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Abstract

We replace the usual setting for error-correcting codes (i.e. vector spaces over fi-
nite fields) with that of permutation groups. We give an algorithm which uses a
combinatorial structure which we call an uncovering-by-bases, related to covering
designs, and construct some examples of these. We also analyse the complexity of
the algorithm.

We then formulate a conjecture about uncoverings-by-bases, for which we give
some supporting evidence and prove for some special cases. In particular, we consider
the case of the symmetric group in its action on 2-subsets, where we make use of the
theory of graph decompositions. Finally, we discuss the implications this conjecture
has for the complexity of the decoding algorithm.
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1 Introduction: groups as codes

In this paper, we discuss the possible use of permutation groups as error-
correcting codes, where the codewords are permutations written in list form
and with the usual Hamming distance. The use of sets (rather than groups)
of permutations in coding theory has been studied since the 1970s (see Blake,
Cohen and Deza (1979) [7] for instance); often sets of permutations are referred
to as permutation arrays in this context. Permutation arrays have attracted
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recent interest, partly due to a potential application to so-called “powerline
communications”, where electrical power cables are used to transmit data as
well as electricity. The 2004 paper by Chu, Colbourn and Dukes [11] gives a
description of this, and some constructions for permutation arrays suitable for
this purpose, while the 2006 paper by Huczynska [15] gives an introductory
survey.

Groups have received less attention; however, the algebraic structure of the
group is there to be exploited, for instance in determining properties of the
group when viewed as a code. The main focus of this paper is to present a
decoding algorithm which works for arbitrary permutation groups when used
as codes in this manner; as a result, this paper takes a rather broad viewpoint.
We also analyse the complexity of this algorithm, then give a conjecture which
(if true) helps to bound this complexity. We conclude by giving some support-
ing evidence for the conjecture, and by proving some special cases. The results
in this paper are taken from the author’s Ph.D. thesis [1].

Recall that the minimum distance of a code C is

d(C) = min
x,y∈C
x6=y

dH(x, y),

i.e. the least value of dH over all pairs of words in C. Consequently, if a
received word contains at most r = b d(C)−1

2
c errors, there will be a unique

nearest neighbour in C and we can decode correctly. We call this parameter r

the correction capability of C.

If the code C is a set of permutations of {1, . . . , n}, then it is well-known that
the Hamming distance between permutations g, h ∈ C ⊆ Sn is simply

dH(g, h) = n −
∣

∣

∣Fix(gh−1)
∣

∣

∣ ,

where Fix(g) denotes the set of fixed points of g. (By applying h−1 to both g

and h, dH(g, h) = dH(gh−1, 1) is the number of places gh−1 differs from the
identity, which is n − |Fix(gh−1)|.) Thus the minimum distance of such a set
C is equal to

min
g,h∈C
g 6=h

n −
∣

∣

∣Fix(gh−1)
∣

∣

∣ = n − max
g,h∈C
g 6=h

∣

∣

∣Fix(gh−1)
∣

∣

∣ .

When a set of permutations forms a group G, this becomes

n − max
g∈G
g 6=1

|Fix(g)| ,

which is known to group theorists as the minimum degree of G. There is an
analogy here to the theory of linear codes, in that the minimum distance of a
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linear code is equal to its minimum weight, i.e. the distance from the all-zero
codeword, which plays the role of the identity permutation in that setting.

The family of groups that appear in Blake’s original paper [6] are the sharply
k-transitive groups. A group G acting on a set Ω is sharply k-transitive if for
any two ordered k-tuples of distinct elements of Ω, there is a unique group
element mapping the first to the second. These were an obvious starting point
for this theory, as the minimum distance of such a group is easy to calculate.
As Blake observed in [6], the minimum distance is simply n− k + 1 (only the
identity element can fix k points, so the maximum number of fixed points of
a non-identity element is k − 1).

The symmetric group Sk is both sharply k-transitive and sharply (k − 1)-
transitive, while the alternating group Ak is sharply (k − 2)-transitive. Thus
the minimum distance of Sn is n− (n− 1)+1 = 2, and the minimum distance
of An is n − (n − 2) + 1 = 3. Consequently, the correction capability of the
symmetric group is 0, and that of the alternating group is 1. So Sn is no use as
an error-correcting code, but An is a 1-error correcting code. For k > 5, there
are no others, but there are infinite families for k = 2 and 3, as well as the
Mathieu groups M11 (for k = 4) and M12 (for k = 5): Bray and the author [3]
consider M12 viewed as a code in detail. The method we present in the next
section is completely general.

2 A decoding algorithm: uncoverings-by-bases

In order to use permutation a group as an error-correcting code, it is necessary
to have a suitable decoding algorithm. To this end, the following definition,
originally due to Sims [19], is fundamental.

Definition 1 Let G be a group acting on a finite set Ω. A base for G in this
action is a sequence of points (x1, . . . , xb) from Ω such that G(x1,...,xb) = 〈1〉,
i.e. the pointwise stabiliser is the identity. An irredundant base is a base where
G(x1,...,xi,xi+1) 6= G(x1,...,xi) for i = 1, . . . , b − 1.

Example 2 Suppose G is sharply k-transitive. Then any sequence of k points
forms a base, as the stabiliser of any k points is trivial.

Example 3 Suppose G is the general linear group GL(n, q) acting on F
n
q \{0}.

Then any basis for the vector space F
n
q is a base for G.

Bases have the following property.

Proposition 4 For any group G, the action of an element g ∈ G on a
base (x1, . . . , xb) uniquely determines that element; that is, if (x1, . . . , xb)

g =
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(x1, . . . , xb)
h, then g = h.

PROOF. Suppose g, h ∈ G, (x1, . . . , xb) is a base for G and that x
g
i = xh

i

for each i. Then x
gh−1

i = xi for each i, that is gh−1 ∈ G(x1,...,xb) = 〈1〉. Hence
gh−1 = 1, i.e. g = h.

