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a b s t r a c t

This paper is concerned with linear or nonlinear selection mechanism for the minimal speed of
traveling wave solutions to a reaction–diffusion–advection equation in a cylindrical domain with
Fisher–KPP-type nonlinearity. By using the method of upper and/or lower solutions, we establish the
speed selection results. Precisely, we obtain sufficient conditions under which the linear or nonlinear
selection is realized when the model is prescribed by Neumann boundary conditions and Dirichlet
boundary conditions respectively.
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1. Introduction

In this paper, we investigate speed selection mechanism for
traveling wave solutions to a reaction–diffusion–advection equa-
tion in an infinite cylindrical domain. The equation we consider
is in the following form⎧⎨⎩

ut = uxx +∆yu + α(y)ux + f (u), (x, y) ∈ R ×Ω, t > 0,
Bu = 0, (x, y) ∈ R × ∂Ω,

u(x, y, 0) = u0(x, y), (x, y) ∈ R ×Ω.

(1.1)

Here Ω ⊂ Rn−1(n ≥ 2) is a bounded smooth domain. The bound-
ary condition ‘‘Bu = 0’’ denotes either the Neumann boundary
condition, i.e., ∂νu(x, y, t) = 0 for (x, y) ∈ R × ∂Ω , which implies
there is no flux of u across the wall of the cylinder, or the Dirichlet
boundary condition, i.e., u(x, y, t) = 0 for (x, y) ∈ R × ∂Ω , which
means the value of u is fixed to be zero on the wall of the cylinder.
The third term α(y)ux on the right hand side is a predetermined
transport term, or a driving flow, in the x-direction, and the
function α(y) is always assumed to be bounded. The reaction term
f : R → R is assumed to be a C2 function with the properties:
f (0) = f (1) = 0, f ′(0) and f ′(1) with f ′(1) < 0.

There are three typical types of function f in applications:
(A1) f > 0 on (0, 1);
(A2) for some θ ∈ (0, 1), f = 0 on [0, θ] and f > 0 on (θ, 1);
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(A3) for some θ ∈ (0, 1), f < 0 on (0, θ ), f (θ ) = 0, and f > 0 on
(θ, 1).
Actually, when (A1) or (A3) occurs, these semilinear parabolic
equations have many applications in biology, such as population
dynamics, gene developments and so on. For more details and
descriptions, please see [1–6]. When (A1) or (A2) occurs, such
equations also arise in the study of flame propagation in a tube.
For a detailed derivation and physical discussion, we refer readers
to [2,4,7–12].

Here, we focus on the so-called traveling wave solutions. The
traveling wave solutions are defined as solutions of the form

u(x, y, t) = U(ξ, y), ξ = x − ct. (1.2)

Here, U(ξ, y) is called the wave profile, and ξ is the wave variable,
and c ∈ R is the speed of the wave, which is to be determined.
After substituting the solution form (1.2) into Eq. (1.1), we find
the equation for U(ξ, y) as

Uξξ +∆yU + [α(y) + c]Uξ + f (U) = 0. (1.3)

The traveling wave solutions are required to satisfy the limiting
conditions

lim
ξ→+∞

U(ξ, y) = 0, lim
ξ→−∞

U(ξ, y) = β(y) ̸≡ 0, (1.4)

uniformly for y ∈ Ω̄ , where the non-negative limiting state β(y)
is the solution of{
∆yU + f (U) = 0, y ∈ Ω,

BU = 0, y ∈ ∂Ω.
(1.5)

Clearly, if the Neumann boundary condition occurs, it is easy to
have β(y) ≡ 1. On the other hand, in the case of the Dirichlet
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boundary condition, we can have only one non-negative solution
β(y) with 0 < β(y) < 1 for y ∈ Ω under some mild condition
(i.e., the zero solution is linearly unstable) and this can be shown
later.

Before stating our main results, we review relevant references
on the traveling wave solutions of (1.3)–(1.4). There is a vast list
of literature on the theory related to the existence of the traveling
wave solutions in such an equation. For example, in [13–15], the
authors studied the theory of asymptotic speeds of spreading in
terms of abstract monotonic systems. In particular, in [4,12,16–
19], the authors investigated the existence and uniqueness of the
traveling wave solutions in a cylindrical domain.

The most related works to ours are [12] and [14]. In [12],
Berestycki and Nirenberg considered Eqs. (1.3)–(1.4) prescribed
by the Neumann boundary condition. When f (U) satisfies (A2) or
(A3) respectively, the authors proved the existence of a traveling
wave solution (c,U) and then used the sliding method to further
prove the uniqueness of such a solution. Here, the uniqueness is
up to a translation, i.e., if there exist solutions (c,U) and (c ′,U ′),
then c ′

= c and U ′(ξ, y) = U(ξ + τ , y) for some real constant τ .
For the case (A1), the authors proved that there exists a critical
number (or the minimum number) c∗

∈ R such that the solution
(c,U) exists for c being any value in [c∗,+∞) and also showed
that, if f (s) ≤ f ′(0)s for 0 < s < 1, this critical number c∗ is
explicitly determined by Ω, α(y) and the value of f ′(0).

In section 6 of [14], Liang and Zhao focused on investigating
the theory of spreading speeds and traveling waves for abstract
monostable evolution systems. They proved that the spreading
speed c∗ coincides with the minimal wave speed with a result
that traveling wave solutions, connecting β and 0, exist for all
c ≥ c∗. When f satisfies the subhomogeneous condition in the
sense that f (ϱs) ≥ ϱf (s) for all ϱ ∈ [0, 1] and 0 ≤ s ≤ 1, they
obtained a formula for the speed c∗.

Based on the results in [12–14], in the case (A1), we know that
there always exists a minimal wave speed cmin such that (1.1)
has a traveling wave solution if c ≥ cmin and no traveling wave
solution exists if c < cmin. To proceed, we only consider the case
(A1) in this paper and denote the minimal wave speed cmin as

cmin := inf{c : the system (1.3)–(1.4) has a non-negative
solution U(ξ, y)}.

With the understanding that the minimal wave speed is al-
ways the spreading speed of biological invasion for a model with
two fixed points only, it is natural to ask how to determine
the speed cmin. To estimate it, first by the standard linearization
analysis near the zero solution, we will obtain a linear system and
the linear speed c0 in the next section, where cmin ≥ c0 will be
shown. Furthermore, it was numerically observed that depending
on the nonlinearity f (u), the wave speed cmin is either equal to
or greater than the linear speed c0. Thus, to distinguish the two
different cases, we give the following classification of the speed
selection mechanism.

Definition 1.1. The speed selection mechanism for (1.3)–(1.4)
is called a linear selection if cmin = c0; otherwise, it is called a
nonlinear selection if cmin > c0.

When the space dimension is confined in one dimension,
the speed selection can be found in [20–25] and the references
therein. But in higher dimensions with a non-constant convection
term, there are not many references on such a topic. In this paper,
we shall focus on the speed selection of monotone traveling wave
solutions connecting β to 0 under the condition when the zero
solution is linearly unstable and β is linearly stable. To see the
linear stability, we linearize (1.5) near one of the steady states

(using ψ to denote either 0 or β) and consider the corresponding
eigenvalue problem as{
∆yφ + f ′(ψ)φ = µ1(ψ)φ, y ∈ Ω,

Bφ = 0, y ∈ ∂Ω,

where µ1(ψ) is the principal eigenvalue. We say that ψ is linearly
stable if µ1(ψ) < 0 and linearly unstable if µ1(ψ) > 0. Thus, to
have such a monotone traveling wave solution, we further require
f to satisfy the following conditions:

(A4) If (1.3)–(1.4) is prescribed by the Neumann boundary con-
dition, then we require f ′(0) > 0 and f ′(1) < 0;

(A5) If (1.3)–(1.4) is prescribed by the Dirichlet boundary condi-
tion, then we require µ1(0) > 0, and µ1(β) < 0.

