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Abstract

An uncovering-by-bases for a group G acting on a finite set Ω is a set U of bases
for G such that any r-subset of Ω is disjoint from at least one base in U, where r is a
parameter dependent on G. They have applications in the decoding of permutation
groups when used as error-correcting codes, and are closely related to covering
designs.

We give constructions for uncoverings-by-bases for many families of base-
transitive group (i.e. groups which act transitively on their irredundant bases), in-
cluding a general construction which works for any base-transitive group with base
size 2, and some more specific constructions for other groups. In particular, those
for the groups GL(3,q) and AGL(2,q) make use of the theory of finite fields.

We also describe how the concept of uncovering-by-bases can be generalised
to matroid theory, with only minor modifications, and give an example of this.
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AMS classification: 05B40, 20B20, 94B35 (primary), 11T30, 05B30 (secondary)

1 Introduction

The concept of an uncovering-by-bases was introduced by the author in his Ph.D.
thesis [1] (and is also explained in the author’s paper [2]). The motivation for this
was the use of permutation groups as error-correcting codes (where permutations
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written in list form are the codewords), which makes heavy use of them in a de-
coding algorithm. The results in sections 1 to 6 of this article are also taken from
the author’s Ph.D. thesis [1].

1.1 Uncoverings-by-bases

In [2] the author gives the following definition.

Definition 1.1. Let n > k and r ≤ n− k. An (n,k,r)-uncovering is a set U of k-
subsets of Ω = {1, . . . ,n} such that any r-subset of Ω is disjoint from at least one
k-subset in U.

An (n,k,r)-uncovering is equivalent to an (n,n− k,r) covering design, which
is a set of (n− k)-subsets, called blocks, such that any r-subset is contained in at
least one block. Because of this, we call the k-subsets in an uncovering coblocks.
Covering designs are well-studied (see, for example, the survey paper by Mills and
Mullin [24]). In this article, we are interested in a particular specialisation. In order
to explain this, we need some group theory.

Definition 1.2. Let G be a group acting on Ω. A base for G in this action is a
sequence of points (x1, . . . ,xb) chosen from Ω such that the pointwise stabiliser
G(x1,...,xb) of this sequence in G is trivial. An irredundant base is a base where
G(x1,...,xi,xi+1) 6= G(x1,...,xi) for i = 1, . . . ,b−1.

For instance, if G is sharply k-transitive (i.e. given two k-tuples of distinct
elements of Ω, there exists a unique g ∈ G mapping one to the other), any k-tuple
of points form an irredundant base.

Now let r = bd−1
2 c, where

d = n−max
g∈G
g6=1

|Fix(g)| ,

and Fix(g) denotes the set of fixed points of g. So d is the minimum degree of
G, which is also the minimum Hamming distance of G when regarded as a code.
Because of the application in coding theory, we call r the correction capability of
G.

The specialisation we need is as follows.

Definition 1.3. Let G be a group acting on Ω. An uncovering-by-bases for G in
this action is a set U of bases for G such that any r-subset of Ω is disjoint from at
least one base, where r is as above.

Although not immediately obvious, it is quite easy to show that for a given
action of a given group an uncovering-by-bases exists (see [2]). In the case where
G is sharply k-transitive, any k-tuple of points form a base, so all that is required is
an (n,k,r)-uncovering.
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A general approach to the construction of uncoverings-by-bases (which we use
in this article) is to first obtain an uncovering (or, equivalently, a covering design)
and then to arrange the set Ω so that each coblock forms a base for the action of G
on Ω.

1.2 Base-transitive groups

An obvious starting point for the construction of uncoverings-by-bases are groups
where all irredundant bases have the same form.

Definition 1.4. A group G acting on Ω is said to be base-transitive if it acts tran-
sitively on its irredundant bases. The rank of a base-transitive group is the size of
an irredundant base for G.

Because a base-transitive group of rank 1 is precisely a regular permutation
group, we only consider groups of rank at least 2.

Example 1.5. Suppose G is sharply k-transitive of degree n. Then G is base-
transitive of rank k.

Example 1.6. Let G be the general linear group GL(n,q) acting on Fn
q \{0}. Then

any basis for Fn
q forms an irredundant base for G, and so G is base-transitive of

rank n.

The type of a base-transitive group G encodes information about the numbers
of fixed points of G.

Definition 1.7. Let G be a base-transitive group of degree n and rank k, and let
(x1, . . . ,xk) be an irredundant base for G. Then the type of G is the pair

({l0, l1, . . . , lk−1},n),

where l0 is the number of fixed points of G, and li is the number of fixed points of
G(x1,...,xi) for 1 ≤ i ≤ k−1.

Since lk−1 is the maximum number of fixed points of a non-identity element,
we can therefore obtain the correction capability of G from its type.

As base-transitive groups generalise sharply k-transitive groups, the classifica-
tion of the former contains the classification of the latter. This latter classification
is due to Jordan (1873) [19] for k ≥ 4, and Zassenhaus (1936) [27, 28] for k = 2
and 3. A sharply k-transitive group must be one of the following.

k ≥ 6: Sk, Sk+1 and Ak+2 only.

k = 5: S5, S6, A7 and the Mathieu group M12.

k = 4: S4, S5, A6 and the Mathieu group M11.
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k = 3: The group

PGL(2,q) =
{

τ : x 7→ ax+b
cx+d

∣∣∣∣ a,b,c,d ∈ Fq,ad−bc 6= 0
}

acting on the projective line Fq ∪ {∞} (which includes S3 ∼= PGL(2,2),
S4 ∼= PGL(2,3) and A5 ∼= PGL(2,4)), plus an additional infinite family as
described by Cameron [5], page 16.

k = 2: The group

AGL(1,F) = {τ : x 7→ ax+b | a,b ∈ F,a 6= 0}

where F is a finite near-field, acting on F . In the case where F = Fq, we
use the notation AGL(1,q). Note that AGL(1,2) ∼= S2, AGL(1,3) ∼= S3 and
AGL(1,4)∼= A4.

A near-field is an object which satisfies all of the axioms of a field, with the
exception of the commutativity of multiplication and a left distributive law. So any
field is a near-field, and there is also an additional infinite family of finite near-fields
plus seven “exceptional” examples. All have prime-power order, and are described
by Cameron [5], page 16. A detailed account of the proof of this classification is
given by Dixon and Mortimer [14], section 7.6.

In the literature, base-transitive groups are often called geometric groups; see
section 7 for the reason behind this alternative name.

2 Classification of base-transitive groups

In this section, we give an overview of the classification of base-transitive groups.
Such a group falls into one of the following cases:

• “generic” examples for arbitrary rank;

• infinite families for ranks 2 and 3;

• “sporadic” examples of rank ≤ 5.

In order to describe the classification in detail, we require the important notion of
a “blow-up”, which is as follows.

Definition 2.1. Let G be a base-transitive group of rank k and type (L,n). Then
a blow-up of G is a base-transitive group Ĝ of rank k and type (mL,mn) (where
mL = {ml | l ∈ L}), such that:

(i) Ĝ has a normal subgroup N which has n orbits of size m,

(ii) Ĝ/N ∼= G,
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(iii) Ĝ induces the given action of G on the N-orbits.

From the third property, it follows that a base for Ĝ consists of k points chosen
from k “independent” N-orbits, i.e. from orbits which form a base for the action of
G induced on them.

The symmetric group Sn is something of an anomaly here, as although it has
rank n−1 and type ({0,1, . . . ,n−2},n), when it comes to constructing blow-ups,
it behaves as if it also has an action of rank n and type ({0,1, . . . ,n−1},n). (This
is because it is both sharply (n−1)-transitive and sharply n-transitive.) We see this
in the following example.