This is not only a theoretical result: there exist algorithms in computational
group theory which will actually compute g ∈ G from the image of a base; see
Butler [9], Chapter 10, for details. So, if a group G is to be used as a code, if
the received word contains errors in positions outside those labelled by a base,
we can decode successfully. However, as it is possible for r errors to lie in any
r positions, we need the following.

Definition 5 Suppose G is a group acting on Ω, where |Ω| = n, with correc-
tion capability r. Then an uncovering-by-bases for G is a set of bases for G

such that any r-subset of Ω is disjoint from at least one base.

In the case where G is sharply k-transitive, this reduces to a set of k-subsets
of Ω, which we call an (n, k, r)-uncovering. This is equivalent to finding a set
of (n− k)-subsets of Ω, with the property that any r-subset is contained in at
least one (n−k)-set, which is precisely the definition of an (n, n−k, r) covering
design. Consequently, the extensive literature on covering designs is of use to
us in finding uncoverings. For instance, there is a large internet database of
covering designs with small parameters maintained by Gordon, the “La Jolla
Covering Repository” [13]. Many of the constructions featured in the database
are described in the paper of Gordon, Kuperberg and Patashnik [14], while a
more general survey can be found in Mills and Mullin [18].

Example 6 For the sharply 3-transitive group PGL(2, 7), we have n = 8,
k = 3, r = b8−3

2
c = 2, so need an (8, 3, 2)-uncovering, as shown below.

1 2 3

4 5 6

2 3 7

1 7 8

The above example was obtained from an (8, 5, 2) covering design in Gordon’s
database [13]. It is small enough for the “uncovering” property to be verified
easily by hand.
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While it is trivial that (n, k, r)-uncoverings always exist (by taking the set of
all k-subsets), it is not immediately obvious that for an arbitrary group in a
given action an uncovering-by-bases should exist. However, we are saved by
the next result.

Proposition 7 For any finite group G acting on a set Ω with |Ω| = n, there
always exists an uncovering-by-bases.

PROOF. Let d be the minimum distance of G in this action, so r = b d−1
2
c.

We show that for an arbitrary r-subset of Ω, there exists a base for G disjoint
from it, arguing by contradiction.

Suppose there exists an r-subset R ⊆ Ω that meets every base for G. Then
the pointwise stabiliser of R̄ = Ω \ R is non-trivial, as R̄ does not contain a
base. Therefore there exists a non-identity element g that fixes R̄ pointwise,
so |Fix(g)| ≥ |R̄| = n − r. But the maximum number of fixed points of a
non-identity element is n − d < n − r, giving a contradiction.

We remark that the definition of uncovering-by-bases, and indeed the proof of
Proposition 7, is vacuous in the case r = 0. Although groups with zero correc-
tion capability are, of course, useless as error-correcting codes, an uncovering-
by-bases for such a group consists of a single base only.

Once an uncovering-by-bases for a given group in a given action has been
obtained, we can then use it with the following decoding algorithm.

Algorithm 1 Suppose we have a permutation group G and an associated
uncovering-by-bases U = {B1, . . . , Bu}, and that we have transmitted the
permutation g = g1g2 · · ·gn ∈ G and received the word w = w1w2 · · ·wn,
which is assumed to have at most r errors. Set i := 1.

The iterative step is as follows. Take Bi, and look at the entries wj for j ∈ Bi.
If there are no repeated symbols in those positions, then we can determine if
there is an element g′ ∈ G (i.e. a codeword) agreeing with w in those positions.
If not, then set i := i + 1 and repeat. If g′ does exist, we compute dH(w, g′);
if this is at most the correction capability r, we must have that g ′ = g and
return g′. If the distance is more than r, we set i := i + 1 and repeat.

We make some remarks about this algorithm. First, the fact that U is an
uncovering-by-bases guarantees that the algorithm will succeed. Next, we
know we can ignore cases where there are repeated symbols, as we know there
must be an error among them. The method for finding g′ is described in Al-
gorithm 2 below; if G is sharply k-transitive, the element g ′ is guaranteed to

5



exist, so this step will always succeed. Finally, we remark that the algorithm
has been implemented in the computer system GAP [12] (see [1] for details).

Example 8 We continue with the example of PGL(2, 7), which is generated
by the permutations (3 8 7 6 5 4) and (1 2 6)(3 4 8) (in disjoint cycle form).
As a code, the word length is 8, minimum distance 6, correction capability 2,
and there are 336 codewords. Suppose we transmit the permutation

g = 1 2 3 4 5 6 7 8

and that the following word is received:

w = 4 2 3 6 5 6 7 8.

(This has two errors, in positions 1 and 4.) Using the uncovering in example
6, we first identify the element of PGL(2, 7) which maps the base (1, 2, 3) to
(4, 2, 3), which is

4 2 3 6 8 7 5 1.

This is distance 4 from w, so is rejected. Then we look at the next base in
the uncovering, which is (4, 5, 6). In w, these positions contain the symbols
(6, 5, 6), so clearly no permutation can exist here. So we move to the next
3-tuple, (2, 3, 7); these positions contain the symbols (2, 3, 7). Thus we find
the element which maps the first to the second, which is

1 2 3 4 5 6 7 8.

This is distance 2 from w, so is accepted, and the algorithm terminates.

In the author’s paper [2], uncoverings-by-bases are constructed for certain
families of base-transitive groups. These are groups which act transitively on
their irredundant bases, so the fact that all irredundant bases have the same
structure simplifies the construction of an uncovering-by-bases. Some examples
of groups which are not base-transitive are considered in Sections 7 and 8
below. In another paper [5], Prellberg and the author describe an alternative
(and faster) algorithm which works for the family of groups Cm o Sn in their
imprimitive action on mn points.

3 Parallels with linear codes

In this section we mention some of the analogies between linear codes (i.e. vec-
tor spaces over finite fields) and permutation groups when viewed as codes.
To begin with, we compare their rates.