Under these conditions, we can confirm that there exists a
unique solution β(y) to (1.5) satisfying 0 < β(y) ≤ 1.

With the application of the upper and lower solution method,
we are able to establish the linear and/or nonlinear selection
mechanism for our system. The detail is shown in Sections 3
and 4, which are valid for both Neumann and Dirichlet boundary
conditions. We also find a sufficient condition for the nonlinear
selection mechanism to our model under the Neumann boundary
condition. We should emphasize that our investigations greatly
extend the conclusions in [20,22,26].

The rest of this paper is organized as follows. In Section 2, we
perform the local analysis near zero to find the linear speed c0. In
Section 3, we study the speed selection mechanism and present
the main result. Then, we give two applications in Section 4, one
with a cubic nonlinear term and the other with a subcritical quin-
tic Ginzburg–Landau equation in a cylindrical domain. Finally, in
Section 5, we summarize the obtained results and discuss some
open problems. Appendix is to illustrate the upper and lower
solutions method used in our model.

2. Local analysis near zero

Linearizing Eq. (1.3) near zero gives⎧⎨⎩
Uξξ +∆yU + (α(y) + c)Uξ + f ′(0)U = 0, ξ ∈ (−∞,∞),

y ∈ Ω,

BU = 0, y ∈ ∂Ω.

(2.1)

Then, letting U = ϕ(y)e−λξ for some non-negative function ϕ(y)
and a real constant λ, we obtain an eigenvalue problem{
∆yϕ + [λ2 − λ(α(y) + c) + f ′(0)]ϕ = 0, y ∈ Ω,

Bϕ = 0, y ∈ ∂Ω.
(2.2)

To further discuss the above problem, we denote

Lλ = ∆y +
[
λ2 − λ(α(y) + c) + f ′(0)

]
. (2.3)

Then solving the problem (2.2) can be regarded as seeking the
non-negative solution(s) of Lλϕ = 0 with the boundary condition
Bϕ = 0. Let µ(λ) be the principal eigenvalue of the operator Lλ,
and we consider the following eigenvalue problem

Lλψ = µ(λ)ψ, Bψ |y∈∂Ω= 0, (2.4)

for some non-negative non-zero function ψ(y), y ∈ Ω . It is clear
that to find the solution of (2.2) is equivalent to find (c, λ) such
that µ(λ) = 0, with the corresponding eigenfunction ψ(y) as the
solution. For the eigenvalue problem (2.4), we have the following
results.

(1) When λ → 0, Lλϕ → ∆yψ + f ′(0)ψ . From (A4) or (A5), we
have µ(0) > 0.
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(2) When λ → +∞, we have λ2 − λ(α(y) + c) + f ′(0) > M for
any large positive number M . In this case, by comparison,
we have µ(+∞) > 0 for both boundary conditions.

Furthermore, due to the convexity of the function ‘‘λ2 −

λ(α(y) + c) + f ′(0)’’ with respect to λ, it is easy to have the
following proposition.

Proposition 2.1. The principal eigenvalue µ(λ) defined in (2.2) is
convex with respect to λ > 0.

From Eq. (2.4), it is clear to see that µ is decreasing in c. Thus,
we can define

c0 := min{c| c ∈ R such that µ(λ) = 0 has a solution
λ ∈ (0,+∞)}.

Now, in view of the above proposition, we can arrive at the
following theorem.

Theorem 2.2. For the eigenvalue problem (2.4), there exists a
critical number c0 ∈ R such that
(1) when c < c0, there is no positive λ such that µ(λ) = 0, and (2.2)
has no non-negative non-zero solution;
(2) when c = c0, there is only one positive λ0 such that µ(λ) = 0,
and (2.2) has one solution ϕ0 = ψ0, where ψ0 is the principal
eigenfunction corresponding to λ = λ0 in (2.4);
(3) when c > c0, there exist λ1(c) and λ2(c) with λ2(c) > λ1(c) > 0
such that µ(λi(c)) = 0, i = 1, 2, and (2.2) has two solutions
ϕj = ψj when λ = λj(c), where ψj is the principal eigenfunction
corresponding to λ = λj(c) in (2.4) for j = 1, 2.

Remark 2.3. Near ξ = ∞, Eq. (1.3) is approximated by the
linear equation (2.1). From the above theorem, we can see that
c ≥ c0 is a necessary condition for (1.3)–(1.4) to have a non-
negative traveling wave solution. Therefore, cmin ≥ c0. Moreover,
λ2(c) > λ0(c0) > λ1(c) > 0 if c > c0.

3. The speed selection

In this section, we study the speed selection mechanism for
(1.3)–(1.4) through the upper and lower solutions method. The
key point is to construct a pair of suitable upper and lower
solutions. The definition of an upper (or a lower) solution and
the details of this method are shown in the Appendix section. To
begin with, we denote the left hand side of Eq. (1.3) as

L(U) := Uξξ +∆yU + (α(y) + c)Uξ + f (U). (3.1)

For any c = c0 + ϵ1 with ϵ1 > 0, we have two pairs of solutions
(λ1(c), ϕ1) and (λ2(c), ϕ2) with λ2(c) > λ1(c) > 0 for (2.2) by
Theorem 2.2. Then we define a continuous function U(ξ, y) as the
solution of the following equation

Uξ = −λ1(c)U

(
1 −

U
γ

βγ

)
, (3.2)

where γ > 0 is a parameter to be determined. Considering the
boundary conditions as U(ξ, y) ∼ β(y) when ξ → −∞, and
U(ξ, y) ∼ ϕ1(y)e−λ1(c)ξ → 0 when ξ → +∞, we obtain the
formula for U as

U =
βϕ1[

βγ eλ1(c)γ ξ + ϕ
γ

1

] 1
γ

. (3.3)

It is easy to see that 0 ≤ U ≤ β for all (ξ, y) ∈ R ×Ω and

Uξξ = λ21(c)U

(
1 −

U
γ

βγ

)(
1 − (γ + 1)

U
γ

βγ

)
. (3.4)

By substituting the formulas of U , Uξ , Uξξ and∆yU into (3.1), and
after a tedious computation, we finally obtain

L(U) =
U

(γ+1)

βγ

(
1 −

U
γ

βγ

) {
− (γ + 1) λ21(c) − (γ + 1)

×
ϕ2
1

β2

[
∇

(
β

ϕ1

)]2
+ G1(ξ, y)

}
, (3.5)

where

G1(ξ, y) =

[f (U) − f ′(0)U] +

(
Uγ+1

βγ

) [
f ′(0) −

f (β)
β

]
Uγ+1

βγ

(
1 −

Uγ

βγ

) . (3.6)

It is clear that if ϵ1 → 0, then c → c0, λ1(c) → λ0(c0) and
ϕ1 → ϕ0. Thus, for ϵ1 ≪ 1, in the sense of Definition A.1 and
Lemma A.2, the function U is an upper solution to (3.1) if

max
(ξ,y)∈R×Ω

G1(ξ, y) < (γ+1)λ20(c0)+(γ + 1)
ϕ2
0

β2

[
∇

(
β

ϕ0

)]2
. (3.7)

Consequently, we have the following lemma for an upper
solution.