Example 2.2. Consider the entry (iii) in the list of “generic” base-transitive groups.
Here we have G = Sn and Ĝ = H oSn, where H is a regular group of order m. Since
H oSn has the form Hn o Sn, we take K = Hn (the direct product of n copies of H).
So K has n orbits of size m, Ĝ/K ∼= Sn, and Ĝ induces the usual action of Sn on
these orbits.

The classification proceedes as follows. There “generic” examples are:

(i) Sn, which has rank n−1 and type ({0,1, . . . ,n−2},n);

(ii) An, rank n−2, type ({0,1, . . . ,n−3},n);

(iii) G = H oSn, where H is a regular group of degree m, so G has rank n and type
({0,m, . . . ,(n−1)m},nm) (as in Example 2.2);

(iv) the semidirect product G = X oSn, for X = {(a1, . . . ,an) ∈ An | a1 + · · ·+an = 0}
where A is an abelian, regular group of degree m (written additively), so G
has rank n−1 and type ({0,m, . . . ,(n−2)m},nm) (this is a blow-up of Sn in
its action of rank n−1);

(v) GL(n,q) acting on Fn
q\{0}, which has rank n and type ({0,q−1,q2−1, . . . ,qn−1−1},qn−1)

(i.e. the general linear group in its natural action);

(vi) the stabiliser in GL(n,q) of d independent vectors v1, . . . ,vd , where 0 < d < n,
acting on Fn

q \ 〈v1, . . . ,vn〉, which has rank n−d and type
({0,(q−1)qd , . . . ,(qn−d−1−1)qd},(qn−d −1)qd) (this is a blow-up of GL(n−d,q));

(vii) AGL(n,q) acting on Fn
q, which has rank n+1 and type {0,1,q,q2, . . . ,qn−1},qn)

(i.e. the affine general linear group in its natural action);

(viii) the group V o H, where V is the additive group of Fn
q and H is the group in

(vi), this has rank n− d + 1 and type ({0,qd ,qd+1, . . . ,qn−1},qn) (this is a
blow-up of AGL(n−d,q)).

Zil’ber [29] showed that for rank at least 7, there are only “generic” examples.
The classification for ranks 2 to 6 is due to Maund [22]: we summarise her result
below. In addition to the appropriate “generic” examples, we have the following
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groups.

–Rank 2

• The sharply 2-transitive groups, which have type ({0,1},n) (where n is a
prime power);

• C(q−1)/2×PSL(2,q) for q ≡ 3 mod 4, of type ({0, q−1
2 }, (q2−1)

2 );

• Cq−1×Sz(q), type ({0,q−1},(q−1)(q2 +1)) (where q is an odd power of
2);

• PSL(3,2), type ({0,2},14);

• PSL(3,3), type ({0,6},78).

In the second and third case, the action is the Caresian product of the regular
action of the cyclic factor with the natural 2-transitive action of the other factor.
The fourth case arises as the point stabiliser of the degree 15 action of A7, listed
below. In the fifth case, the stabiliser of a point is the subgroup fixing a line in the
projective plane of order 3 and inducing the regular Klein group on it.

–Rank 3

• PGL(2,q) and the other sharply 3-transitive groups, type ({0,1,2},q+1);

• blow-ups of PGL(2,q), type ({0,qd ,2qd},qd(q + 1)) (these are difficult to
describe: see section 5.2);

• A7 acting on F4
2 \{0}, type ({0,1,3},15);

• V oK, where V is the additive group of F4
2 and K is the point-stabiliser of A7

in the above action, type ({0,2,4},16).

–Ranks 4, 5 and 6

• V o A7 (where V is as above), rank 4, type ({0,1,2,4},16);

• M11, rank 4, type ({0,1,2,3},11);

• M12, rank 5, type ({0,1,2,3,4},12).

Unlike Zil’ber’s, Maund’s proof uses the classification of finite simple groups.
It involves first classifying the base-transitive groups of rank 2 (by using the clas-
sification of 2-transitive groups), and then using induction to analyse the higher
ranks. Unfortunately, neither Maund’s nor Zil’ber’s work has ever been published
in a particularly accessible form: Cameron [4] contains a brief survey.
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3 Infinite families of arbitrary rank

In this section, we consider some of the list of “generic” groups and construct
uncoverings-by-bases. We are able to do this in general for entries (i) to (iv) (the
symmetric and alternating groups, and blow-ups of Sn). The general linear group
and related groups have proved more challenging, and we do not have a general
construction. Rank 2 examples are, however, covered by the general construction
in section 4, while the rank 3 groups GL(3,q) and AGL(2,q) are considered in
detail in section 5. Constructing uncoverings-by-bases for these groups in general
remains open.

3.1 Symmetric and alternating groups

The symmetric group Sn, in its usual action on n points, is both sharply n and
(n− 1)-transitive. Thus the minimum degree of Sn is n− (n− 1)+ 1 = 2, and so
its correction capability is 0. Hence it is useless as an error-correcting code, but
the definition of uncovering-by-bases still holds vacuously; all we need is a single
base, so any (n−1)-subset will do.

The alternating group, in its usual action on n points, is sharply (n−2)-transitive,
so has minimum degree n− (n−2)+1 = 3, and hence correction capability 1. So
for each n we require an (n,n−2,1)-uncovering.

Construction 3.1. We need a set of (n−2)-subsets of {1, . . . ,n} with the property
that every point lies outside of one of the subsets. Alternatively, we need an (n,2,1)
covering design. If n is even, then we can take 1

2 n disjoint pairs, and we are done.
If n is odd, then we take 1

2(n− 1) disjoint pairs, then a pair which contains the
remaining point and any other point. Then to obtain an (n,n− 2,1)-uncovering,
we take the complement of each pair.

Example 3.2. For the alternating group A7, we need a (7,5,1)-uncovering. Using
the construction above, we obtain:

3 4 5 6 7

1 2 5 6 7

1 2 3 4 7

2 3 4 5 6

In section 6 we consider A7 in another action.

3.2 Wreath products of regular groups

We now consider the entry (iii) on the list of “generic” base-transitive groups (and
discussed in Example 2.2). Let H be a regular permutation group of order m,
and consider G = H o Sn in its imprimitive action on a set Ω of nm points. For
convenience, we think of Ω as a rectangle of n columns each of m rows. G acts on
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the columns of Ω as Sn, and the kernel of this action (i.e. the group fixing all the
columns) is Hn.

We call a set of n points, one chosen from each column of Ω, a transversal of
Ω. It is clear to see that a transversal forms an irredundant base and that G acts
transitively on the set of all transversals.

It is also clear that fixed points of elements of G occur in multiples of m, so
the maximum number of fixed points a non-identity element can have is (n−1)m.
This number is realised by elements of the kernel Hn which fix all points in all but
one column. Consequently, the minimum degree of G is nm− (n−1)m = m, and
so the correction capability of G = H oSn is r = bm−1

2 c. Thus it remains to construct
an uncovering-by-bases for this group, which is a straightforward task.

Proposition 3.3. A set of r +1 disjoint transversals of Ω forms an uncovering-by-
bases for G.

Proof. For simplicity, we take the first r +1 rows of Ω to be our disjoint transver-
sals. Now, if there are r errors, these could be spread across many columns, but
can appear in at most r different rows. Thus at least one of the r + 1 transversals
must avoid the error positions.

A similar technique is required for the related family of groups described in the
next section.

