our main result.

Theorem 5. Let Gq(n,k) be the Grassmann graph, where 2 ≤ k ≤ n/2. Then the metric
dimension of Gq(n,k) is at most

[n
1

]
q.

This bound, and its proof, are inspired by a similar result for the Johnson graph J(n,k)
given in Theorem 3 above.
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2 Proof of the bound

The proof of Theorem 5 uses linear algebra, and is similar to an analogous proof given in [2]
for the Johnson graphs. We observe that a collection of k-subspaces {U1, . . . ,Um} of V (n,q)
is a resolving set for the Grassmann graph Gq(n,k) if and only if, for any pair of distinct
k-subspaces A,B≤V (n,q), we have

(dim(A∩U1), . . . ,dim(A∩Um)) 6= (dim(B∩U1), . . . ,dim(B∩Um)). (1)

Consider the collection of all 1-dimensional subspaces of V (n,q), and label these as L1, . . . ,LN

(where N =
[n

1

]
q). The incidence vector of a k-subspace U is the vector (u1, . . . ,uN) ∈ RN

whose entries are

ui =
{

1 if Li ≤U
0 otherwise.

Furthermore, given a collection of k-subspaces S = {U1, . . . ,Um}, the incidence matrix of S
is the m×N matrix whose rows are the incidence vectors of U1, . . . ,Um.

Lemma 6. If M is the incidence matrix of a family S = {U1, . . . ,Um} of k-subspaces of
V (n,q), and rank(M) =

[n
1

]
q, then S is a resolving set for Gq(n,k).

Proof. Suppose we have two distinct k-subspaces A,B ≤ V (n,q), whose incidence vectors
are a,b respectively. Now, consider the entries of the vector Ma: by construction, we have
that the ith entry of Ma is precisely the number of 1-dimensional subspaces in A∩Ui, which
is
[d

1

]
q (where d = dim(A∩Ui)). Consequently, it follows that if Ma 6= Mb, then condition

(1) holds. Also, it is clear that if rank(M) =
[n

1

]
q, the linear transformation represented by M

is one-to-one, and thus Ma 6= Mb for any distinct vectors a,b.
Hence, if rank(M) =

[n
1

]
q, condition (1) holds for any distinct k-subspaces A,B, and

therefore S is a resolving set for Gq(n,k).

So to prove Theorem 5, it remains to show that a family of subsets which such an inci-
dence matrix actually exists. We will do this by showing that the incidence matrix of all k-
subspaces has rank

[n
1

]
q. Recall that, for any real matrix M, we have rank(MTM) = rank(M).

Lemma 7. Let M be the incidence matrix of the set of all k-subspaces of V (n,q). Then
rank(M) =

[n
1

]
q.

Proof. Consider the matrix MTM, which is an
[n

1

]
q×
[n

1

]
q square matrix. Now, the diagonal

entries of MTM are all
[n−1

k−1

]
q
: this corresponds to the number of k-subspaces containing a

given 1-subspace. Also, the off-diagonal entries of MTM are all
[n−2

k−2

]
q
: this corresponds to

the number of k-subspaces containing a given pair of 1-subspaces. Therefore, we have

MTM =
[

n−2
k−2

]
q
J +

([
n−1
k−1

]
q
−
[

n−2
k−2

]
q

)
I
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(where I is the identity matrix and J the all-ones matrix). It is then a straightforward exercise
to see that det(MTM) 6= 0, and thus rank(M) = rank(MTM) =

[n
1

]
q.

Proof of Theorem 5. Let M denote the incidence matrix of all k-subspaces of V (n,q). By
Lemma 7, this matrix has rank

[n
1

]
q; in particular, M has an invertible

[n
1

]
q×
[n

1

]
q submatrix

M′. By Lemma 6, M′ is the incidence matrix of a resolving set for Gq(n,k) of size
[n

1

]
q.

Consequently the metric dimension of Gq(n,k) is at most
[n

1

]
q.

3 Constructions of resolving sets

The disadvantage of the proof of Theorem 5 given above is that it does not provide an explicit
construction of a resolving set for the Grassmann graph Gq(n,k). In this section, we address
this issue; once again, we adapt earlier results for Johnson graphs.