Lemma 3.1. Suppose c = c0 + ϵ1 with ϵ1 being a sufficiently
small positive number. If the inequality (3.7) holds, then the function
U, defined in (3.3), is an upper solution to system (1.3)–(1.4) with
U(−∞, y) = β(y) and U(+∞, y) = 0.

Remark 3.2. To have the above lemma hold, we need the
boundedness of G1 (at least being bounded from above). Indeed,
G1(ξ, y) is continuous on (ξ, y) ∈ R × Ω . Thus it suffices to
find limξ±∞ G1(ξ, y) and determine whether they are bounded.
As ξ → −∞, i.e., U → β , we have

lim
ξ→−∞

G1(ξ, y) = lim
U→β

⎧⎪⎨⎪⎩
f (U) −

Uγ+1

βγ+1 f (β)

Uγ+1

βγ

(
1 −

Uγ

βγ

) −
f ′(0)
Uγ

βγ

⎫⎪⎬⎪⎭
= −

f ′(β)
γ

+
γ + 1
γ β

f (β) − f ′(0). (3.8)

The last equality is obtained by L’Hospital’s rule. For ξ → +∞,
i.e., U → 0, we have

lim
ξ→+∞

G1(ξ, y) = lim
U→0

⎧⎪⎨⎪⎩ f (U) − f ′(0)U
Uγ+1

βγ

(
1 −

Uγ

βγ

) +

f ′(0) −
f (β)
β

1 −
Uγ

βγ

⎫⎪⎬⎪⎭
= lim

U→0

f ′′(U)

γ (γ + 1)U
γ−1

βγ
− 2γ (2γ + 1) U

2γ−1

β2γ

+f ′(0) −
f (β)
β

(3.9)

The boundedness of the above term depends on the choice of γ
and the formula of f (u). Actually, we give the following results.

(1) If f ′′(0) exists, then by choosing 1
2 ≤ γ ≤ 1, we find that G1

is bounded for all −∞ < ξ < +∞.
(2) If U = 0 is a solution for f ′′(U) = 0 with multiplicity k,

k = 1, 2, . . ., then by choosing γ = k + 1, we also find that
G1 is bounded for all −∞ < ξ < +∞.

According to Theorem A.4 in the Appendix, to obtain the
existence of traveling wave solution U(ξ, y), we also need to find
a lower solution to Eq. (1.3) when c = c0 + ϵ1. For this purpose,
define a continuous function U(ξ, y) as

U(ξ, y) = max{0, ϕ1(y)(1 − Me−δξ )e−λ1(c)ξ }. (3.10)
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Here, (λ1(c), ϕ1) has the same meaning as in U from Lemma 3.1.
We fix a small δ > 0 such that λ1 + δ < λ2 and the constant
M > 0 is to be determined. Letting ξ0 =

lnM
δ
, it is easy to see that

U satisfies the following:

(1) When ξ ≤ ξ0, U = 0;
(2) When ξ > ξ0, U = ϕ1(1 − Me−δξ )e−λ1ξ .

Notice that maxξ∈R U(ξ, y) =
δϕ1(y)
λ1+δ

[
λ1

M(λ1+δ)

] λ1
δ

≪ 1 when M

is sufficiently large. Furthermore, we can obtain the following
lemma.

Lemma 3.3. When c = c0 + ϵ1, the function defined in (3.10) is a
lower solution to the system (1.3)–(1.4).

Proof. If ξ ≤ ξ0 (i.e., U = 0), a direct computation gives
L(U) = 0. If ξ > ξ0, by substituting the formula of U , we obtain
the following:

L(U) = −e−(δ+λ1)ξML(λ1+δ)ϕ1 + f (U) − f ′(0)(1 − Me−δξ )ϕ1e−λ1ξ

= −e−(δ+λ1)ξML(λ1+δ)ϕ1 + f (U) − f ′(0)U

≥ 0 (3.11)

provided thatM is sufficiently large. Note that, in the last inequal-
ity, we have used the fact that Lλ1ϕ1 = 0 and L(λ1+δ)ϕ1 < 0 when
λ1 + δ < λ2, and [f (U) − f ′(0)U] ∼ O(ϕ2

1e
−2λ1ξ ) as U is close to

0. By (3.11), Definition A.1 and Lemma A.2, it then follows that
there exist positive numbers δ and M = M(δ) such that U is a
lower solution of (1.3)–(1.4) when c = c0 + ϵ1. This completes
the proof. ■

Now, with the construction of an upper and a lower solution
above, it is easy to find a ξ1 so that Ū(ξ − ξ1) is still an upper
solution with 0 ≤ U ≤ U(ξ − ξ1). Therefore, we are ready to give
our results for the linear speed selection.

Theorem 3.4. When (3.7) is satisfied, the minimal wave speed cmin
of the system (1.3)–(1.4) is linearly selected, i.e., cmin = c0.

Proof. When c = c0 + ϵ1, by Lemmas 3.1 and 3.3, we have
a pair of an upper and a lower solution. Thus, the existence of
a monotone traveling wave solution U of (1.3)–(1.4) with speed
c = c0 + ϵ1 follows from Theorem A.4 and the traveling wave
solution satisfies U(+∞, y) = 0 and U(−∞, y) = β(y).

In the case when c = c0, a limiting argument can be applied
to obtain the existence of traveling waves.

To be exact, we choose a sequence {cn} such that cn ∈ (c0, c0+

1] and limn→+∞ cn = c0. For instance, we can choose cn =

c0 +
1
n , which clearly satisfies the requirement. Corresponding to

each cn, by the above arguments and Theorem A.4, there exists a
monotone decreasing traveling wave solution Un(ξ, y) of (1.3)–
(1.4). Since Un(ξ + ξ̄0, y), ξ̄0 ∈ R is also such a solution, by
translation, we can always assume Un(0, y0) =

1
2β(y0) for a given

y0 ∈ Ω .
Notice that Un(ξ, y) is uniformly bounded, that is, |Un(ξ, y)| ≤

β(y) ≤ maxβ(y), ∀(ξ, y) ∈ R × Ω̄ , n ≥ 1. According to
Theorem A.4, Un is the fixed point of the solution map T−ctQt ,
that is, T−ctQt [Un](x, y) = Un(x, y). Moreover, {T−ctQt [Un]}n≥1
is precompact. It then follows that there exists a convergent
subsequence of Un, say {Unk}k≥1, converging to a function W ∈

Cβ as k → +∞. That is, there exists a function W satisfying
Qt [W ](x, y) = W (x − c0t, y) = W (ξ, y), or equivalently the
equation

Wξξ +∆yW + (α(y) + c0)Wξ + f (W ) = 0, (ξ, y) ∈ R ×Ω.

Clearly, W (ξ, y) is non-increasing in ξ ∈ R and W (0, y0) =
1
2β(y0). Moreover, W (ξ, y) connects β to 0 with W (−∞, y) =

β(y) and W (+∞, y) = 0 for all y ∈ Ω . Consequently, when (3.7)
is satisfied, (1.3)–(1.4) has a monotone traveling wave solution
connecting β(y) to 0 with c = c0. The proof is complete. ■

Next, we want to investigate the nonlinear speed selection. To
proceed, we first prove the following lemma.

Lemma 3.5. For c1 > c0, suppose that there exists a lower
solution U(ξ, y) to system (1.3)–(1.4), which is non-increasing in ξ
and satisfies 0 < U < β(y) and

U ∼ ϕ2(y)e−λ2(c1)ξ

as ξ → +∞, where (λ2(c1), ϕ2) is defined in Theorem 2.2 and
ξ = x − c1t, i.e., U(ξ, y) has the faster decay rate near positive in-
finity. Then there is no traveling wave solution to system (1.3)–(1.4)
connecting β(y) to 0 with speed c ∈ [c0, c1).