3.3 Zero-sum subgroups

In this section, we consider entry (iv) on the list of “generic” groups. These are
also examples of blow-ups of Sn, in its base-transitive action of rank n−1 and type
({0,1, . . . ,n−2},n). Let A be a finite abelian group of order m, written additively.
Define X ≤ An by X = {(a1,a2, . . . ,an) | a1 + a2 + · · ·+ an = 0}, and consider the
semidirect product G = X o Sn, where the action of Sn on X is by permuting the
co-ordinates of elements of X . We refer to G as the zero-sum subgroup of A o Sn.
As a permutation group this has degree mn, where an element (a1,a2, . . . ,an) ∈ X
acts by componentwise addition.

A set of n− 1 points, each chosen from a different copy of A, forms an irre-
dundant base for G; we call such a base a partial transversal of An. It can eas-
ily be shown that G acts transitively on the set of all partial transversals, so G is
base-transitive. As with the group in the previous section, fixed points must oc-
cur in multiples of m. However, this time the maximum number of fixed points
of a non-identity element is (n− 2)m, as an element with (n− 1)m fixed points
would not have the “zero-sum” property, while a transposition in Sn induces a
permutation with (n− 2)m fixed points. Consequently the minimum degree of G
is nm− (n− 2)m = 2m, and so the correction capability is r = b2m−1

2 c = m− 1.
Knowledge of this enables us to construct an uncovering-by-bases.

Proposition 3.4. A set of m disjoint partial transversals forms an uncovering-by-
bases for G.
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Proof. The proof is analogous to that of Proposition 3.3. For simplicity, we take
the first n−1 entries of each of the m rows of Ω as our partial transversals. Now, if
there are r = m−1 errors, then these can be spread across many columns, but can
occur in at most m− 1 rows. Hence there will be at least one row which contains
no error positions, so there will be a partial transversal which avoids them all.

4 Base-transitive groups of rank 2

When it comes to constructing uncoverings-by-bases, base-transitive groups of
rank 2 are straightforward to deal with. This is because we have a general the-
orem (Theorem 4.1) which enables us to construct uncoverings-by-bases without
having to consider each case separately. Throughout, G denotes a permutation
group acting on Ω. For a ∈Ω, let Ga be the stabiliser in G of a. Also, we make the
assumption that there are no points fixed by the whole group.

Theorem 4.1. Let G be a finite base-transitive group of rank 2 acting on a set
Ω. Then there is a system of imprimitivity on Ω such that two points drawn from
distinct imprimitivity blocks form a base for G.

Proof. We define a G-invariant equivalence relation on Ω and show that the ensu-
ing block system has the property we require. Define ∼ on Ω by a∼ b⇔Ga = Gb.
Clearly this is an equivalence relation. We need to check that it is G-invariant.
Suppose a∼ b. Since Gag = g−1Gag, we have Gag = g−1Gag = g−1Gbg = Gbg , i.e.
that ag ∼ bg.

The next step is to determine the equivalence classes. Let [a] = {b : b ∼ a},
and let Fix(H) denote the set of points fixed by all elements of H ≤ G. We claim
that [a] = Fix(Ga).

First, suppose b ∈ [a], i.e. that Gb = Ga. By definition, b ∈ Fix(Gb) = Fix(Ga).
Conversely, suppose b 6∈ [a], i.e. that Ga 6= Gb. Now, since G is base-transitive and
therefore transitive, |Ga| = |Gb|, so there exists some g ∈ Ga with bg 6= b. Thus
b 6∈ Fix(Ga), and the claim is proved.

Finally, we explain the base structure of G. Since G is base-transitive of rank 2,
a base consists of a pair of points whose pointwise stabiliser is trivial. The choice
of the first point is arbitrary, so let this be some point a. Now, for {a,b} to be a
base for G, we require that b is not fixed by Ga, and so must therefore lie outside
the block [a] = Fix(Ga). Consequently, we can choose b to be any point from the
remaining blocks.

We remark that this block system is trivial (i.e. the blocks all have size 1) if and
only if G is sharply 2-transitive: this follows easily from the proof above. If G is
sharply 2-transitive, then Ga 6= Gb for a 6= b, so a ∼ b means a = b. Conversely, if
the equivalence relation ∼ is equality, because G is base-transitive Ga is transitive
on Ω \ Fix(Ga) = Ω \ [a] = Ω \ {a}. Thus G is 2-transitive, and must therefore
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be sharply 2-transitive. This corresponds to our knowledge that any pair of points
forms a base for a sharply 2-transitive group.

Another useful fact is a general formula for the maximum number of fixed
points of a non-identity element.

Proposition 4.2. Let G acting on Ω be a finite base-transitive group of rank 2.
Then the number of fixed points of a non-identity element of G is either 0 or m,
where m = |Fix(Ga)| for some a ∈ Ω.

Proof. We need to show that if g 6= 1 has a fixed point, say a, then it has exactly
m = |Fix(Ga)| fixed points. (We note that the size of Fix(Ga) is not dependent on
the choice of a.)

Since G is base-transitive of rank 2, Ga acts regularly on Ω\Fix(Ga) (because
any point in here, along with a, forms a base for G, by Theorem 4.1). Conse-
quently, if an element of Ga fixes a point in Ω\Fix(Ga), it fixes all these points,
and therefore must be the identity.

Suppose g fixes a. Clearly, g belongs to Ga, so g (when acting on Ω) fixes all
points in Fix(Ga) and no others. Hence g has |Fix(Ga)| fixed points.

By an earlier remark, the minimum degree of G is given by

|Ω|−max
g∈G
g 6=1

|Fix(g)| .

Here, Ω is partitioned into blocks of the form Fix(Ga), each of which has size
m. Thus |Ω|= km for some k. By Proposition 4.2, the maximum number of fixed
points of a non-identity element is m. Hence the minimum degree of G is km−m =
(k−1)m. Consequently, the correction capability of a base-transitive group of rank
2 is r =

⌊
(k−1)m−1

2

⌋
.

We construct an uncovering-by-bases by taking a suitable (km,2,r)-uncovering
and ensuring each pair of points is a base. One can easily construct a general
(v,2, t)-uncovering, by taking t +1 disjoint pairs of elements from our v-set; clearly
this forms an uncovering, as no t-set can intersect non-trivially with all pairs. Ob-
viously this will only work if t ≤ 1

2 v−1. In the case we are interested in, we have

v = km and t = r (where r is as above); one can easily verify that r =
⌊

(k−1)m−1
2

⌋
≤

1
2 km− 1 for all m ≥ 1. So we can use this to construct an uncovering-by-bases,
provided we can allocate the disjoint pairs so that each forms a base for G (i.e. that
each pair is chosen from distinct blocks).

Recall that there are k blocks, and that we require r +1 disjoint bases.

Construction 4.3. First, suppose k is even. Partition the set of blocks into 1
2 k

pairs of blocks. Let {A,B} be a pair of blocks, where A = {a1, . . . ,am} and B =
{b1, . . . ,bm}. Then we can have m disjoint bases of the form {ai,bi} (for i = 1, . . . ,m).
Doing this for each pair of blocks gives 1

2 km bases in total. As shown above, we
know that r +1 ≤ 1

2 km, so this is sufficient.
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Now suppose k is odd. Perform the same trick to k− 1 of the blocks, giv-
ing 1

2(k− 1)m disjoint bases. However, since k is odd, we know that r + 1 =⌊
(k−1)m−1

2

⌋
+1 = 1

2(k−1)m. Hence we have exactly the right number of bases.

It is worth remarking that if G is sharply 2-transitive, the blocks all have size
1, so therefore this construction reduces to merely taking disjoint pairs of points to
form an uncovering.

Example 4.4. Let G be the general linear group GL(2,q) acting on F2
q \{0}. Now,

using elementary linear algebra, an element fixing a point v fixes its linear span, 〈v〉,
i.e. a line through the origin. So each line (with 0 removed) forms an equivalence
class of size q−1, and there are q+1 classes. The minimum degree is (q2−1)−
(q− 1) = q2 − q. To construct an uncovering-by-bases, we arrange the lines into
pairs of lines, and take q− 1 pairs of points to give q− 1 bases. This gives us a
total of bq+1

2 c(q−1) disjoint bases.