The rate of an error-correcting code is defined as 1
n

logq M , where n is the
word length, q the alphabet size, and M the number of codewords. For a
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linear code of length n and dimension k over Fq, this works out simply as k
n
.

For a permutation group of degree n, we have 1
n

logn |G|. Now, if G has an
irredundant base of length k, it is known that 2k ≤ |G| ≤ nk (see [10], Section
4.13); the closest to reaching the upper bound are the sharply k-transitive
groups of order n(n − 1) · · · (n − k + 1). Consequently, an upper bound on the
rate of k

n
is obtained. Since the base size is the permutation group analogue

of the dimension of a vector space, this is not a coincidence.

It is thought that for primitive permutation groups, the order tends to be much
closer to the upper bound than the lower. Consequently, for many permutation
groups (should the assertion be true) the rates of such groups (viewed as codes)
would be comparable with linear codes.

Next, we consider distance enumerators. For any code, we can define a poly-
nomial which “counts” the number of codewords at a each distance from a
fixed codeword, which is as follows.

Definition 9 Let C be a code of fixed length, and choose c ∈ C. The distance
enumerator, is defined to be

∆c(x) =
∑

w∈C

xdH(c,w).

Clearly, the coefficient of xi gives the number of codewords at distance i from
c. In the case where C is a permutation group, we obtain the same polynomial
regardless of the choice of c (because each codeword can be mapped to any
other by a permutation), so we can take c to be the identity permutation and
call the polynomial ∆(x). In the case where C is a linear code, we take c

to be the zero vector and obtain the weight enumerator. Weight enumerators
for linear codes have been studied extensively (any text on coding theory
should mention them), while the distance enumerator for permutation groups
is studied by Dixon and the author in [4].

Finally, we mention that our decoding algorithm is similar to the method of
permutation decoding. This method, which is attributed to F. J. MacWilliams,
is a decoding method used for linear codes, involving finding a subset of the
automorphism group of the code to move any set of errors out of the “infor-
mation positions”. It is also related to covering designs, with the analogue of
an uncovering-by-bases being known as a PD-set. A full description is given
in the survey article by Huffman [16] in the Handbook of Coding Theory.
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4 Complexity issues

An important part of the decoding algorithm (Algorithm 1) is where a group
element is reconstructed from a set of base images. In order to determine
the complexity of that algorithm, we need to know exactly what this entails.
Suppose we have a group G acting on a set Ω of size n, and suppose that
(x1, . . . , xb) is a base for G in this action. Let Gi denote the pointwise stabiliser
in G of (x1, . . . , xi), with the convention that G0 = G. The following definition
is due to Sims [19].

Definition 10 The set S = S1 ∪ S2 ∪ . . . ∪ Sb, where Si is a set of coset
representatives for Gi in Gi−1, is called a strong generating set for G.

This set is indeed a set of generators for G; furthermore, any element of G can
be written uniquely as a product sbsb−1 · · · s1, where each si ∈ Si (see Butler
[9], Chapter 10). This enables us to use the following algorithm.

Algorithm 2 Suppose that we have a group G which we are using as an
error-correcting code. Suppose that B = (x1, . . . , xb) is a base for G and that
S is a corresponding strong generating set, and that we have a received word
w which has symbols (y1, . . . , yb) in the positions labelled by B. Then we want
an answer to the following question:

Does there exist g ∈ G with x
g
i = yi for all i, and if yes, what is it?

At the first stage, we have that the set {xs
1 | s ∈ S1} is the G0-orbit on x1,

and see if y1 appears in it. If not, then no such g can exist, and the algorithm
stops. If it does appear, we let s1 be the element that maps x1 to y1, then

replace (y1, . . . , yb) with (y
s−1

1

1 , . . . , y
s−1

1

b ), and iterate as follows.

At step i, we check if there exists some si ∈ Si such that xsi

i = y
s−1

i−1
···s−1

1

i . If not,

then the algorithm stops; if some si does exist, we replace (y
s−1

i−1
···s−1

1

1 , . . . , y
s−1

i−1
···s−1

1

b )

with (y
s−1

i
···s−1

1

1 , . . . , y
s−1

i
···s−1

1

b ), then repeat the iteration.

When we reach step b, if we succeed we take the element sbsb−1 · · · s1 to be
our required element g. This works because for each i we have

x
g
i = x

sb···s1

i

= xsi···s1

i (since sb, sb−1, . . . , si+1 all lie in Gi)

= (yi
s−1

1
···s−1

i−1)si−1···s1

= yi.

Calculating the element g = sbsb−1 · · · s1 concludes the algorithm.
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Now that we know what the procedure is, we are able to answer the ques-
tions, “how long does it take?” and “how much space is required?”. The latter
question has two parts, as there are two kinds of space needed: storage space
for any look-up tables (ROM), and space needed for performing the actual
computation (RAM). For the sake of simplicity, we make the following as-
sumptions:

• finding the image of a point under a permutation takes one unit of time;
• the composition of two permutations of length n takes n units of time;
• the storage of a single symbol requires one unit of space.

We also use the convention where g(n) = O(f(n)) means that g(n) is bounded
above by some constant multiple of f(n).

Lemma 11 The time required by the element reconstruction algorithm (Al-
gorithm 2) is O(bn).

PROOF. At step i we look through {xsi

i | si ∈ Si} to see if yi
s−1

1
···s−1

i−1 appears
there. Since |Si| = |Gi−1 : Gi| ≤ n, there are at most n operations to be made
here. If we succeed here, we replace b symbols with their images under s−1

i ,
and as acting on a point by a permutation requires one operation, this gives
b operations, so there are at most n + b operations per step. As there are at
most b steps, this gives a maximum of b(n + b).

If all b steps are completed successfully, we then have to compose b permu-
tations, which requires (b− 1)n operations. Overall, the maximum number of
operations required will be b(n + b) + (b − 1)n, so this is O(bn).

Lemma 12 The storage space required by the element reconstruction algo-
rithm (Algorithm 2) is O(bn2), and the space required to perform the algorithm
is O(n).