In [6], Cáceres et al. give a construction of a resolving set for the Johnson graph J(n,k),
which has size (k + 1)dn/(k + 1)e. This is explained most easily in the case where k + 1
divides n, where one partitions the n-set into a collection of disjoint (k +1)-sets, and in each
part taking all k-subsets, to obtain a resolving set for J(n,k). Various refinements can be
made to obtain slight improvements to the size, but the principle of the construction remains
the same. (See [2] for details.)

To obtain resolving sets for the Grassmann graphs, we will give separate constructions
for two cases: the first, when n is divisible by k+1, is considered in Proposition 9; the second,
when n is not divisible by k + 1, is considered in Proposition 11. We could have combined
the two separate cases into one construction, but in doing so risks losing the intuition of how
the constructions arise.

Our constructions require some notions from finite geometry.

Definition 8. A t-spread of V (n,q) is collection of t-subspaces {W1, . . . ,Wm} with the fol-
lowing properties:

(i) any non-zero vector x ∈V (n,q) belongs to exactly one Wi;

(ii) if i 6= j, then Wi∩Wj = {0}.

A classical result (see Dembowski [7, p. 29]) shows that a t-spread of V (n,q) exists
if and only if t is a divisor of n. The number of subspaces in a t-spread is necessarily
(qn−1)/(qt −1).

Proposition 9. Suppose k + 1 divides n, and that S = {W1, . . . ,Wm} is a (k + 1)-spread of
V (n,q). Let M denote the union of the collections of all k-subspaces of each Wi; that is,

M =
m⋃

i=1

{U ≤Wi : dim(U) = k}.

Then M is a resolving set for Gq(n,k) of size
[n

1

]
q.
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Proof. We will show that M is a resolving set by demonstrating that whenever A and B are
two distinct k-subspaces of V (n,q), there exists some U ∈M with dim(A∩U) 6= dim(B∩U).

We consider how A and B intersect with the members W1, . . . ,Wm of the (k + 1)-spread
S .

Case 1. If either of A or B (say A) is contained within some member of S , then clearly
A ∈M , and we are done (as dim(A∩B) 6= k).

So we suppose not. For each i, let Ai = A∩Wi and Bi = B∩Wi. There are now two
possible cases.

Case 2. Suppose there exists some i where dim(Bi) < dim(Ai). Since dim(Ai) < k, there
must exist some k-subspace U of Wi which contains Ai as a subspace. Therefore
dim(Ai ∩U) = dim(Ai), while dim(Bi ∩U) ≤ dim(Bi) < dim(Ai). In particular, we
have dim(Ai∩U) 6= dim(Bi∩U), and thus dim(A∩U) 6= dim(B∩U), where U ∈M .

Case 3. The remaining scenario is that dim(Ai) = dim(Bi) for all i. However, there must
exist some i where Ai 6= Bi (and where both are non-zero); otherwise we would have
A = B. For that particular value of i, suppose dim(Ai) = dim(Bi) = d < k.

Now, for any k-subspace U of Wi, we must have dim(Ai∩U)≥ d−1 and dim(Bi∩U)≥
d−1 (this follows from the identity dim(Ai∩U) = dim(Ai)+dim(U)−dim(Ai +U),
and that dim(Ai +U) ≤ dim(Wi) = k + 1; likewise for dim(Bi ∩U)). Thus, for there
to be a k-subspace U with dim(Ai∩U) 6= dim(Bi∩U), we must have (without loss of
generality) that Ai is a subspace of U , and Bi is not. We aim to construct such a U .

Take a basis {a1, . . . ,ad} for Ai. Since Ai 6= Bi, there exists a vector x ∈ Bi \Ai. Now,
because x 6∈ Ai, we have that the set {a1, . . . ,ad ,x} is linearly independent. Extend this
to a basis {a1, . . . ,ad ,x,w1, . . . ,wk−d} for Wi. Now let U be the k-subspace spanned by
the vectors {a1, . . . ,ad ,w1, . . . ,wk−d}: by construction, Ai is a subspace of U , but Bi is
not, since x∈ Bi \U . In particular, we see that d = dim(Ai∩U) 6= dim(Bi∩U) = d−1,
and thus dim(A∩U) 6= dim(B∩U), where U ∈M .