5 Base-transitive groups of rank 3

In this section we construct uncoverings-by-bases for various families of base-
transitive groups of rank 3. These are the sharply 3-transitive groups, the blow-ups
of PGL(2,q), the general linear group GL(3,q) and the affine general linear group
AGL(2,q). The two exceptional groups of rank 3 are considered in section 6. The
rank 3 cases of the “generic” families (vi) and (viii) remain open.

We begin by giving constructions for (2m,3,m− 1)- and (2m− 1,3,m− 2)-
uncoverings, then showing how to convert these into suitable uncoverings-by-bases
for the groups we consider.

5.1 An uncovering

The construction we present first gives a (2m,3,m−1)-uncovering, so this can be
used when the number of points is even. As the coblocks have size three, we refer
to them as triples.

Theorem 5.1. Let A2m denote the set of all 2m triples of the form {i−1, i, i+m},
for i ∈ Z2m and with addition modulo 2m. Then A2m forms a (2m,3,m− 1)-
uncovering.

Proof. Let X denote an arbitrary (m−1)-subset of Z2m, and let Y denote its com-
plement, so |Y |= m+1. We assign colours to the 2m points as follows: red if the
point lies in X , green if it lies in Y .

We partition Z2m as the union of the m “antipodal” pairs, i.e. the set of pairs
of the form {i, i + m}. Now, with the colouring described above, the pairs are as
follows:

• green pairs (i.e. both points are coloured green);
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• red pairs (both points red);

• bichromatic pairs (one point of each colour).

Let G denote the set of green pairs, R the set of red pairs and B the set of bichro-
matic pairs.

We need to show that there exists a green pair that can be extended to a triple
of the form {i−1, i, i+m} that is disjoint from X , i.e. all three points are coloured
green. This will only fail if every green pair is preceded by a red pair (i.e. both
i−1 and i+m−1 are coloured red), which would require |G | ≤ |R |.

Counting the total number of red points gives |X |= m−1 = 2|R |+ |B|. From
this and the fact that |R |+ |G |+ |B| = m, it follows that |G | = |R |+ 1 and we
cannot possibly fail.

Example 5.2. Consider the case m = 5. In each row, the framed elements form
a coblock in the (10,3,4)-uncovering A10, while the remaining elements form a
block in the corresponding covering design.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Note: Examples of these uncoverings (or rather the corresponding covering de-
signs) appear in the database of covering designs maintained by Gordon [16], as
“cyclic coverings found by search program”. No reference for a general construc-
tion is given.

We remark that this construction is within a constant factor of the least possible
size. Thanks to a result of W. H. Mills (which is too complicated to state in full
generality here, but can be found in [23], Theorem 2.3), a (2m,3,m−1)-uncovering
(or, equivalently, a (2m,2m−3,m−1) covering design) must have size at least 5

3 m.
Our construction gives an uncovering of size 2m, so this is within a factor of at most
6
5 of the optimal size.

From the construction in Theorem 5.1, we can obtain uncoverings for where
there are an odd number of points, thanks to the following lemma. This is a special
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case, rephrased in terms of uncoverings rather than covering designs, of the “in-
duced construction” due to Gordon, Kuperberg and Patashnik [17], in section 4 of
their paper.

Lemma 5.3. Let U be a (v,k, t)-uncovering with point set {1, . . . ,v}, and let W
be the subset of U obtained by removing all coblocks containing the point v. Then
W is a (v−1,k, t−1)-uncovering.

Proof. Let E be an (t−1)-subset of {1,2, . . . ,v−1}. As U is a (v,k, t)-uncovering,
there exists a coblock T ∈U disjoint from the t-set E∪{v}. Now, clearly T cannot
be one of the m-sets containing v. Thus T ∈ W , and is disjoint from E. Hence W
is a (v−1,k, t−1)-uncovering.

Thus we can apply Lemma 5.3 to the construction from Theorem 5.1 to obtain
a (2m−1,3,m−2)-uncovering.

Corollary 5.4. Let B2m−1 be the subset of A2m obtained by removing all triples
containing the point 2m. Then B2m−1 is a (2m− 1,3,m− 2)-uncovering, of size
2m−3.

Example 5.5. The (9,3,3)-uncovering B9, obtained from A10 (see Example 5.2),
is given below:

1 2 7

2 3 8

3 4 9

1 5 6

2 6 7

3 7 8

4 8 9

For sharply 3-transitive groups, any triple of points forms a base, so the above
constructions A2m and B2m−1 can be used immediately as uncoverings-by-bases
for these groups. From the list of rank 3 groups in section 2, we see that a sharply
3-transitive group of degree n has minimum degree n− 2 and hence correction
capability r = bn−3

2 c. If n is even, say n = 2m, we have r = m−2; if n is odd, say
n = 2m−1, again we have r = m−2. So in fact when n is even, we actually have
a better uncovering than we need.

Example 5.6. PGL(2,q) is sharply 3-transitive of degree q + 1, and exists for all
prime powers q. So, for instance, A10 (Example 5.2) can be used for PGL(2,9) and
B9 (Example 5.5) used for PGL(2,8).
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5.2 Blow-ups of PGL(2,q)

The family of groups described by Maund [22] as blow-ups of PGL(2,q) are quite
hard to define from scratch. However, as they are blow-ups (see Definition 2.1)
their base structure is relatively uncomplicated. For our purposes, this is all that is
required: one does not need to know the precise details of the action of the group
in order to construct an uncovering-by-bases. The following theorem is taken from
Maund’s D.Phil. thesis [22].

Theorem 5.7. Let G be a blow-up of PGL(2,q). Then G has degree qd(q + 1),
and has q + 1 blocks of imprimitivity, each of size qd . An irredundant base for G
consists of three points lying in distinct blocks; moreover, every such triple is an
irredundant base and G acts transitively on them.

We think of the blocks as (q+1) columns each containing qd points. The base
structure follows from the fact that the action on the q + 1 columns is the usual
action of PGL(2,q) on q + 1 points, which is sharply 3-transitive, so a base for G
consists of three points, each drawn from different columns.

Proposition 5.8. Let G be a blow-up of PGL(2,q). Then the correction capability
of G is r = 1

2 qd(q−1)−1.

Proof. According to Maund [22], the maximum number of fixed points of a non-
identity element is 2qd . Hence the minimum degree is qd(q+1)−2qd = qd(q−1)
and so the correction capability is r =

⌊1
2(qd(q−1)−1)

⌋
= 1

2 qd(q−1)−1.

Observe that qd(q + 1) is always even, so we only need the (2m,3,m− 1)-
uncovering A2m (Theorem 5.1). We notice that this is actually better than we really
need, since the correction capability r is actually less than m−1 = 1

2 qd(q+1)−1.
In order to convert A2m into an uncovering-by-bases for G, we must ensure that

each triple forms a base. So we arrange the 2m = qd(q+1) points into a rectangle
of qd rows of length q + 1, such that in each triple in A2m the three points come
from different columns. As will become evident, we must consider q odd and q
even separately.

Construction 5.9. Suppose that the set of points is {1,2, . . . ,2m}. Arrange them
into a rectangle by placing 1,2, . . . ,q+1 into the first row, q+2,q+3, . . . ,2(q+1)
into the second row, and so on. Thus column j contains all points congruent to j
(mod q + 1). For example, with q = 3 and d = 1 we have 12 points arranged as
follows.