PROOF. With the convention that a single symbol requires one unit of space,
a permutation needs n units. Our look-up table comprises a strong generating
set and the corresponding set of inverses. Now, a strong generating set has
size bounded by bn, as each Si has size at most n. As we also need to store
the inverse of each element, the overall number of storage units required is at
most 2bn2, which is O(bn2).

When performing the algorithm, at each stage i we need to store the position
in the look-up table of the element si, which requires one unit of space, giving
us a total of b units. Also, when performing the composition of permutations
at the end, we need a further n units for this. So we have a total of n+b units,
which is O(n).
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Recall that our decoding algorithm (Algorithm 1) works by working through
a set of bases and applying the element reconstruction algorithm repeatedly
until the correct permutation is obtained. Let U be the uncovering-by-bases
being used. Then we have the following results.

Theorem 13 The time required by the decoding algorithm (Algorithm 1) is
|U|O(bn).

PROOF. We apply the element reconstruction algorithm (Algorithm 2),
which by Lemma 11 needs at most b(n+b)+bn time units. After this, we check
the Hamming distance between the reconstructed permutation and the re-
ceived word to see if it is within the correction capability, so there are n checks
here. We then may have to repeat this procedure until it has been carried out
|U| times, so the total number of steps is bounded by |U|(b(n + b) + bn + n),
which is |U|O(bn).

Theorem 14 The storage space required by the decoding algorithm (Algorithm
1) is |U|O(bn2), and the space required to perform the algorithm is O(n).

PROOF. For the look-up table, each base in U requires its own strong gen-
erating set, so by Lemma 12, we will need 2|U|bn2 storage units, which is
|U|O(bn2). To perform the algorithm, whilst applying the reconstruction al-
gorithm we need b + n units of space. The same n units are then used for the
comparison with the received word, meaning that the space required here is
still O(n).

So, ultimately, both the time complexity and the amount of storage space
required are dependent on the size of U . In Section 9, we investigate some
possible bounds for this.

5 The single-orbit conjecture

We have already seen (in Proposition 7) that, for any permutation group G

of degree n and minimum distance (i.e. minimum degree) d and correction
capability r, there exists an uncovering-by-bases for G. In [2], the author
constructs uncoverings-by-bases for certain base-transitive groups, so in that
situation it follows that an uncovering-by-bases contains irredundant bases
from one orbit only. It is this particular property that interests us in this
section.
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Definition 15 We say that a permutation group G has the single-orbit prop-
erty if there exists an orbit on irredundant bases for G that contains an
uncovering-by-bases.

Furthermore, we make the following conjecture.

Conjecture 16 (The single-orbit conjecture.) Any permutation group has the
single-orbit property.

While we do not offer a proof of this conjecture, we have various pieces of
evidence that it should be true, such as the following.

• It holds trivially for base-transitive groups (as there is only one orbit) and
for groups with r = 0 (as we only need one base).

• The single-orbit property is preserved by taking direct and wreath products:
see Section 6.

• The conjecture holds for the action of Sm on 2-subsets (Section 7) and for
some further examples of groups (Section 8).

• Computer searches (see below) show that the conjecture holds for transitive
groups of degree at most 19, and primitive groups of degree at most 30.

Using the GAP libraries of transitive and primitive groups, it is relatively easy
to verify the conjecture for groups of low degree. For each group, one has to
determine the correction capability, then for a given base construct the orbit
of the group on that base, and then check that this orbit forms an uncovering.
GAP programs were used to test transitive groups of degree at most 19 and
primitive groups of degrees 20 to 30 for the single-orbit property, and did not
find any counterexample.

In practice, it is important to know not just that an uncovering-by-bases
exists, but also what size it should be. Thus we make the following, stronger,
conjecture.

Conjecture 17 Let G be a permutation group of degree n. The G has the
single-orbit property, and furthermore, there exists such an uncovering-by-
bases with size polynomial in n.

This conjecture is likely to be much harder to prove than the single-orbit
conjecture. However, the evidence we have suggests that it should be true.
Consider Figure 1 below, and in particular compare the degrees with the
sizes of the uncoverings-by-bases (UBBs). (With the exception of the last two
examples, constructions for the others appear in [2].)

In each case, we observe that the size of the uncovering-by-bases is bounded
above by the degree of the group. This leads us to the next conjecture, possibly
the most optimistic so far.
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Group Degree Correction
capability

Size of UBB

An n 1 dn
3
e

H o Sn (H regular, |H| = m) mn bm−1
2

c bm−1
2

c + 1

Base-transitive, rank 2 n = km b (k−1)m−1
2

c b (k−1)m−1
2

c + 1

Sharply 3-transitive n bn−3
2
c n or n − 3

GL(3, q) q3 − 1 q3−q2

2
− 1 q3 − 1 or q3 − 4

AGL(2, q) q2 q2−q

2
− 1 q2 or q2 − 3

A7 on 15 points 15 5 9

M11 11 3 8

M12 12 3 11

Sm on 2-subsets (Section 7)
(

m

2

)

m − 3 Between 3
2
(m − 2)

and 2(m − 1)

“Dihedral-like” (Section 8) n bn−2
2
c n or n

2

Fig. 1. Parameters of various groups when viewed as codes

Conjecture 18 Let G be a permutation group of degree n. The G has the
single-orbit property, and furthermore, the uncovering-by-bases obtained has
size bounded above by n.

A computer search (using GAP) has demonstrated that Conjecture 18 holds
for all transitive groups of degree up to 15. This computer search involves, for
each group, randomly constructing uncoverings-by-bases until one of size less
than the degree is found. (For most groups, only one attempt was necessary.)

The various versions of the single-orbit conjecture are not entirely unmoti-
vated; they have implications for the time and space complexity of the decod-
ing algorithm, as discussed in Section 9 below.

6 The single-orbit property for direct and wreath products

In this section, we show that the single-orbit property is preserved by tak-
ing direct products (in the intransitive action) and wreath products (in the
imprimitive action).