In all cases, we have U ∈M with dim(A∩U) 6= dim(B∩U), so therefore M is a resolv-
ing set. Finally, we observe that

|M |= qn−1
qk+1−1

[
k +1

1

]
q
=

qn−1
qk+1−1

qk+1−1
q−1

=
[

n
1

]
q
.

We remark that Proposition 9 provides an alternative proof of Theorem 5 in the case
where k + 1 divides n. We also remark that Lemma 6 can be applied to show that the set
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M of Proposition 9 is a resolving set for Gq(n,k): the incidence matrix of M is a block-
diagonal matrix, where each block is the incidence matrix of the collection of all k-subspaces
of V (k +1,q). By Lemma 7, this has full rank, and thus so does the incidence matrix of M .

We would also like to obtain a construction of a resolving set when k+1 does not divide
n. In that situation, there is no (k +1)-spread of V (n,q); however, a result of Beutelspacher
[4] provides an alternative. Following his notation, where T is a set of positive integers, a
T -partition of V (n,q) is a partition of the non-zero vectors of V (n,q) into subpaces whose di-
mensions form the set T . Thus if T = {t}, then a T -partition of V (n,q) is simply a t-spread of
V (n,q). The following lemma is an immediate consequence of Lemma 3 in Beutelspacher’s
1978 paper [4].

Lemma 10 (Beutelspacher [4]). Suppose n = r(k + 1)+ t, where 0 < t < k + 1. Then there
exists a {k +1, t}-partition of V (n,q).

Beutelspacher’s construction works as follows: write s = r(k + 1) (so that n = s + t)
and take a (k + 1)-spread of V (s,q). The remaining qn − qs vectors in V (n,q) \V (s,q)
are then partitioned into the non-zero vectors of t-subspaces (of which there are neces-
sarily qs). In what follows, we suppose that P is a {k + 1, t}-partition of V (n,q). We
write this as P = S ∪T , where S = {W1, . . . ,Wm} is a (k + 1)-spread of V (s,q), and where
T = {X1, . . . ,X`} consists of t-subspaces covering the remaining vectors. We also let Z de-
note a fixed (k− t +1)-dimensional subspace of V (s,q).

Proposition 11. Suppose n = s+ t, where (k+1) divides s and 0 < t < k+1. Let P = S ∪T
and Z be as above. For each Wi ∈ S , take all the k-subspaces (as in Proposition 9); for
each X j ∈ T , extend to the (k +1)-subspace X j⊕Z, and take all k-subspaces of this. Let M
denote the union of these collections: that is,

M =
m⋃

i=1

{U ≤Wi : dim(U) = k}∪
⋃̀
j=1

{U ≤ X j⊕Z : dim(U) = k}.

Then M is a resolving set for Gq(n,k), of size at most
[(n−t)+(k+1)

1

]
q.

Proof. To show that M is a resolving set, we show that whenever A and B are two distinct
k-subspaces of V (n,q), there exists some U ∈M with dim(A∩U) 6= dim(B∩U).

If A or B are entirely contained within V (s,q), then we are done; by the arguments used
in the proof of Proposition 9, M contains a resolving set for the subgraph Gq(s,k). Also, if
A∩V (s,q) 6= B∩V (s,q), the proof of Proposition 9 shows that a vertex of the resolving set
for Gq(s,k) is able to distinguish A and B. Thus the only situation remaining is when both A
and B intersect non-trivially with V (n,q)\V (s,q), and where A∩V (s,q) = B∩V (s,q).

Since A 6= B but A∩V (s,q) = B∩V (s,q), it follows that there exists a t-subspace Xi ∈ T
where A∩Xi 6= B∩Xi. Suppose without loss of generality that dim(A∩Xi) ≤ dim(B∩Xi).
Then there exists a vector x∈ (B∩Xi)\A. It follows that x∈ B∩(Xi⊕Z) but x 6∈ A∩(Xi⊕Z);
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consequently, we have A∩ (Xi⊕Z) 6= B∩ (Xi⊕Z). By the arguments in Cases 2 and 3 of
Proposition 9, it follows that there exists a k-subspace U ≤ Xi⊕Z satisfying dim(A∩U) 6=
dim(B∩U). By construction, U ∈M .

Finally, we obtain the bound by observing that

|M | ≤
[

s
1

]
q
+qs

[
k +1

1

]
q

=
qs−1
q−1

+qs qk+1−1
q−1

=
qs+k+1−1

q−1

=
[
(n− t)+(k +1)

1

]
q
.