1 2 3 4

5 6 7 8

9 10 11 12

Theorem 5.10. Let G be a blow-up of PGL(2,q), where q is odd, and let 2m =
qd(q + 1). Suppose the points {1,2, . . . ,2m} are arranged in a rectangle as in
Construction 5.9. Then A2m forms an uncovering-by-bases for G.
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Proof. Recall that A2m contains all triples of the form {i−1, i, i+m}, where 1 ≤ i ≤ 2m
and addition is modulo 2m. (In particular, this means that i+m = i−m.) We wish
to avoid situations where any two of the three points lie in the same column. First,
as q is an odd prime power we have q+1 ≥ 4, so clearly the points i−1 and i are
always in different columns. Second, i and i + m are in the same column if and
only if m ≡ 0 (mod q + 1). Since m = 1

2 qd(q + 1), this happens if and only if q is
even, contrary to assumption. Finally, i− 1 and i + m are in the same column if
and only if m+1 ≡ 0 (mod q+1). If this happens, then as both m+1 and 2m are
multiples of q+1, we have that (q+1) | 2(m+1)−2m = 2. But this is impossible,
as q+1 ≥ 4.

So Construction 5.9 definitely works when q is odd. For example, with q = 3
and d = 1 we have the 12 triples listed below.

Example 5.11. By comparing these with the arrangement above, we see that each
of the 12 triples is spread across three columns.

12 1 7

1 2 8

2 3 9

3 4 10

4 5 11

5 6 12

6 7 1

7 8 2

8 9 3

9 10 4

10 11 5

11 12 6

However, the case where q is even is still to be resolved. As the proof of
Theorem 5.10 shows, the same method won’t work, so we need to modify it. First
we observe that since q is even, we now have an even number of rows, so we
can split these into a “top half” (first qd

2 rows) and a “bottom half” (last qd

2 rows).
Furthermore, we observe that, in Construction 5.9 above, when i− 1 and i lie in
the top half, i+m must lie in the bottom half (with the exception of the “boundary
cases”, when i = 1 or i = m+1). So we perform the following “trick”.

Construction 5.12. Arrange the points {1, . . . ,2m} into a rectangle as in Construc-
tion 5.9, except with all rows in the bottom half “cycled” two places to the right.
For instance, with q = 4, d = 1 we have the following:

1 2 3 4 5

6 7 8 9 10

14 15 11 12 13

19 20 16 17 18

We need to demonstrate that this trick works in general.

15



Theorem 5.13. Let G be a blow-up of PGL(2,q), where q is even and q > 2, and let
2m = qd(q+1). Suppose the points {1,2, . . . ,2m} are arranged as in Construction
5.12. Then A2m forms an uncovering-by-bases for G.

Proof. Recall that our triples are of the form {i−1, i, i+m}. First, we deal with the
case when i−1 and i are both in the top half, and lie in columns j−1 and j (mod
q + 1). Now, before the shift is applied, by the same arguments as in the previous
proof, i+m will also lie in column j. But after the shift, it will now lie in column
j +2.

Second, we deal with the case when both i−1 and i are both in the bottom half.
Because of the shift applied, these will lie in columns j +1 and j +2 while i+m,
which will be in the top half, lies in column j.

Then there are the two “boundary” cases. First, if i = 1, then clearly i lies in
the column 1. However, before the shift, i−1 will be in the last column of the last
row (and thus is in the bottom half), so after the shift will lie in column 2. Also,
i+m will be in column 1 before the shift, and so is in column 3 afterwards.

Second, if i = m+1, then i will be in the first row of the bottom half, and in the
first column before the shift. Thus after the shift it will lie in column 3. i−1 will
be in the last column of the last row of the top half, i.e. in column q + 1. Finally,
i+m will be in the first row and the first column, i.e. column 1.

We see that in all of these cases the three entries are in distinct columns.

We conclude by remarking that this does not work if q = 2, as we will have
three columns and, for instance, j−1 ≡ j +2 (mod 3). Thus for q = 2, an entirely
different approach is required. But since PGL(2,2) ∼= S3, we have already dealt
with blow-ups of this group (in section 3).

5.3 GL(3,q)

To construct an uncovering-by-bases for the group GL(3,q) acting on F3
q \ {0},

we will not work in the vector space, but instead we move the problem into the
extension field Fq3 . Since they are isomorphic as vector spaces over Fq, we are
able to make use of the additional structure that finite fields have. We obtain a
collection of bases for Fq3 , and then apply the isomorphism to obtain bases for F3

q.
The background material on finite fields that we require is the following. For

basic definitions and terminology, we refer the reader to the Encyclopædia of Math-
ematics volume on finite fields by Lidl and Niederreiter [21]. Let K = Fq be the
finite field of order q and F = Fqn be its degree n extension field. Because the mul-
tiplicative group of a finite field is cyclic, it can be generated by a single element;
we call such an element a primitive element.

Definition 5.14. For α ∈ F , the trace of α over K, TrF/K(α), is defined as

TrF/K(α) = α+α
q +α

q2
+ · · ·+α

qn−1
,

i.e. the sum of the conjugates of α.
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The conjugates of α are the roots of the minimum polynomial, say f (x), of α

over K. If α does not lie in a proper subfield of F , then all of its conjugates are
distinct, and so we have that f (x) = xn + an−1xn−1 + · · ·+ a1x + a0 factorises as
f (x) = (x−α)(x−αq) · · ·(x−αqn−1

). We observe that, when multiplying out the
second form of f (x), the coefficient of xn−1 is −TrF/K(α), i.e. we have:

Proposition 5.15. TrF/K(α) =−an−1.

The following definition relates conjugates to bases.

Definition 5.16. A normal basis for F over K is a basis consisting of the conjugates
{α,αq, . . . ,αqn−1} of some element α ∈ F . Such an element α is called a free
element.

Free elements have the following useful property.

Lemma 5.17. A free element α ∈ F satisfies TrF/K(α) 6= 0.

Proof. Suppose not. Then we would have α + αq + αq2
+ · · ·+ αqn−1

= 0, i.e. the
conjugates would be linearly dependent and do not form a basis, i.e. α is not free.

The Normal Basis Theorem (described in [21], Theorem 2.35) states that for
any prime power q and n > 1, there exists a free element α, i.e. that there exists a
normal basis. A more specific type of basis is a primitive normal basis, which is a
normal basis but with the extra condition that the free element α is also a primitive
element. The following theorem is important here.

Theorem 5.18. The Primitive Normal Basis Theorem (Carlitz; Davenport; Lenstra
and Schoof; Cohen and Huczynska). For any prime power q and n > 1, there exists
a primitive normal basis of Fqn over Fq.

The theorem was originally proved by Carlitz [8, 9] in 1952 for “sufficiently
large” q and n and in 1968 by Davenport [13] for any n in the case where q is
prime. Later (1987), Lenstra and Schoof [20] completed the proof, but with the
aid of a computer; more recently (2003) Cohen and Huczynska [11] gave a non-
computational proof. The result we will need in the next section is the following
corollary.

Corollary 5.19. For any prime power q and n > 1, there exists a primitive element
α ∈ F = Fqn such that TrF/K(α) 6= 0 (where K = Fq).

Proof. By the Primitive Normal Basis Theorem, a primitive, free element α exists.
By Lemma 5.17, free elements have non-zero trace.

We remark that the Primitive Normal Basis Theorem is a much stronger result
than we actually need, and that there are other results that we could use in its place.
For instance, a result of Cohen [10] shows that with one non-trivial exception, Fqn
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contains a primitive element of arbitrary trace over Fq.

We now have the necessary background, so we return to the subject of GL(3,q).
As happened with GL(2,q) (see Example 4.4), the largest possible set of fixed
points consists of a subspace of codimension 1, so this has size q2−1. Hence the
minimum degree is q3−q2 and so the correction capability is r = 1

2(q3−q2)−1.
Note that GL(3,q) can have even or odd degree (depending on the parity of q),
so we will consider q odd and even separately, and convert A2m and B2m−1 into
uncoverings-by-bases.