Theorem 19 Suppose that G acting on Ω and H acting on ∆ have the single-
orbit property. Then G × H acting on Ω∪̇∆ also has this property.
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PROOF. We take suitable orbits for G and H, then use them to form an orbit
for G × H, and show that this satisfies our requirements. Suppose G acting
on Ω has degree n, minimum distance d and correction capability r = b d−1

2
c,

and that x = (x1, . . . , xk) is a base for G in this action, such that the orbit xG

forms an uncovering-by-bases. Suppose also that H acting on ∆ has degree
m, minimum distance e and correction capability s, and that y = (y1, . . . , yl)
is a base such that yH forms an uncovering-by-bases.

Now consider the action of G × H acting on Ω∪̇∆. Clearly |Ω∪̇∆| = n + m,
and the minimum distance of G×H is min{d, e}. Consequently, the correction
capability of G × H is min{r, s}.

To construct a base for G × H, we define z = (x1, . . . , xk, y1, . . . , yl). Since G

acts on Ω only and H acts on ∆ only, we have

z(g,h) = (x
(g,h)
1 , . . . , x

(g,h)
k , y

(g,h)
1 , . . . , y

(g,h)
l ) = (xg

1, . . . , x
g
k, y

h
1 , . . . , yh

l )

for any (g, h) ∈ G×H. In particular, if z(g,h) = z (i.e. if (g, h) ∈ StabG×H(z)),
we have that xg = x and yh = y, so because x and y are bases we have g = 1G

and h = 1H , so (g, h) = 1G×H . Hence the pointwise stabiliser of z is trivial, so
z forms a base for G × H.

Now, we have that zG×H = {(xg
1, . . . , x

g
k, y

h
1 , . . . , yh

l ) | g ∈ G, h ∈ H}. We
show that zG×H forms an uncovering-by-bases for G × H. Suppose without
loss of generality that r ≤ s. We need to show that given an arbitrary r-subset
R ⊂ Ω∪̇∆, there exists an element of the orbit zG×H that is disjoint from R.
Suppose that R = A∪̇B, where A ⊂ Ω, B ⊂ ∆ and |A| + |B| = r (note that
one of A, B may be empty). Since |A| ≤ r, there exists a base (xg

1, . . . , x
g
k) for

G disjoint from A. Similarly, since |B| ≤ r ≤ s, there exists a base (yh
1 , . . . , yh

l )
for H disjoint from B. Thus the base (xg

1, . . . , x
g
k, y

h
1 , . . . , yh

l ) ∈ zG×H is disjoint
from R = A∪̇B, so we are done.

Theorem 20 Suppose G acting on Ω has the single-orbit property, and that
H is an arbitrary permutation group of degree m. Then G o H acting on m

copies of Ω also has the single-orbit property.

PROOF. As in Theorem 19 above, we take a suitable orbit for G and use
it to find a suitable orbit for G o H. Suppose G acting on Ω has degree n,
minimum distance d and correction capability r. Recall that G o H has the
form Gm

o H (often written as Gm : H), where Gm is the direct product of m

copies of G.

Now, a non-identity element of G o H with the maximum number of fixed
points will be an element of Gm, as any non-trivial action of H will reduce the
number of fixed points. But a non-identity element of Gm with the maximum
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number of fixed points will fix m−1 copies of Ω, and have n−d fixed points in
the remaining copy. Hence it has (n− 1)m + (n− d) fixed points in total, and
so the minimum distance of G oH is d. Consequently the correction capability
of G o H is r.

Next, we need a base for G o H. Suppose x is an irredundant base for G such
that xG forms an uncovering-by-bases. Now, by the proof of Theorem 19 above
(and a straightforward induction), m copies of x (one from each copy of Ω)
forms a base for Gm. We denote this base by mx. Clearly mx is also a base
for G o H, as the only elements of G o H that fix each block block-wise are
elements of Gm.

Finally, we observe that the orbit (mx)Gm

is contained in the orbit (mx)GoH .
By Theorem 19 above, (mx)Gm

forms an uncovering-by-bases, so therefore
(mx)GoH also does.

7 The single-orbit property for Sm acting on 2-subsets

Consider the symmetric group Sm acting on the 2-subsets of {1, . . . , m}. In
this section we demonstrate that the single-orbit conjecture holds for this
group in this action. Throughout, we assume m ≥ 4, as the cases m = 1 and
2 are meaniningless, and for m = 3 we have the usual action of S3. In this
action the group is acting on a set of size

(

m

2

)

, so as a code the codewords

have length
(

m

2

)

, and clearly there are m! codewords. The minimum distance
and correction capability are as follows.

Proposition 21 The minimum distance of Sm acting on 2-subsets is 2(m−2)
and the correction capability is r = m − 3.

PROOF. The maximum number of fixed points is
(

m−2
2

)

+ 1, corresponding,

for example, to a transposition (1 2), which will fix the remaining 2-sets chosen
from {3, . . . , m} and also the pair {1, 2}. Thus the minimum distance is

(

m

2

)

−

(

m − 2

2

)

− 1 = 2(m − 2).

Consequently the correction capability is r = b 2(m−2)−1
2

c = m − 3.

The 2-subsets of {1, . . . , m} can be thought of as the edge set of the complete
graph Km. Thinking in this way enables us to use graph-theoretic methods,
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which we shall exploit to construct uncoverings-by-bases. For instance, a base
for Sm in this action will consist of a subset of these edges.

Lemma 22 A base for Sm acting on the edge set of Km consists of the edges
of a spanning subgraph of Km which has (i) at most one isolated vertex and
(ii) no isolated edges.

PROOF. Let Γ denote such a spanning subgraph. To show that Γ is base,
we have to show that the edge-wise stabiliser, G(EΓ), of Γ in G = Sm is trivial.
First we suppose that Γ contains no isolated vertex. Let e1 = {i, j} be an edge
in Γ. Since e1 is not isolated, there exists another edge e2 that is incident with
e1. We can suppose without loss of generality that e2 = {j, k}. Now choose
some g ∈ G(EΓ), so g fixes e1 and e2, i.e.