We remark that the bound on the size of M given in Proposition 11 is likely to be an
over-estimate, for two reasons. First, it is possible that for distinct Xi,X j, we may have
Xi⊕ Z = X j ⊕ Z; second, even if Xi⊕ Z 6= X j ⊕ Z, they may have a common k-subspace.
The precise number of repetitions will be dependent on the choice of Z and the structure of
the partition P = S ∪T , and thus counting the actual size of M will be difficult in general.
However, in the case t = 1, it is straightforward. First, if t = dim(Xi) = 1, we can count
precisely the number of 1-subspaces in (Xi⊕Z)\Z to be qk; second, if (Xi⊕Z) 6= (X j⊕Z),
the only k-subspace that can be contained in (Xi⊕Z)∩ (X j⊕Z) is Z itself. Since the choice
of Z was arbitrary, we can take Z to be one of the k-subspaces of some Wj. Hence, if t = 1,
we have

|M |=
[

n−1
1

]
q
+

qn−1

qk

([
k +1

1

]
q
−1

)
=
[

n
1

]
q
+qn−k

[
k−1

1

]
q
.

4 Discussion

A natural question is to compare our result in Theorem 5 with the previously-known upper
and lower bounds on metric dimension.

An implicit, approximate lower bound can be obtained using [3, Proposition 3.6], which
in the case of Grassmann graphs yields

µ(Gq(n,k)) ' logk

[
n
k

]
q
.

This bound is clearly much smaller than the upper bound we obtained in Theorem 5. How-
ever, this lower bound is obtained only by considering the diameter of a graph and not its
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structure, and is often far from the actual value of µ. (See [3, §3.1] for a more detailed
discussion.)

As mentioned in the introduction, there are known upper bounds due to Babai [1] which
can be applied here (see [3] for an interpretation of these in terms of metric dimension of
distance-regular graphs). For the Grassmann graphs, Babai’s most general bound (see [1,
Theorem 2.1]; see also [3, Theorem 3.15]) yields

µ(Gq(n,k)) < 4

√[
n
k

]
q

log
[

n
k

]
q

(2)

while his stronger bound (see [1, Theorem 2.4]; see also [3, Theorem 3.22]) yields

µ(Gq(n,k)) < 2k

[n
k

]
q[n

k

]
q−M

log
[

n
k

]
q

(3)

where

M = max
0≤ j≤k

q j2
[

n− k
j

]
q

[
k
j

]
q
.

These bounds are difficult to evaluate exactly, so we conducted some experiments using
MAPLE to compare these bounds with the one obtained in Theorem 5. Our experiments
indicate that for k > 2, our constructive bound of

[n
1

]
q is an improvement on Babai’s weaker

bound. When k = 2 and q is large, Babai gives a better bound. They also suggest that
Babai’s stronger bound is, for fixed q and n, is descreasing in k (in comparison, our bound
is independent of k and thus stays fixed), and gives a better bound for larger values of k.
However, it should be mentioned that Babai’s results are obtained using a result of Lovász
on fractional covers in hypergraphs [9], and are not explicit, whereas (in the case where k+1
divides n), our bound is met by an explicit construction of a resolving set. Also, the proof of
Theorem 5 implictly gives a method of constructing resolving sets, by sequentially adding
k-subspaces so that the incidence matrix has full rank.

Another natual question concerns the Grassmann graphs being the q-analogue of the
Johnson graphs, and comparing our result with known bounds for the metric dimension of
those graphs. Often, when one has obtained an invariant of the Grassmann graph Gq(n,k)
as a function of q, then by taking the limit as q→ 1, one obtains the same invariant for the
Johnson graph J(n,k). Now, if we consider our bound from Theorem 5, it is easy to see that

lim
q→1

[
n
1

]
q
= n,

which is precisely the bound for the Johnson graphs in Theorem 3.
Finally, we remark that it is likely that one can refine the constructions in Propositions

9 and 11 (in the manner of the results for Johnson graphs in [2]) to obtain a tighter bound
on the metric dimension. However, unlike the case of the Johnson graphs, we believe it is
unlikely that such refinements will affect the order of magnitude of the bound too much, or
that they would have such a tidy form.
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