As was the case with the groups in the previous subsection, the uncoverings
A2m and B2m−1 are actually capable of uncovering more points than the correction
capability r. When q is odd we have 2m = q3−1, so m−1 = 1

2(q3−1)−1, while
when q is even we have 2m− 1 = q3 − 1, so m− 2 = 1

2 q3 − 2. In both cases we
have more than r points.

Now we proceed with the constructions. First, we suppose q is odd, so therefore
q3 − 1 is even, say q3 − 1 = 2m. If α is a primitive element of Fq3 , then the non-
zero elements of Fq3 are the powers of α, i.e. Fq3 = {1,α,α2, . . . ,α2m−1}. Note
that α2m = 1, and also that (αm)2 = α2m = 1, so αm =−1.

Suppose we attempt to convert A2m into an uncovering-by-bases, using the
bijection ψα : Z2m → F∗q3 where i 7→ αi. Unfortunately, this will not work, as each
triple of field elements will have the form {αi−1,αi,αi+m}. This will be a basis if
and only if {1,α,αm+1} is a basis. However, since αm = −1, we have the triple
{1,α,−α}, which is clearly not a basis.

All is not lost, however. Instead of ordering the field elements as above, we
modify it as follows. Define the bijection ϕα : Z2m → F∗q3 where i 7→ ϕα(i) as
follows:

i 0 1 2 · · · m−1 m m+1 · · · 2m−3 2m−2 2m−1

ϕα(i) 1 α α2 · · · αm−1 αm+2 αm+3 · · · α2m−1 αm αm+1

That is, the first half remain as they were under ψα, and the second half are moved
two places to the left, with the remaining two elements replaced at the end.

Theorem 5.20. Suppose q is odd, and that α is a primitive element of Fq3 with
non-zero trace over Fq. Then the set of triples of the form

{ϕα(i−1),ϕα(i),ϕα(i+m)} ,

for i ∈ Z2m forms an uncovering-by-bases for GL(3,q) acting on Fq3 .

Proof. First, by Theorem 5.1, we know that these triples form an uncovering, so
we only need verify that each triple is a basis. Second, we have that Corollary
5.19 guarantees the existence of a suitable primitive element. Also, this choice of
α ensures that both {1,α,α2} and {1,α,α3} are linearly independent over Fq. (If
not, we would have that α was a root of x3 + ax + b = 0 (for a,b ∈ Fq), but this
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cubic would then have to be the minimum polynomial of α, implying α had trace
0.)

Divide consideration of the triples into seven cases: (1) 1 ≤ i ≤ m− 3, (2)
m−2≤ i≤m−1, (3) i = m, (4) m+1≤ i≤ 2m−3, (5) i = 2m−2, (6) i = 2m−1
and (7) i = 2m. We will describe the argument in two cases, (1) and (4); the other
cases work similarly. In case (1), each triple is a basis if and only if {1,α,αm+3}
is. Since αm = −α, this is a basis if and only if {1,α,−α3} is, so if and only if
{1,α,α3} is. In case (4), each triple is a basis if and only if {αm+2,αm+3,α} is,
i.e. if and only if {−α2,−α3,α} is, so if and only if {1,α,α2} is.

In all seven cases, showing that each type of triple is a basis reduces to checking
that either {1,α,α2} or {1,α,α3} is, so we are done.

In order to obtain an uncovering-by-bases for the action of GL(3,q) on F3
q, we

must exhibit an isomorphism between the vector space F3
q and the extension field

Fq3 . The smallest example for this is still quite large: GL(3,3) acting on the 26
non-zero vectors in F3

3.

Example 5.21. The isomorphism between the vector space F3
3 and the extension

field F27 is found from the minimum polynomial of the primitive element α. From
Table F in Lidl and Niederreiter [21], the polynomial x3 +2x2 +1 is irreducible and
has a primitive element as a root. Clearly this polynomial has non-zero trace, so
it satisfies our requirements, although it can be verified that the primitive element
obtained is also a free element.

Thus the isomorphism F27 → F3
3 is given by aα2 + bα + c 7→ (a,b,c), for

a,b,c ∈ F3. For example, α4 = α2 + 2α + 2 7→ (1,2,2). Finding the image of
αi for each i enables us to write each of the triples as bases for F3

3 over F3; for in-
stance, the first triple {1,α,α16} corresponds to {(0,0,1),(0,1,0),(2,0,1)}. The
same approach gives us all 26 triples.

We now deal with the case where q is even, say q = 2s. Consider Fq ⊂ Fq3 ,
i.e. F2s ⊂ F23s = F . This time, as there are an odd number, 2m− 1 = 23s − 1, of
elements in F∗, we want to convert B2m−1 into an uncovering-by-bases. To do so
we introduce an additional element, ∞, construct an uncovering of S = F∗∪{∞},
then remove the triples containing ∞. Let α be a primitive element of F . We have
S = {1,α,α2, . . . ,α2m−2,∞} so |S|= 2m = 23s, say. We construct a bijection

χα : Z2m → S

i 7→ αi for 0 ≤ i ≤ 2m−2

i 7→ ∞ for i = 2m−1.

Theorem 5.22. Suppose q is even, and that α is a primitive element of Fq3 whose
inverse has non-zero trace over Fq. Then the set of triples of the form

{χα(i−1),χα(i),χα(i+m)} ,

for i ∈ Z2m, excluding those containing ∞, forms an uncovering-by-bases for
GL(3,q) acting on Fq3 .
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Proof. First, by Corollary 5.4, we know that these triples will form an uncovering,
so we need to verify that each triple forms a basis. Second, we have that Corollary
5.19 guarantees the existence of a suitable primitive element.

Divide consideration of the triples into two cases: (1) 1 ≤ i ≤ m− 2, and (2)
m≤ i≤ 2m−2 (other values of i give triples containing ∞). In case (1), each triple
is a basis if and only if {1,α,αm+1} is. In case (2), each triple is a basis if and only
if {1,αm−1,αm} is.

Observe that {1,α,αm+1} fails to be a basis if and only if α is a root of f (x) =
xm+1 + ax + b (for some a,b ∈ Fq) and thus also of f (x)2 = x3 + a2x2 + b2. This
happens if and only if α−1 is a root of h(x) = x3 + a2

b2 x+ 1
b2 , i.e. if α−1 has trace 0.

Thus, by our choice of α, {1,α,αm+1} must be a basis. Using a similar argument,
we can show that {1,αm−1,αm} is also a basis.

Thus in both cases, the triples are bases, and we are done.

5.4 AGL(2,q)

As with GL(3,q), we convert our earlier constructions of uncoverings A2m and
B2m−1 into uncoverings-by-bases. We apply similar techniques to those we used
for GL(3,q), except now we are working in a 2-dimensional vector space, and
must consider affine independence rather than linear independence. To determine
the minimum degree, using elementary affine geometry (see, for instance, Neu-
mann, Stoy and Thompson [25]) we note that the largest possible set of fixed points
consists of an affine subspace of codimension 1 (i.e. a coset of a linear subspace
of codimension 1), which in this case has size q. Hence the minimum degree is
q2−q, and therefore the correction capability of AGL(2,q) is r = 1

2(q2−q)−1.
Once more, we remark that the uncoverings constructed are more powerful than

we need. For q odd, we have an even number of non-zero field elements, so use the
(2m,3,m−1)-uncovering with 2m = q2−1, so m−1 = 1

2(q2−1)−1. For q even,
we use the (2m−1,3,m−2)-uncovering with 2m−1 = q2−1, so m−2 = 1

2 q2−2.
In both cases, we have something larger than r.