{i, j}g = {i, j} and {j, k}g = {j, k}.

The only way this can happen is if g fixes the vertex j, which then forces g

to fix both i and k as well. But since Γ is a spanning subgraph, and there are
no isolated vertices, every vertex must lie in such a configuration, so must be
fixed by g. Hence all m vertices are fixed by g, and so g = 1.

If there is a single isolated vertex, we have by the same argument as above
that the remaining m− 1 vertices are fixed, which forces the remaining vertex
to be fixed. So in this case we also have g = 1.

The converse is easy: clearly a graph violating condition (i) or (ii) cannot be
base, as the edge-wise stabiliser would not trivial.

A minimal base for Sm in this action obtained from the bases described above
will be such a graph with the least number of edges. Thus a graph of one of
the three forms shown in Figure 2 will form a minimal base for this action
(according to congruence classes modulo 3).

m ≡ 0 mod 3
s
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@s�

�
s s

@
@s�

�
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· · ·
s

@
@s�

�
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m ≡ 1 mod 3
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@
@s�

�
s s

@
@s�

�
s

· · ·
s

@
@s�

�
s s

m ≡ 2 mod 3
s

@
@s�

�
s s

@
@s�

�
s

· · ·
s

@
@s�

�
s s s

Fig. 2. Minimal bases for Sm acting on the edges of Km

15



We call a base of this form a V-graph. Clearly such a base is irredundant, as
removing any edge will leave a graph with an isolated edge or two isolated
vertices, which will have non-trivial edge stabiliser. We note that Sm acts
transitively on V-graphs, so they form a single orbit. There are, however,
other graphs which form irredundant bases, such as the following.

���
HHH

HHH

s

s

s

s

s

s

s

·
· ·

Fig. 3. Irredundant bases of differing size

The V-graphs are irredundant bases of size ∼ 2
3
m, but the “star” bases are

irredundant bases of size m − 2.

Recall that a Hamilton circuit in a graph Γ is a circuit in Γ containing each
vertex exactly once, and that Γ is said to be Hamiltonian if it contains such
a circuit. Now, we observe that any V-graph is contained inside a Hamilton
circuit of Km, as is shown in Figure 4 (for m ≡ 0 mod 3). From a V-graph,
by adding extra edges (shown as s s ) we can obtain a Hamilton circuit;
conversely, if we have a Hamilton cycle we can remove those edges to obtain
a V-graph.

s

@
@s�

�
s s

@
@s�

�
s

· · ·
s

@
@s�

�
s

� �
� �

Fig. 4. A V-graph inside a Hamilton circuit

In order to prove that Sm in this action has the single-orbit property (where
the orbit on bases is the set of V-graphs), we show that for an arbitrary r-
subset of edges, there exists a V-graph disjoint from it. To do this, we need
the following result on Hamiltonicity. (The notation deg(v) denotes the degree
of the vertex v.)

Theorem 23 (Ore’s Theorem, 1960.) If Γ is a simple graph with m ≥ 3
vertices, and where deg(v)+deg(w) ≥ m for all pairs of non-adjacent vertices
v, w, then Γ is Hamiltonian.

PROOF. See Wilson [20], Theorem 7.1.

We apply this in the following theorem.

Theorem 24 There exists an uncovering-by-bases for the action of Sm on
2-subsets, contained in a single-orbit on irredundant bases.
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PROOF. Let R denote an arbitrary r-set of edges of Km. Choose two ver-
tices v, w which are non-adjacent in Γ = Km \ R, so therefore the edge
e = {v, w} ∈ R. Suppose s further edges of R are incident with v and t further
edges are incident with w, so we have 0 ≤ s + t ≤ r − 1. In Km, both v and w

have degree m − 1, so in Γ, we have deg(v) = (m − 1) − (s + 1) = m − s − 2
and deg(w) = m − t − 2. Consequently, we have

deg(v) + deg(w) = (m − s − 2) + (m − t − 2)

≥ 2(m − 2) − (r − 1)

= 2(m − 2) − (m − 4)

= m,

so by Ore’s Theorem (23), Γ is Hamiltonian. Therefore Γ contains a V-graph
(so Km contains a V-graph disjoint from R), and we are done.

Of course, this is only an existence proof: it doesn’t give us a way of con-
structing an uncovering-by-bases, or give us an idea of its size. We resolve this
problem below.

7.1 A construction of uncoverings-by-bases

We continue with our graph-theoretic approach from above. A decomposition
of a graph Γ is a partition of the edge-set of Γ; a Hamiltonian decomposition
of Γ is a decomposition into disjoint Hamilton circuits. In the 1890s, Walecki
showed that when m is odd, Km has a Hamiltonian decomposition. Clearly if
m is even, this cannot happen; however, in this case Km can be decomposed
into Hamilton circuits and a 1-factor (i.e. perfect matching). This is also due
to Walecki: see Lucas [17] or the survey by Bryant [8] for details. We will use
Walecki’s decompositions to construct uncoverings-by-bases for the action of
Sm on the edges of Km, as follows.

Construction 25 For m odd, take a Hamiltonian decomposition of Km.
Then in each Hamilton circuit, take the set of all V-graphs contained in it. For
m even, we take the Hamilton circuits in the decomposition described above,
and for each of those take the set of all V-graphs contained in that.

In order to prove that these constructions do indeed yield uncoverings-by-
bases, we need to show that for an arbitrary set R of r edges, there is a
V-graph disjoint from R which is contained in one of the specified Hamilton
circuits. First we need two lemmata.
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Lemma 26 Let π be a partition of the integer n into k parts. Then if n < 2k,
π contains a part of size 1.

PROOF. Suppose not, i.e. suppose that π has k parts, each of which has size
at least 2. Then clearly n ≥ 2k.

Lemma 27 Suppose that R contains a single edge e within a Hamilton circuit
C. Then there is a V-graph contained in C which avoids e.