Proof. By this assumption, there exists a lower solution U(x −

c1t, y) with c1 > c0 to

ut = uxx +∆yu + α(y)ux + f (u), (3.12)

with the initial data

u(x, y, 0) = U(x, y).

By way of contradiction, we assume that, for some c ∈ [c0, c1),
there exists a monotonic traveling wave solution U(x − ct, y),
which connects β(y) to 0 and has the initial data as

u(x, y, 0) = U(x, y).

We should note that if c = c0, then we have traveling wave
solutions for all c > c0. Thus we can always assume that c ∈

(c0, c1).
Following the calculations from the previous section (see,

e.g., from (2.1) to (2.4)), it is easy to find the asymptotic behavior
of U(x − ct, y) with

U(ξ, y) ∼ C1ϕ1(y)e−λ1(c)ξ + C2ϕ2(y)e−λ2(c)ξ , ξ → ∞,

for C1 > 0, or C1 = 0, C2 > 0. A rigorous proof of this can
be obtained by the comparison principle and the linearization
of the model. Moreover, we have λ2(c1) > λ2(c) > λ0(c0) >
λ1(c) > λ1(c1) when c ∈ [c0, c1). Thus, we can always assume
U(x, y) ≤ U(x, y) for (x, y) ∈ R×Ω (by shifting of U if necessary).
Since U(ξ, y), ξ = x − ct , is assumed to be a lower solution
to Eq. (3.12) and U(x, y) ≤ U(x, y), by comparison, we have

U(x − c1t, y) ≤ U(x − ct, y), (x, y, t) ∈ R ×Ω × R+. (3.13)

Now, if we fix ξ1 = x − c1t , then U(ξ1, y) > 0 is fixed. On the
other hand, from U(x − ct, y), it is clear to see

U(x− ct, y) = U(ξ1 + (c1 − c)t, y) ∼ U(+∞, y) = 0, as t → +∞.

By (3.13), we therefore get U(ξ1, y) ≤ 0. This is a contradiction.
Thus, there is no traveling wave solution when c ∈ [c0, c1). This
completes the proof. ■

Remark 3.6. This lemma implies that if there is a lower solution
U satisfying 0 < U < β(y) and U ∼ ϕ2(y)e−λ2(c1)ξ as ξ → +∞,
for c1 > c0, then the nonlinear selection is realized.

Now, let c1 = c0 + ϵ2 and define a continuous function as
follows

U1 =
βϕ2[

βγ eλ2(c1)γ ξ + ϕ
γ

2

] 1
γ

. (3.14)
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Similarly to the previous computations, we get

L(U1) =
U (γ+1)

1

βγ

(
1 −

Uγ1
βγ

) {
− (γ + 1) λ22(c1) − (γ + 1)

×
ϕ2
2

β2

[
∇

(
β

ϕ2

)]2
+ G2(ξ, y)

}
, (3.15)

where

G2(ξ, y) =

[f (U1) − f ′(0)U1] +

(
Uγ+1
1
βγ

)[
f ′(0) −

f (β)
β

]
Uγ+1
1
βγ

(
1 −

Uγ1
βγ

) . (3.16)

To obtain a condition for the nonlinear selection, we will take
U1 as the lower solution which satisfies U1 ∼ ϕ2(y)e−λ2(c1)ξ as
ξ → +∞. Notice that when ϵ2 → 0, we have λ2(c1) → λ0(c0)
and ϕ2 → ϕ0. Thus, if the following condition

min
(ξ,y)∈R×Ω

G2(ξ, y) > (γ + 1)λ20(c0) + (γ + 1)
ϕ2
0

β2

[
∇

(
β

ϕ0

)]2
(3.17)

is true, then the nonlinear selection is realized.
In the case of Neumann boundary conditions, we have β(y) ≡

1, and thus (3.14) can be simplified as

U1 =
ϕ2(

eλ2(c)γ ξ + ϕ
γ

2

) 1
γ

. (3.18)

We thus have

L(U1) = U (γ+1)
1

(
1 − Uγ1

) {
− (γ + 1) λ22(c) − (γ + 1)

×

[
ϕ2∇

(
1
ϕ2

)]2
+ G2(ξ, y)

}
, (3.19)

and

G2(ξ, y) =
f (U1) − f ′(0)U1 + Uγ+1

1 f ′(0)

Uγ+1
1

(
1 − Uγ1

) .

Moreover, when ϵ2 → 0, under the condition

min
(ξ,y)∈R×Ω

G2(ξ, y) > (γ +1)λ20(c0)+(γ +1)
[
ϕ0∇

(
1
ϕ0

)]2
, (3.20)

we are ready to have the nonlinear selection as follows.

Theorem 3.7. If the inequality (3.20) is satisfied, then the minimal
speed of system (1.3)–(1.4) prescribed by the Neumann boundary
condition is nonlinearly selected.

In the case of Dirichlet boundary condition, through similar
analysis to that in Remark 3.2, we obtain

lim
ξ→−∞

G2(ξ, y) = −
f ′(β)
γ

+
γ + 1
γ β

f (β) − f ′(0)

or

lim
ξ→−∞

G2(ξ, y) = −
β

γ
g ′(β) − g(0) + g(β)

where g(u) = f (u)/u. This gives limy→∂Ω limξ→−∞ G2(ξ, y) = 0.
Thus (3.17) cannot be true, i.e., this choice of the lower solution
(i.e., U1 in (3.14)) is not valid when (1.3)–(1.4) is prescribed by the
Dirichlet boundary condition. We suspect that other challenging
types of lower solutions need to be constructed. This will be a
subject of our future study.

4. Applications

In this section, we apply the results of Section 3 to the
reaction–diffusion model with a cubic reaction term and a sub-
critical quintic Ginzburg–Landau equation respectively. By apply-
ing numerical simulations to each case, we will find the linear
wave speed, i.e., c0 defined in Theorem 2.2 as well as the numer-
ical minimal wave speed. Comparison of them is carried out to
illustrate our theoretical results.

4.1. A cubic reaction term

The first application is a cubic reaction term given as f (u) =

u(1 − u)(1 + 2ϵu) with ϵ ≥ 0 and Ω = (−Ly, Ly), that is, we
consider traveling wave solutions of the following equation

ut = uxx + uyy + α(y)ux + u(1 − u)(1 + 2ϵu),

(x, y) ∈ R × (−Ly, Ly), t > 0. (4.1)

The corresponding wave profile (i.e., letting u(t, x, y) = U(ξ, y)
and ξ = x − ct ) equation becomes

Uξξ + Uyy + (α(y) + c)Uξ + U(1 − U)(1 + 2ϵU) = 0, (4.2)

satisfying

lim
ξ→+∞

U(ξ, y) = 0, and lim
ξ→−∞

U(ξ, y) = β(y). (4.3)

The speed selection of such an equation in one dimensional case
was first considered by Hadeler and Rothe [27] in 1975. They
studied the equation

ut = uxx + u(1 − u)(1 + 2ϵu), ϵ > −
1
2
, x ∈ R, t > 0, (4.4)

and obtained that the minimal speed of the traveling waves is
linearly selected when ϵ ≤ 1 and nonlinearly selected when
ϵ > 1. For more details of this result, please refer to [27].

In the sequel, for the model (4.1) we always assume that ϵ > 0
and also show that there exists a critical number of ϵ to classify
the linear and nonlinear selection mechanism.