As with GL(3,q), to construct our uncovering-by-bases we consider q odd and
even separately. In the case where q is odd, we have an even number of non-zero
field elements, 1,α,α2, . . . ,α2m−1 (where 2m = q2 − 1). This case is relatively
straightforward.

Theorem 5.23. Suppose q is odd. Then the set of triples {αi−1,αi,αi+m}, for
i ∈ Z2m, forms an uncovering-by-bases for AGL(2,q) acting on Fq2 .

Proof. By Theorem 5.1, we know that this set is an uncovering, so therefore we
need to verify that each triple is a base for AGL(2,q). It suffices to show that
the triple {1,α,αm+1} (and hence each multiple of it by powers of α) is a base,
i.e. that it is affine-independent. This is equivalent to the pair {α− 1,αm+1 − 1}
being linearly independent. Since αm = −1, this pair is actually {α−1,−α−1},
which is clearly linearly independent.
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Thus {1,α,αm+1} is affine-independent, and it follows that each multiple of it
is also. Therefore the given set of triples forms an uncovering-by-bases.

The case where q is even is considerably more complicated. First we mention
that we do not need to consider the case q = 2, since AGL(2,2)∼= S4 has correction
capability 0. We require some preliminary lemmata, the first two of which are
number-theoretic in nature. Henceforth, φ denotes Euler’s totient function.

Lemma 5.24. For any positive integer n,

φ(n)≥ n
log2(n)

.

Proof. Let p1, p2, . . . , pr be the prime divisors of n. So n ≥ p1 p2 · · · pr ≥ 2r, and
therefore r ≤ log2(n). Also,

φ(n)
n

=
(

1− 1
p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
≥

(
1− 1

2

)(
1− 1

3

)
· · ·

(
1− 1

r

)
=

1
r

≥ 1
log2(n)

and the result follows.

Lemma 5.25. Where q = 2s (for s > 1), φ(q2−1) > 2(q−1).

Proof. Suppose not, i.e. suppose φ(q2−1)≤ 2(q−1). By Lemma 5.24 above, we
have

φ(q2−1) ≥ q2−1
log2(q2−1)

>
q2−1

log2(q2)

=
q2−1

2s
.

By assumption, we have
q2−1

2s
< 2(q−1)

i.e. 2s +1 < 4s, which fails for s ≥ 4.
Checking small cases by hand, we have:

s = 1 : φ(3) = 2, 2(q−1) = 2

s = 2 : φ(15) = 8, 2(q−1) = 6

s = 3 : φ(63) = 36, 2(q−1) = 14
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so the proposition holds for s > 1.

As we will see shortly, we will be restricted in our choice of primitive ele-
ment in this case. The next lemma guarantees the existence of the specific kind of
primitive element we will require.

Lemma 5.26. Let q = 2s (for s > 1) and consider Fq ⊂ Fq2 . Then there exists a
primitive element α of Fq2 which satisfies no polynomial of the form x2 + x + a,
where a ∈ Fq and a 6= 0.

Proof. There are exactly q− 1 such polynomials, which have a total of at most
2(q− 1) roots, which are not necessarily primitive. So there are at most 2(q−1)
primitive elements which satisfy such polynomials. However, there are a total of
φ(q2−1) primitive elements altogether, and by Lemma 5.25 above, φ(q2 − 1) >
2(q−1). Therefore a primitive element satisfying no such polynomial must exist.

In this case, instead of using B2m−1, we will use a new uncovering B ′
2m−1,

which has triples of the form {i, i + 1, i + m}, rather than what we have used pre-
viously. (The set of all such triples for 0 ≤ i ≤ 2m− 1 forms a (2m,3,m− 1)-
uncovering, simply by replacing i−1 with i+1 in the proof of Theorem 5.1.) Then
we apply the induced construction in Lemma 5.3, to obtain a (2m− 1,3,m− 1)-
uncovering.

As we did in Theorem 5.22, we introduce an additional point ∞, produce an
uncovering on S = {1,α,α2, . . . ,α2m−2,∞}, then remove each triple which con-
tains ∞. Define a bijection

θα : Z2m → S

i 7→ αi for 0 ≤ i ≤ 2m−2

i 7→ ∞ for i = 2m−1.

Note that 2m = q2 here.

Theorem 5.27. Suppose q is even and q > 2. Let α be a primitive element of Fq2

such that α2 +α 6∈ Fq. Then the set of triples of the form

{θα(i),θα(i+1),θα(i+m)} ,

for i ∈ Z2m, excluding those containing ∞, forms an uncovering-by-bases for
AGL(2,q) acting on Fq2 .

Proof. First, by the above we have that these triples form an uncovering, so we only
need to verify that each triple is affine-independent over Fq. Second, we observe
that Lemma 5.26 guarantees the existence of a suitable primitive element.

Now, there are two cases to consider: (1) 0≤ i≤m−2 and (2) m≤ i≤ 2m−3
(other values of i give triples containing ∞). Case (1) reduces to showing that
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{1,α,αm} is affine-independent, while case (2) reduces to showing {1,α,αm−1} is
affine-independent.

In case (1), we note that the triple {1,α,αm} is affine-independent if and only
if the pair {α+1,αm +1} is linearly independent. Now, because the characteristic
of this field is 2, and because m is a power of 2, we have that αm +1 = (α+1)m, so
in particular α+1 divides αm +1, with quotient (α+1)m−1. Thus {α+1,αm +1}
will be linearly independent if and only if (α+1)m−1 6∈ F∗q.

So suppose not, i.e. suppose (α+1)m−1 ∈ F∗q, and consider the quotient group
H = F∗q2/F∗q, which is cyclic and has order q + 1. Also, consider the natural pro-
jection map π : F∗q2 � H. Let β = π(α+1), so therefore βm−1 = 1. Thus the order
of β divides both m−1 and q+1, so divides

gcd(q+1,
1
2

q2−1) = gcd(q+1,q2−2)

= gcd(q+1,(q+1)(q−1)−1)
= 1.

Hence β has order 1, i.e. β = 1. But then this means α + 1 ∈ Ker(π) = F∗q, which
is impossible since α is a primitive element of Fq2 . Therefore (α+1)m−1 6∈ F∗q, so
we have that {α+1,αm +1} is linearly independent, and that {1,α,αm} is affine-
independent.

Case (2) requires the lemmata we proved above. Clearly, {1,α,αm−1} is affine-
independent if and only if {α + 1,αm−1 + 1} is linearly independent. Now, α + 1
divides αm−1 + 1, with quotient C = 1 + α + α2 + · · ·+ αm−2. Since the elements
of Fq2 sum to zero, we have ∑

2m−2
i=0 αi = 0, so 1 +Cα +Cαm = 0. Squaring (and

remembering we have characteristic 2) gives 1+C2α+C2α2 = 0, thus α2 +α = 1
C2 .

Our choice of α ensures that C 6∈ Fq, so {α+1,αm−1 +1} is linearly independent
and thus {1,αm,αm+1} is affine-independent.

Hence in both cases the triples are bases for AGL(2,q), and we are done.

6 Exceptional base-transitive groups

In this section we consider the “exceptional” base-transitive groups of ranks 3, 4
and 5. For each group, we first find an uncovering by taking the complements of
the blocks of a suitable covering design from the internet database maintained by
Gordon [16]. Then, if necessary, we relabel the points to ensure the coblocks are
all bases. The uncoverings-by-bases obtained are given explicitly in the author’s
Ph.D. thesis [1].