PROOF. Recall from Figure 4 how a V-graph, say B, is obtained from a
Hamilton circuit. Then by choosing B such that e is one of the edges in C \B,
we have that B avoids e.

We can now proceed with the proof. Not surprisingly, we consider the cases
m odd and m even separately.

Theorem 28 Let H denote a Hamiltonian decomposition of Km, for m odd.
Let U denote the set of V-graphs contained in the Hamilton circuits of H.
Then U avoids any r-edge subset of the edges of Km.

PROOF. Recall that r = m − 3 from Proposition 21. Also note that H
contains c = 1

2
(m − 1) Hamilton circuits.

Let R denote an arbitrary set of r edges of Km. This may contain edges from
many Hamilton circuits. However, if it meets strictly less than c of them, we
are done, as we can choose a V-graph from one of the remaining circuits. So
we assume that R meets every circuit in H.

If this is so, then there exists a circuit which contains only one edge of R for
the following reason. We have r edges, partitioned into c parts (one for each
circuit). Now, we have r = m − 3 and c = 1

2
(m − 1), so therefore r = 2c − 2.

By Lemma 26, a partition of 2c − 2 into c parts must have a part of size 1,
so there must be a circuit containing just one edge of R. Let C denote such
a circuit, containing a single edge e ∈ R. Then by Lemma 27, there exists a
V-graph contained in C which avoids e and therefore avoids the rest of R.

The case where m is even works similarly.

Theorem 29 Let F denote a decomposition of Km, m even, into Hamilton
circuits and a 1-factor. Let U denote the set of V-graphs formed from the
Hamilton circuits in F . Then U avoids any r-edge subset of the edges of Km.
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PROOF. Again, we recall note that r = m − 3. We regard the parts of the
decomposition F as colour classes; we have c = 1

2
(m− 2) Hamiltonian colour

classes (corresponding to the Hamilton circuits) and a single distinguished
colour class (corresponding to the 1-factor), which we label as “black”.

Let R denote an arbitrary set of r edges of Km. If it contains edges from
strictly less than c of the Hamiltonian colour classes, then we are done, as we
can choose a V-graph from inside the the remaining classes. So we assume
that R meets every Hamiltonian colour class.

Suppose that this happens, and that R also contains b ≥ 0 “black” edges.
Ignoring these b edges, we have a partition of r− b edges into c colour classes.
Now, since r = m − 3 and c = 1

2
(m − 2), we have that r = 2c − 1, so

r − b = 2c − b − 1 < 2c. By Lemma 26, this partition must contain a part of
size 1. Hence there is a Hamiltonian colour class (i.e. Hamilton circuit) which
contains a single edge e ∈ R. Then by Lemma 27, there exists a V-graph
contained in C which avoids e and therefore avoids the rest of R.

In fact, in the cases where m 6≡ 0 mod 3, it is possible to refine our construc-
tion in order to reduce the size: it is not actually necessary to take all V-graphs
from inside each Hamilton circuit. Recall from Lemma 27 that for each edge
e in a given Hamilton circuit C, we need to provide a V-graph contained in C

that is disjoint from e. The next result tells us how many V-graphs we need
inside each circuit.

Lemma 30 Let m ≥ 6. Then the number of V-graphs inside a Hamilton
circuit of length m needed to avoid any single edge is 3 when m ≡ 0 mod 3
or m ≡ 1 mod 3, or 4 when m ≡ 2 mod 3.

PROOF. When m ≡ 0 mod 3, a V-graph has every third edge of the circuit
removed, so that circuit only contains three V-graphs. For m ≡ 1 mod 3 (with
m ≥ 7), again we have a circuit with every third edge removed, except at one
point where we remove two edges and leave an isolated vertex. Now, we can
write m = 3s+7. Over the 3s edges, we arrange three V-graphs missing every
third edge, so that all these edges are avoided by one of these. This leaves
us with seven edges remaining, over which we arrange our three V-graphs as
shown in Figure 5 below.

As can be seen from this, all seven edges are avoided by at least one of the
three V-graphs.

Now we consider m ≡ 2 mod 3 (where m ≥ 8). This time, the V-graphs have
the repeating pattern of every third edge omitted, except at the end, where
there is a path of length 3 then two missing edges. This time, we can write
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s s s s s s s s· · · · · · (the circuit)

s s s s s s s s

s s s s s s s s

s s s s s s s s

Fig. 5. Arranging V-graphs for m ≡ 1 mod 3

m = 3s+8. Over 3s edges of the circuit, we arrange three V-graphs as before,
so that all these edges are avoided. We then add a fourth V-graph which is a
duplicate of one of the first three. Over the remaining eight edges, we arrange
the V-graphs as shown in Figure 6 below.

s s s s s s s s s· · · · · · (the circuit)

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

Fig. 6. Arranging V-graphs for m ≡ 2 mod 3

As can be seen, each of the eight edges is avoided by at least one V-graph.

This proof leaves us with the cases m = 4 and m = 5 outstanding, which can
both be handled easily. K4 can be decomposed into one Hamilton circuit and
a 1-factor, while a V-graph consists of two adjacent edges, and we have r = 1.
So we split the Hamilton circuit into two V-graphs, and we are done. K5 has a
Hamiltonian decomposition into two Hamilton circuits, a V-graph is a path of
length three and r = 2. In each of the two circuits, we arrange three V-graphs
as shown in figure 7, giving us a total of six V-graphs.
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Fig. 7. Arranging V-graphs for m = 5

We can now determine the sizes of these uncoverings. Observing that we are
using 1

2
(m − 1) Hamilton circuits for m odd, and 1

2
(m − 2) Hamilton circuits

for m even, and combining this with the result of Lemma 30 above, we obtain
the following result. As the size is dependent on congruence classes modulo 3
and on whether m is odd or even, we can phrase this in terms of congruence
classes modulo 6.
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Theorem 31 Let m ≥ 6. Then the sizes of an uncovering-by-bases for the
action of Sm on 2-subsets, as described above, are as follows:

m ≡ 0 mod 6: 3
2
(m − 2)

m ≡ 1 mod 6: 3
2
(m − 1)

m ≡ 2 mod 6: 2(m − 2)

m ≡ 3 mod 6: 3
2
(m − 1)

m ≡ 4 mod 6: 3
2
(m − 2)

m ≡ 5 mod 6: 2(m − 1)

We conclude this section with an example demonstrating our construction.