The reaction term f is smooth on [0, 1] and

f (0) = f (1) = 0, f ′(0) = 1 > 0 > f ′(1) = −1 − 2ϵ,
and f (u) > 0 for u ∈ (0, 1).

Thus f satisfies (A1), (A4) and (A5) for all ϵ. Moreover, there are
equilibria 0 and a nonzero function β(y) with 0 ≤ β(y) ≤ 1 for
all y ∈ Ω . Since −2 − 8ϵ ≤ f ′′(u) = 4ϵ − 2 − 12ϵu ≤ 4ϵ − 2, we
can choose γ = 1 in (3.5). Then, by substituting the formula of f
into Eq. (3.5) and simplifying it, we obtain

L(U) =
U

2

β

(
1 −

U
β

){
−2λ21(c) − 2

(β ′ϕ1 − βϕ′

1)
2

ϕ2
1β

2
+ 2ϵβ2

}
.

(4.5)

Here, G1(ξ, y) = 2ϵβ2 is clearly monotonic in ϵ. Thus, the
condition (3.7) for the linear selection becomes

ϵ < min
y∈Ω

[
λ20(c0)
β2 +

(β ′ϕ0 − βϕ′

0)
2

ϕ2
0β

4

]
. (4.6)

Similarly, the condition (3.20) for the nonlinear selection becomes

ϵ > max
y∈Ω

[
λ20(c0)
β2 +

(β ′ϕ0 − βϕ′

0)
2

ϕ2
0β

4

]
. (4.7)

Next, we will show the existence of a threshold value of ϵ so
that, when ϵ increases to cross through this critical value, the
speed selection changes from linear to nonlinear. To this end, we
want to prove the following lemma first.
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Lemma 4.1. Let (4.2)–(4.3) be prescribed by Neumann boundary
conditions (or Dirichlet boundary conditions). If the wave speed is
linearly selected when ϵ = ϵl for some ϵl > 0, then it is linearly
selected for all ϵ < ϵl.

Proof. By this assumption, when ϵ = ϵl, we have Ul as a solution,
which is decreasing in ξ ∈ R, with c = c0 + ϵ1 to (4.2) for any
small ϵ1 > 0. Thus, it satisfies

(Ul)ξξ + (Ul)yy + (α(y) + c)(Ul)ξ + Ul(1 − Ul)(1 + 2ϵlUl) = 0. (4.8)

Then, by substituting Ul(ξ, y) into (4.2) with ϵ < ϵl, we obtain

(Ul)ξξ + (Ul)yy + (α(y) + c)(Ul)ξ + Ul(1 − Ul)(1 + 2ϵUl)
= (Ul)ξξ + (Ul)yy + (α(y) + c)(Ul)ξ + Ul(1 − Ul)

×(1 + 2ϵlUl − 2ϵlUl + 2ϵUl)
= −2U2

l (1 − Ul)(ϵl − ϵ)
≤ 0.

This implies that Ul can be viewed as an upper solution to (4.2)
for ϵ < ϵl. Then taking the lower solution defined in Lemma 3.3,
we conclude that the wave speed is linearly selected for ϵ < ϵl.
This completes the proof. ■

From the above lemma, we can define the threshold value of
ϵ as

ϵc := sup{ϵ| the linear speed selection of (4.2)–(4.3) is realized}.
(4.9)

Remark 4.2. By the above definition, we have 0 ≤ ϵc ≤ ∞.
Furthermore, if ϵc = 0, then the interval 0 < ϵ ≤ ϵc is empty,
thus the nonlinear speed selection is realized for all ϵ > 0; if
ϵc = ∞, then the linear speed selection is realized for all ϵ ≥ 0.

Depending on the choice of boundary conditions, the critical
value ϵc may differ. We start with the case where (4.2)–(4.3) is
prescribed by Neumann boundary conditions, i.e., Uy(ξ,−Ly) =

Uy(ξ, Ly) = 0. In this case, β(y) ≡ 1 and we have the following
theorem about the value of ϵc .

Theorem 4.3. If the system (4.2)–(4.3) is prescribed by the Neu-
mann boundary condition, then

λ20(c0) ≤ ϵc ≤ λ20(c0) + max
y∈[−L,L]

(
ϕ′

0

ϕ0

)2

,

where λ0 and ϕ0 are defined in Theorem 2.2.

Proof. For the Neumann boundary case, we have β ≡ 1; thus,
(4.6) reduces to ϵ < λ2(c0) due to the fact that min(ϕ′

0)
2

= 0
(at the boundary). It leaves us to prove the linear selection in
the case when ϵ = λ20(c0). To this end, we choose a sequence
ϵn → λ20(c0). By Theorem 3.4, it follows that (4.2)–(4.3) has a
monotone traveling wave solution when c = c0 for any ϵ = ϵn.
Due to the compactness of the solution map, a limiting argument
gives the existence of traveling waves when ϵ = λ20(c0) for all
c ≥ c0. In other words, when ϵ = λ20(c0), the minimal speed of
(4.2)–(4.3) is linearly selected.

To obtain an upper bound of the critical value ϵc , we will con-
centrate on the nonlinear selection. From (4.7) and Theorem 3.7,
it follows that the nonlinear selection is realized when ϵ >

λ20 + maxy∈Ω
(
ϕ′
0
ϕ0

)2
. Consequently, combining those results, this

theorem holds. ■

Remark 4.4. From Theorem 4.3, for the Neumann boundary case
with α(y) = 0, we obtain that ϵc = 1 since ϕ0 = 1 and λ0 = 1
under such a condition. This recovers the result of [27],

For the case where (4.2)–(4.3) is prescribed by Dirichlet
boundary conditions, i.e.,

U(ξ,−Ly) = U(ξ, Ly) = 0,

we have 0 ≤ β(y) ≤ 1 for y ∈ [−Ly, Ly]. From (4.6), it immediately
follows that (4.2) is linearly selected when ϵ = λ20(c0) <

miny∈Ω
λ20(c0)
β2

. Furthermore, it is easy to see that miny∈Ω
λ20(c0)
β2

=

λ20(c0)
maxy∈Ω (β2)

. Similarly to Theorem 4.3, we arrive at the following
result for the linear selection.

Theorem 4.5. Let the system (4.2)–(4.3) be prescribed by Dirichlet
boundary conditions. Then the linear selection is realized for all ϵ ≤

ϵ, where ϵ =
λ20

maxy∈Ω (β2)
.

Let us now perform some numerical simulations on (4.2)–(4.3)
using the Matlab software. To make our numeric method look
more convincing, we first compare the numerical results with the
accurate solution obtained in [27]. The authors have found that
the formula of the minimal wave speed is

cmin =

{
2, ϵ ≤ 1,
√
ϵ +

√
1
ϵ
, ϵ ≥ 1,

(4.10)

and the traveling wave solution is a so-called Huxley’s solution

u(x, t) =
1

1 + e
√
ϵ(x−ct)

, with c =
√
ϵ +

√
1
ϵ
.

The comparison results are summarized in Fig. 1. The figures
show results related to the minimal wave speed. The left figure
tells us that our numerically computed speeds match the speeds
predicted by the accurate formula (4.10); the right one shows the
absolute difference between them, which are as small as O(10−3).
Thus, our numeric methods are reliable and will be explained in
detail in the following context.

Throughout simulations in the rest of this section, we fix
α(y) = sin(y) if not specified otherwise, and Ly = 5π . The simula-
tions are also taken into two cases: one is the Neumann bound-
ary condition case and the other one is the Dirichlet boundary
condition case.