Gordon’s database contains covering designs with small parameters, most of
which have been found using various computational search techniques. We will
not discuss this here, as how the design was found does not concern us directly.
It is believed that the designs in the database are the smallest-known for each set
of parameters, but it is not clear from the database which have been proved to be
minimal. See [16] for full details.
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6.1 A7 and two related groups

Because of the exceptional isomorphism between the A8 and GL(4,2) (see the
ATLAS [12], page 22), the alternating group A7 has an action on F4

2 \ {0}. The
irredundant bases for A7 in this action are the linearly independent triples of vectors
in F4

2, and A7 acts transitively on these. Thus, in this action, A7 is a base-transitive
group of rank 3 and degree 15. From Maund [22] (or by direct computation), the
maximum number of fixed points of a non-identity element is 3, so therefore the
minimum degree is 12 and correction capability is 5.

We obtain a presentation for this action of A7 using the computer algebra sys-
tem GAP [15]. Its libraries of transitive groups contain a suitable presentation,
which is given (in disjoint cycle form) by

(1 9 10 3 14)(2 15 7 12 6)(4 5 11 13 8)
and (1 2 3)(5 6 7)(8 10 9)(12 14 13).

A (15,3,5)-uncovering of size 9 can be obtained from the (15,12,5) covering de-
sign in Gordon’s database [16]. Checking each of these in GAP, we find that each
coblock happens to be a base for A7 in this action, so the set of coblocks does
indeed form an uncovering-by-bases, which is given in [1].

There are two other groups related to A7 which are base-transitive. The first is
the affine extension of the action of A7 on F4

2 \{0} described above, i.e. the group
G = V o A7 (where V is the additive group of F4

2). This action of G has degree 16
and is base-transitive of rank 4; the bases are affine-independent 4-tuples of vectors
in F4

2. As with A7, we can find this action in the GAP libraries. This group G is
generated by

(1 6 5 7 2 4 16)(8 9 14 13 15 10 12)
and (1 9 3 14 12 11 4)(2 13 8 16 10 7 5).

From Maund [22], the maximum number of fixed points of an non-identity
element of G is 4, so the minimum degree is 12, and thus the correction capability
is 5. Thus we require a (16,4,5)-uncovering, where each 4-set is a base for G.
Once more, we can obtain an uncovering from [16], as the complements of the
blocks of a (16,12,5) covering design. We then have to relabel the points to ensure
that each coblock is a base in order to obtain an uncovering-by-bases, which has
size 12 (see [1]).

The second group related to A7 is constructed similarly. Let K denote the sta-
biliser of a point in the action of A7 on 15 points described above; this group is in
fact PSL(3,2), in its base-transitive action of rank 2 (see section 2). Then we can
construct the affine extension H of this group, H = V o K, where V is as above.

This group also has degree 16, and is base-transitive of rank 3; the bases here
are the affine-independent triples of vectors in F4

2. Again, we use the GAP library
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to find this group, which has generators

(1 11 10 13 5 4 8 2 12 9 14 6 3 7)(15 16)
and (1 9 15 7)(2 10 16 8)(3 12 5 14)(4 11 6 13).

From [22], the maximum number of fixed points of a non-identity element of H is
4, so the minimum degree is 12 and therefore, as a code, this group can also correct
5 errors. As before, we consult the database [16] to find a suitable uncovering; here
the required parameters are (16,3,5), and we find one of size 8. Once again, we
need to relabel the points before it becomes an uncovering-by-bases (see [1]).

Full details of the GAP computations are given in [1].

6.2 Two Mathieu groups

The Mathieu groups M11 and M12 are sharply 4- and 5-transitive respectively. Thus
to obtain uncoverings-by-bases it suffices to obtain suitable uncoverings. M11 has
degree 11 and correction capability 3, so requires an (11,4,3)-uncovering, while
M12 has degree 12 and correction capability 3, so requires a (12,5,3)-uncovering.
Suitable uncoverings were both obtained from the covering designs in Gordon’s
database [16]. As an example, the (12,5,3)-uncovering needed for M12 (which
has size 11) is given in Table 1 below; the uncovering needed for M11 (which has
size 8) is given in [1].

1 2 3 4 5

1 2 6 11 12

1 3 7 8 9

1 4 6 7 10

1 5 8 9 11

2 4 8 9 12

2 5 7 10 11

3 4 7 11 12

3 5 6 10 12

3 6 8 9 11

6 7 8 9 10

Table 1: (12,5,3)-uncovering for M12

Some further coding properties of M12 are investigated by Bray and the author
in [3].
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7 Uncoverings-by-bases for matroids?

With only minor modifications, the definition of uncovering-by-bases can be trans-
ferred from the context of base-transitive groups to that of matroid theory. The
following definition is due to Cameron and Fon-Der-Flaass [7].

Definition 7.1. A permutation group in a given action is called an IBIS group if all
irredundant bases have the same size.

The acronym stands for “irredundant bases of invariant size”. In their 1995
paper [7], Cameron and Fon-Der-Flaass proved the following theorem.

Theorem 7.2. The following statements are equivalent:

1. G acting on Ω is an IBIS group;

2. the irredundant bases of G are preserved by re-ordering;

3. the irredundant bases of G form the bases of a matroid on Ω.

For matroid terminology, the reader is referred to Oxley’s book [26]. Clearly,
base-transitive groups are IBIS groups, and the associated matroids are permuta-
tion geometries, as studied by Cameron and Deza [6]; for this reason, they gave
base-transitive groups the name geometric groups. The rank of an IBIS group is
exactly the rank of the corresponding matroid.

The flats of a matroid are analogous to the subspaces of a vector space. In
particular, when the matroid M is that corresponding to a base-transitive group G,
the flats are precisely the fixed point sets of elements of G (see [6]). (For instance,
where G = GL(n,q), the fixed point sets are precisely the subspaces of V = Fn

q,
which are precisely the flats of the corresponding vector matroid V (n,q)). In fact,
for IBIS groups, all fixed point sets are flats (although there may be other flats), and
every maximal proper flat is a fixed point set. Thus the maximum number of fixed
points of a non-identity element of an IBIS group is the size of the largest proper
flat of M. Consequently, we can define a parameter s for an arbitrary matroid,
which is analogous to the correction capability of a permutation group (although it
is not entirely clear what this parameter represents in terms of matroid theory). Let
M = (Ω,I) be a matroid, with |Ω| = n, whose maximal proper flats have size f .
Then we define

s =
⌊

n− f −1
2

⌋
.

Now we make the following definition.

Definition 7.3. A t-uncovering-by-bases for a matroid M = (Ω,I) is a set U of
bases for M such that any t-subset of Ω is disjoint from at least one base in U.

If we take t to be equal to the parameter s given above, then in the case where
M is the matroid corresponding to a base-transitive group G, then this is precisely
an uncovering-by-bases for G, as defined earlier.
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Example 7.4. Consider the uniform matroid Um,n, i.e. the matroid on Ω = {1, . . . ,n}
which has every m-subset of Ω as a base. Thus a t-uncovering-by-bases for Um,n is
just an (n,m, t)-uncovering.

Since every (m−1)-subset is a maximal proper flat, we have s = bn−m
2 c here.

Note that the matroid corresponding to a sharply k-transitive group G of degree
n is the uniform matroid Uk,n, so an s-uncovering-by-bases for Uk,n is exactly an
uncovering-by-bases for the group G. In fact, the IBIS groups corresponding to
uniform matroids were determined by Cameron and Fon-Der-Flaass [7]: in addi-
tion to the sharply k-transitive groups, there are only the Frobenius groups (rank
2), Zassenhaus groups (rank 3) and some rank 4 groups classified by Gorenstein
and Hughes [18]. So, by an earlier remark, we can deduce that for all these groups
an (n,k,s)-uncovering will form an uncovering-by-bases for the group.
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