Example 32 Consider the symmetric group S7 acting on the edges of the
complete graph K7. This graph has a Hamiltonian decomposition into three
Hamilton circuits, as shown in Figure 8(a). Applying our construction to these
three Hamilton circuits, we obtain the nine V-graphs in Figure 8(b).

8 The single-orbit property for “dihedral-like” groups

Let G be a finite permutation group with a transitive, abelian normal subgroup
A and an irredundant base of size 2. For instance, G could be a transitive
subgroup of a sharply 2-transitive group, or could be a dihedral group. (For
this reason we describe such groups as “dihedral-like”.) Now, a transitive,
abelian group is regular (see Cameron [10], Exercise 1.5), so G is acting on A

and therefore has degree |A| = n. As A is abelian we write it additively.

Suppose {0, a} is a base for G, where a ∈ A. We have the following theorem.

Theorem 33 For G as above, the orbit of G on {0, a} contains an uncovering-
by-bases for G, and thus G has the single-orbit property.

PROOF. The set

U = {{x, x + a} | x ∈ A}

is the A-orbit on {0, a}, so therefore is contained in the G-orbit on {0, a}.
Suppose that a has order m. We have two cases to consider.

First, suppose m = 2. Then {x, x + a} = {x + a, x + 2a}, so U consists of 1
2
n

disjoint bases, which cover all n points. Since the correction capability of G is
r < 1

2
n, we have that U forms an uncovering-by-bases.
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(a) A Hamiltonian decomposition of K7

(b) An uncovering-by-bases for S7 acting on the edges of K7

Fig. 8.
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Second, suppose m > 2. Then U is formed of k disjoint m-cycles (where
n = km), such as

{x, x + a}, {x + a, x + 2a}, . . . , {x + (m − 1)a, x}.

So |U| = n, and all n points are covered twice. Now choose R to be an
arbitrary r-subset of the n points. These will be contained in at most 2r
bases. But 2r < n, so there exists a base in U disjoint from R, so U forms an
uncovering-by-bases.

In both cases, U is contained in a single-orbit of G on irredundant bases, so
G has the single-orbit property.

In the second case of the above proof, when m is even we can take every other
base in each m-cycle to form an uncovering, as this gives us 1

2
n disjoint bases

which is quite sufficient.

Example 34 Let G be the dihedral group of order 12, acting on six points.
This contains a cyclic group of order 6, which we will regard as (Z6, +). Then
{0, 1} is a base for G, and as 1 has order 6 in Z6, we can take every second
translate of {0, 1}. Thus

{0, 1}, {2, 3}, {4, 5}

forms an uncovering-by-bases for G.

9 Implications for complexity

In this section we suggest some improvements which will reduce the complexity
from that described Section 4 above. It is here that the single-orbit conjecture
from Section 5 comes into its own.

The benefit gained from having an uncovering-by-bases contained within a
single orbit is that the space complexity is reduced. Instead of storing a list
of all the bases and, more importantly, a list of several strong generating sets,
we only need to store one base and one strong generating set, along with a
list of group elements that map the first base to each of the others, and to the
corresponding strong generating set. As such, we have the following.

Theorem 35 Assuming the truth of Conjecture 16, then the storage space
required by Algorithm 1 is O(bn2) + |U|O(n).

PROOF. Recall from Theorem 14 that without the single-orbit property, the
space required is |U|O(bn2). This was because each strong generating set re-
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quired O(bn2), and we had to store |U| of them. Now, if we assume Conjecture
16, we only need to store one, so the factor of |U| can be removed. However,
we now need to store a list of |U| permutations, which map the first base to
each of the others. As a permutation requires n units, and we have |U| per-
mutations, this gives us |U|O(n). So altogether we have a space complexity of
O(bn2) + |U|O(n).

This is a reduction in complexity, although by how much is dependent on the
size of |U| when compared with O(bn). However, Conjectures 17 and 18 assist
with this, as they assert the existence of bounds on |U|.

Theorem 36 Assuming the truth of Conjecture 17, then the storage space
required by Algorithm 1 is O(bn2)+O(nk+1). Assuming the truth of Conjecture
18, then the required space is O(bn2).

PROOF. Conjecture 17 asserts that |U| = O(nk) for some k, while the
stronger version (Conjecture 18) asserts that |U| = O(n). Substituting these
results into Theorem 35 completes the proof.

Note that if the size of the uncovering-by-bases is O(n2), then this gives the
same space complexity as having an uncovering-by-bases of size O(n).

In its weakest form, the single-orbit conjecture does not affect the time com-
plexity. Recall that the amount of time needed to perform Algorithm 1 is
bounded by |U|O(bn). Now, by using the modified version described above
(which assumes Conjecture 17), at the final step we must compose the recon-
struct group element with the ‘base change’ element; this is another composi-
tion of permutations, so requires another n steps. This then needs a total time
of |U|(O(bn) + n) = |U|O(bn), so there is no change. However, if the stronger
conjectures are true, we have the following.

Theorem 37 Assuming the truth of Conjecture 17, then the time required
by Algorithm 1 is O(bnk+1). Assuming the truth of Conjecture 18, then the
required time is O(bn2).

PROOF. By the above discussion, the time required is |U|O(bn). Conjectures
17 and 18 give sizes for |U|; substituting these sizes gives the required results.

So, as far as time is concerned, the single-orbit property on its own does not
affect the time complexity, but the stronger versions which include a bound
on the size of the uncovering-by-bases reduces it.
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