(1) When (4.2)–(4.3) is prescribed by the Neumann boundary
condition, we do the following numerical computations. Through
applying the central difference method to the eigenvalue problem
(2.4), we determine that c0 = 2.58 and λ0 = 0.93. As we can see
in Fig. 2, the large one manifests the relation between µ and λ,
which verifies the convexity of µ(λ) with respect to λ; the small
one is an enlarged figure when λ ∈ [0.6, 1.2], which implies
c0 = 2.58.

Furthermore, to obtain a traveling wave solution, we do nu-
merical simulations on (4.1). By applying the central difference
method on space variables, the 4th-order Runge–Kutta method
on the time variable, and choosing an initial condition as

u0(x, y) =
1

1 + e105(x+x0)
, (x, y) ∈ R ×Ω, x0 = 900, (4.11)

we will obtain a solution that stabilizes to a traveling wave
solution. We conjecture without proof that the wave takes the
minimal speed due to the fast decaying initial function. To have
a stable wave profile, we start to store all the data after t = 200.
As shown in Fig. 3, the left panel is a 3-D figure that displays
the shape of the solution; the right panel is obtained through
fixing y = 0 and letting t = 210, 211, . . . , 220. Actually, in
Fig. 3(b), by letting u(t, x, 0) ≡ 0.5, we can find the level set x(t)
for every t through linear interpolation, and use it to compute
the spreading wave speed. Through this method, we calculate the
minimal wave speed c whose result is shown in Fig. 4. As we
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Fig. 1. (Color online) The minimal-speed comparison of numerical results and theoretical results. The figures show the speed for ϵ ∈ [0, 2].

Fig. 2. (Color online) The relation between the principal eigenvalue µ(λ) and λ.
From top to bottom, c = 2.5, 2.52, 2.54, 2.56, 2.58 and 2.6 respectively.

can see in this figure, the numerically computed speed cnum ≃

c0 when ϵ ≤ λ20 = 0.865. By substituting the value of c0
and λ0 into the eigenvalue problem (2.4), we can numerically

solve ϕ0 and by which we find maxy∈[−L,L]

(
ϕ′
0
ϕ0

)2
= 0.2205.

Therefore, by Theorem 4.3, the system is nonlinearly selected if

ϵ > 1.091, which has been verified by the figure. Actually, from
the numerical simulation, we find that ϵc ≃ 1.

(2) When (4.2)–(4.3) is prescribed by the Dirichlet boundary
condition, we do similar simulations. The same method applied to
the eigenvalue problem (2.4) with Dirichlet boundary conditions,
we obtain c0 = 2.36 and λ0 = 0.885. Next, to obtain a traveling
wave solution here, we choose the initial data as

u0(x, y) =
cos(πy/2Ly)
1 + e105(x+x0)

, (x, y) ∈ R ×Ω, x0 = 900. (4.12)

Due to the zero boundary condition, the shape of a traveling wave
solution in this case looks like an arch, which is quite different
from the former one and is shown in Fig. 5. Finally, using the same
method as the one used in the previous case, we calculate the
wave speed corresponding to different values of the parameter
ϵ. The results are shown in Fig. 6. As shown in the figure, there
is a critical number ϵc such that the speed is linearly selected
when ϵ ≤ ϵc , and nonlinearly selected when ϵ > ϵc . Here, by
the numerical simulation, we can see ϵc ≃ 0.8 > λ20 = 0.783.

To complete the numerical simulations for the model with
cubic nonlinearity, we provide some discussions of the effect
of α(y) on the critical number ϵc when the Neumann boundary
condition occurs. When α(y) ≡ α with α being a constant,
through a direct computation, we find that the eigenfunction of

Fig. 3. (Color online) Figure (a) depicts the solution of (4.1) with the Neumann boundary condition when t = 220. Figure (b) depicts the solution when y = 0,
t = 210, 211, . . . , 220. The parameter set corresponds to: (x, y) ∈ [−1000, 1000] × [−5π, 5π ] and x0 = 900.
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Fig. 4. (Color online) The relation between the asymptotic spreading speed c and
ϵ. The blue line with stars denotes the numerically computed speed obtained
by direct simulation, and the red line is c0 = 2.58.

Fig. 5. (Color online) The solution of (4.1) with the Dirichlet boundary condition
when t = 220.

(2.2) can be always normalized to be ‘‘ϕ0 = 1’’ and the eigenvalue

λ0 =
α + c0

2
≡ 1 where c0 = 2 − α.

By Theorem 4.3, ϵc ≡ 1 for all α ∈ R. In other words, α only
affects the value of the linear speed c0 but it does not affect the
critical value ϵc .

When α(y) is not a constant, with the help of numerical
simulations, we also find that ϵc always equals 1. We first give
a table to manifest the influence of α on c0, λ0, and the range
of ϵc by Theorem 4.3. As Table 1 shows, when α2(y) ≤ α1(y)

for all y ∈ [−L, L], λ0,2 ≥ λ0,1 while maxy∈[−L,L]

(
ϕ′
0,2
ϕ0,2

)2
≤

maxy∈[−L,L]

(
ϕ′
0,1
ϕ0,1

)2
, where λ0,i (i = 1, 2) denotes λ0 correspond-

ing to αi(y) (i = 1, 2) and the same notations are used for ϕ0,i.
The last column of Table 1 shows the range of ϵc . It is clear that
all of them contain the value 1. Furthermore, we apply the same
numerical method used for α(y) = sin(y) to other two cases: (a)
α(y) = 1.5 sin(y) and (b) α(y) = 0.5 sin(y). The details are shown
in Fig. 7. From those figures, we can see that ϵc = 1 for both cases.
It can be interesting to prove this result rigorously.

Fig. 6. (Color online) The relation between the minimal speed c and ϵ. The
blue line with stars denotes the numerically computed speed obtained by direct
numerical simulations and the red line is c0 = 2.36.

Table 1
The influence of α(y) on the range of ϵc .

α(y) c0 λ0 max
y∈[−L,L]

(
ϕ′
0
ϕ0

)2
The range of ϵc

1.5 sin(y) 2.95 0.914 0.3362 [0.8354,1.1713]
1.25 sin(y) 2.7 0.92 0.2747 [0.8464,1.1211]
sin(y) 2.58 0.93 0.2195 [0.8649,1.0844]
0.75 sin(y) 2.4 0.938 0.1683 [0.8798,1.0481]
0.5 sin(y) 2.23 0.951 0.1191 [0.9044,1.0235]
0.2 sin(y) 2.08 0.974 0.0645 [0.9478,1.0132]
0 2 1 0 1

4.2. Subcritical quintic Ginzburg–Landau equation

In our second application, we consider a subcritical quintic
Ginzburg–Landau equation in a cylindrical domain. The equation
is given by

ut = uxx+uyy+α(y)ux+µu+u3
−u5, (x, y) ∈ R×Ω, µ > 0. (4.13)

Here f (u) = µu + u3
− u5 and Ω = (−Ly, Ly). Thus, for traveling

wave solutions, we mean u(t, x, y) = U(ξ, y) where ξ = x − ct .
Then, the equation for the wave profile is

Uξξ + Uyy + (α(y) + c)Uξ + µU + U3
− U5

= 0, (4.14)

satisfying

lim
ξ→+∞

U(ξ, y) = 0, lim
ξ→−∞

U(ξ, y) = β(y) ≤ µ+, y ∈ Ω, (4.15)

where

µ+ =

√
1 +

√
1 + 4µ
2

> 1.

It is easy to have

f (0) = f (µ+) = 0, f ′(0) = µ > 0 > f ′(µ+) = −2µ2
+

√
1 + 4µ+.

Clearly, f satisfies (A1) and (A4). Notice that f ′(0) depends on the
parameter µ. Thus, we may require some extra conditions on µ
for f to satisfy (A5) when (4.14) is prescribed by the Dirichlet
boundary condition.

Since f ′′(u) = 6u − 20u3 and f ′′′(u) = 6 − 60u2, u = 0
is a solution of f ′′(u) = 0 with multiplicity k = 1. Following
Remark 3.2, we will choose γ = 2 in (3.2). By substituting the
formula of f into Eq. (3.5) and simplifying it, we then obtain

L(U1) =
U3
1

β2

(
1 −

U2
1

β2

){
−3λ21(c) − 3

(β ′ϕ1 − βϕ′

1)
2

ϕ2
1β

2
+ β4

}
,

(4.16)
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Fig. 7. (Color online) The numerical speed c corresponding to different ϵ. Figure (a) is depicted when α(y) = 1.5 sin(y) while (b) is depicted when α(y) = 0.5 sin(y).

Fig. 8. (Color online) The left panel shows the intersection predicted by the inequality (4.18) with the green line representing the function 1
2 +µ+

1
2

√
1 + 4µ and

the red line representing 3λ20; the right panel depicts the relation between the parameter µ and c0 (red line) or cnum (blue line with stars).

and now G1 = β4. With the condition 0 ≤ β(y) ≤ µ+ for y ∈ Ω ,
we further have

max
(ξ,y)∈R×Ω

G1(ξ, y)≤µ4
+

=
1
2

+ µ+
1
2

√
1 + 4µ. (4.17)

Thus, the condition (3.7) for the linear selection becomes

1
2

+ µ+
1
2

√
1 + 4µ < 3λ20(c0). (4.18)

We then have the following theorem.

Theorem 4.6. When (4.14)–(4.15) is prescribed by Neumann (or
Dirichlet) boundary conditions, the minimal wave speed is linearly
selected if the inequality (4.18) holds.

As for the nonlinear selection, we give a condition for the
Neumann boundary condition case as follows. Substituting the
formula of f into (3.20) gives G2 = β4

= µ4
+

=
1
2+µ+

1
2

√
1 + 4µ.

Then, we arrive at the following theorem.

Theorem 4.7. When (4.14)–(4.15) is prescribed by Neumann
boundary conditions, the minimal wave speed is nonlinearly selected

if

1
2

+ µ+
1
2

√
1 + 4µ > 3λ20(c0) + 3

(
ϕ′

0

ϕ0

)2

, (4.19)

where λ0(c0) and ϕ0(c0) are defined in Theorem 2.2.

Remark 4.8. Actually, if the Neumann boundary condition case
occurs with α(y) = 0, (4.18) and (4.19) imply that there is a
critical value µc = 0.75 such that the minimal wave speed of
(4.14) is linearly selected if µ ≥ µc and nonlinearly selected if
µ < µc . This means, our results include the one in [26]. When
α(y) ̸= 0, there is a gap between conditions (4.18) and (4.19),
we conjecture that there exists a critical number µc and its exact
value can be found by numerical simulations.

Next, we perform numerical simulations on (4.14)–(4.15).
Here, we also fix α(y) = sin(y) and Ly = 5π . Similarly, we apply
the same method as that in the previous application and carry
out simulations in two cases.

(1) We first do simulations for the Neumann boundary con-
dition case. By direct calculations on (4.18), we obtain the left
panel of Fig. 8. In the figure, we use the green line to represent
the left hand side of (4.18), i.e., 1

2 + µ+
1
2

√
1 + 4µ, and the red



10 Z. Huang and C. Ou / Physica D 402 (2020) 132225

Fig. 9. (Color online) In the left panel, the green line denotes the left hand side of (4.18), i.e., 1
2 + µ +

1
2

√
1 + 4µ, and the red line denotes the right hand side,

i.e., 3λ20 . The right panel depicts the relation between the parameter µ and c0 (red line) or cnum (blue line with stars).

line to denote the right hand side, that is, 3λ20. Clearly, there is an
intersection µc ≃ 1 shown in Fig. 9(b). Following Theorems 4.6
and 4.7, we expect that the system (4.13) is linearly selected
when µ > µc and nonlinearly selected when µ ≤ µc . In the right
panel of Fig. 8, we illustrate the relation between cnum and c0. By
choosing the same initial condition given in Eq. (4.11), we obtain
the traveling wave solution for (4.13). The shape of this solution is
similar to the one shown in Fig. 3, so we will not repeat showing
it here. To obtain a stable traveling wave solution, we record all
the speed data after 200 s. On the other hand, c0 is from (2.4) and
its value differs as µ varies. Then, we use the blue line with stars
to denote cnum and the red line to denote c0. As we can see, the
system is nonlinearly selected when µ ≤ 1 and linearly selected
when µ > 1. Thus, with the help of numerical simulations, we
indeed have verified the theoretical results.

(2) In the Dirichlet boundary condition case, we carry out sim-
ilar procedures. In the left panel of Fig. 9, we find an intersection
µd ≃ 1.25 from (4.18). Following Theorem 4.6, we expect that the
system (4.13) is nonlinearly selected when µ ≤ µd. To verify this,
we choose the same initial condition defined in (4.12) to obtain
the traveling wave solution for (4.13). Again, we store all the data
after 200 s and use the red line to denote c0 while the blue line
with stars to denote cnum. As we can see in the right panel of Fig. 9,
in our depicted region µ ∈ [0.1, 1.5], the blue line is always above
the red one, which means the system is nonlinearly selected for
all µ ∈ [0.1, 1.5]. Thus, we have verified that the system is indeed
nonlinearly selected when µ ≤ µd.

5. Conclusion and discussion

In summary, by the method of upper and lower solutions, we
have obtained speed selection mechanism (including linear and
nonlinear) for traveling wave solutions of a reaction–diffusion–
advection equation in a cylindrical domain. Precisely, we found
conditions on the linear selection when the model is prescribed
by Neumann (or Dirichlet) boundary conditions, see the inequal-
ity (3.7) and Theorem 3.4. We also give results on the nonlinear
selection when the model is prescribed by Neumann boundary
conditions, see the inequality (3.20) and Theorem 3.7. To see
the speed selection mechanism more specifically, we gave two
applications in Section 4. In each application, we obtained the
corresponding simplified conditions for the speed selection mech-
anism and then demonstrated them by direct numerical simula-
tions.

We should emphasize that, because of our newly constructed
upper and lower solutions, our results make significant progress
in the study of the speed selection in higher dimension models
such as (1.1). These constructed solutions are more accurate for
approaching the true traveling wave solutions. With this method,
we extend the previous results in the Neumann boundary con-
dition case, and even give a sufficient condition on the linear
selection in the Dirichlet boundary condition case, which was
thought to be very difficult to study.

There are many interesting but open problems related to the
topic of speed selections. One open problem arising in this paper
is how to find a suitable lower solution to analyze the nonlinear
selection in the Dirichlet boundary condition case. Furthermore,
concerning the problem of wave speeds, it is interesting and
challenging to find an estimation of cmin or even give an exact
formula when the nonlinear selection is realized.

Appendix

The upper and lower solution method has proved to be a very
powerful tool to investigate the existence of monotone traveling
wave solutions (see e.g. [28]). This method originates in Diek-
mann [29], and has been extended by many academics, such as
in [28,30]. The main idea is as follows. By transforming the wave
profile equation (1.3) or its original partial differential equation
(1.1) into an integral one, we can define a monotone solution
map. Then with the definition of the solution map, we can con-
struct a pair of upper and lower solutions of (1.1) to set up
an iteration scheme. Through the scheme, we then obtain the
existence of traveling wave solutions of (1.1).

To proceed, we present the phase space used in our model. Let
C (C̃) be the set of all bounded continuous functions from R×Ω

to R (or C̃ = C(R, X), where X = C0(Ω)), and Cβ := {ϕ ∈ C :

0 ≤ ϕ ≤ β} (C̃β := {ϕ ∈ C̃ : 0 ≤ ϕ ≤ β}). Here, C is used for
the Neumann boundary condition case, while C̃ is used for the
Dirichlet boundary condition case. Since the process in each case
is similar, we then only take the Neumann boundary condition
case to show the scheme.

To obtain a monotone solution map, we let M1 be a sufficiently
large positive number such that F1(u) := f (u)+M1u is monotone
in u. Thus, Eq. (1.1) is equivalent to the following one:

ut = uxx +∆yu + α(y)ux − M1u + F1(u). (A.1)

Next, we want to transform it into an integral form. To this end,
we first investigate the corresponding homogeneous equation,
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that is,

ut = uxx +∆yu + α(y)ux − M1u. (A.2)

Let Γ (t, x, y) (or Γ̃ (t, x, y)) be the Green’s function of (A.2) pre-
scribed by the Neumann (or Dirichlet) boundary conditions (see,
e.g., [31]). Then the solution of (A.2) with the initial value u(0, ·) =

ϕ(·) can be expressed as

u(t, x, y) = Γ (t, x − x0, y − y0) ∗ ϕ(x0, y0).

By the comparison principle (see, e.g., [32]), the above Green’s
function is monotone in u, that is, Γ ∗ u1 ≥ Γ ∗ u2 when u1 ≥ u2
for (x, y) ∈ R×Ω . Now, by variation of parameters, Eq. (A.1) can
be written in an integral form as

u(t, x, y) = Γ (t, x − x0, y − y0) ∗ ϕ(x0, y0)

+

∫ t

0
Γ (t − t0, x − x0, y − y0) ∗ F1(u(t0, x0, y0))dt0,

(A.3)

where the initial data ϕ ∈ Cβ and ∗ denotes the convolution as

Γ (t, x − x0, y − y0) ∗ ϕ(x0, y0)

=

∫
R

∫
Ω

Γ (t, x − x0, y − y0) · u0(x0, y0)dy0dx0.

We define

Qt [ϕ] = u(t, ·, ϕ).

It then follows that {Qt}
∞

t=0 is a semiflow on Cβ with Qt (0) = 0
and Qt (β) = β . Then, by a traveling wave solution of the map Qt
for each t ≥ 0, we mean a special solution U(x, y) satisfying

Qt [U](x, y) = U(x − ct, y)

for some constant c , and U(x, y) connecting β to 0 if U(−∞, y) =

β(y) and U(+∞, y) = 0. Notice that, in the literature of Qt , the
minimal wave speed defined in the Introduction means that Qt
has a non-increasing traveling wave connecting β to 0 if and only
if c ≥ cmin. Furthermore, for any t ≥ 0, the solution map Qt has
the following properties:
(1) Qt is monotone in the sense that Qt [U1] ≥ Qt [U2] whenever
U1 ≥ U2 for (x, y) ∈ R ×Ω;
(2) If U ∈ Cβ is decreasing with respect to ξ ∈ R, so is Qt [U];
(3) Qt [Cβ ] is precompact in Cβ (see, e.g., [13] for the Neumann
boundary conditions and [14] for the Dirichlet boundary condi-
tions).

Then, corresponding to the solution map Qt , we introduce the
definition of an upper (or a lower) solution. Given x0 ∈ R, we
define the translation operator Tx0 by Tx0 [U](x, y) = U(x − x0, y).

Definition A.1. For any given c , a continuous function u(x, y) is
called an upper solution to the integral equation (A.3) if

T−ct [Qt [u]] (x, y) ≤ u(x, y), ∀(x, y) ∈ R ×Ω.

A lower solution of (A.3) is defined by reversing the inequality.

In the following lemma, we give the inequality in Defini-
tion A.1 in terms of the differential equation for the wave profile,
since these differential form inequalities are straightforward in
our analysis.

Lemma A.2. A continuous function U(ξ, y) = Tct [U](x, y), where
ξ = x − ct, is twice continuously differentiable on R × Ω except
finite many points ξi with

Uξ (ξ+

i , y) ≤ Uξ (ξ−

i , y), i = 1, 2, . . . ,m, (A.4)

and

Uξξ +∆yU + [α(y) + c]Uξ + f (U) ≤ 0, ∀(ξ, y) ∈ R \ {ξi} ×Ω,

i = 1, 2, . . . ,m. (A.5)

Then, it is an upper solution of (A.3). A lower solution is obtained by
reversing the afore-mentioned inequalities.

Proof. Suppose there is a solution U(ξ, y) satisfying (A.5). We
denote

u(t, x, y) = U(x − ct, y).

Substituting it into (A.1) gives ut = −cUξ , uxx = Uξξ and
∆yu = ∆yU . Then, (A.5) implies{
ut ≥ uxx +∆yu + α(y)ux + f (u),
u(0, x, y) = U(x, y).

(A.6)

Since Qt [U](x, y) is the solution of (A.1) with the initial data as
U(x, y). By the comparison principle (see, e.g., [32]), we then
obtain u(t, x, y) ≥ Qt [U](x, y) for all t ≥ 0. That is, U(x −

ct, y) = Tct [U](x, y) ≥ Qt [U](x, y) for all t ≥ 0. Thus, U(x, y) ≥

T−ct [Qt [U]](x, y), which exactly meets the requirement for an
upper solution in Definition A.1. A similar proof can be applied
to the lower solution of (A.3) if we reverse (A.4) and (A.5). This
completes the proof. ■

The existence of an upper and a lower solution to the system
(A.3) will give the existence of an actual traveling wave solution.
Indeed, for our problem, we assume the following hypothesis.

Hypothesis A.3. For c > c0, there exists a monotone non-
increasing upper solution U(x, y) with respect to x and a non-zero
lower solution U(x, y) to the system (A.1) with the following
properties:
(1) U(x, y) ≤ U(x, y), for all (x, y) ∈ R ×Ω;
(2) U(−∞, y) = β(y), U(+∞, y) = 0, for all y ∈ Ω;
(3) U(−∞, y) = β∗(y), U(+∞, y) = 0, where 0 ≤ β∗

≤ β for all
y ∈ Ω .

When the above hypothesis holds true, we can define an
iteration scheme as

U0(x, y) = U(x, y), Un+1(x, y) = T−ct [Qt [Un]](x, y),

n = 0, 1, 2, . . . . (A.7)

With the construction of upper and lower solutions and the
iteration scheme, we then arrive at the following existence the-
orem for a traveling wave solution (see, e.g., [13,29,30] for the
Neumann boundary condition case, and [14] for the Dirichlet
boundary condition case).

Theorem A.4. If Hypothesis A.3 holds and Qt is defined in (A.3),
then the iteration (A.7) converges to a function U(x, y). This function
is a solution to (1.3)–(1.4) with U(x− ct, y) = Qt [U](x, y). Further-
more, U(x − ct, y) = U(ξ, y) with ξ = x − ct is non-increasing in
ξ ∈ R with U(−∞, y) = β(y) and U(+∞, y) = 0 uniformly for
y ∈ Ω .
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