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Abstract

We study the existence, uniqueness, global attractivity and bifurcation of time-periodic patterns for a 
seasonal phytoplankton model with self-shading effect. By the comparison principle, we obtain the globally 
asymptotical stability of the zero solution when the principal eigenvalue λ1 is less than zero. When λ1 > 0, 
by transforming the model into a new system, we successfully prove the conjecture in previous studies on 
the uniqueness and attractivity of the positive periodic solution. The positive periodic pattern bifurcating 
from the zero solution is a very interesting phenomenon. Here we apply the Crandall and Rabinowiz’s 
theory to prove rigorously the existence of a bifurcation point. By way of asymptotic analysis, we derive 
an asymptotic formula for the positive periodic pattern. Based on the solution formula, we find the linear 
stability of this positive pattern. Finally, we provide a numerical scheme for the calculations of the principal 
eigenvalue and the simulations of the solution. The simulations corroborate our theoretical analysis.
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1. Introduction

Since the pioneer work of Riley, Stommel and Bumpus [19], mathematical modeling of 
phytoplankton bloom has attracted considerable attention of researchers, see [1,7,8,11,12,14,
18–20]. A simple convection–diffusion model was proposed by Shigesada and Okubo [20] which 
incorporates the sinking and self-shading effect of the phytoplankton. Let u(x, t) denote the pop-
ulation density of plankton at depth x and time t . The original model of Shigesada and Okubo 
reads ⎧⎪⎪⎨

⎪⎪⎩
ut = Duxx − αux + [g(I (x, t)) − d]u, x ∈ (0,∞), t > 0,

Dux − αu = 0, x = 0, t > 0,

u(x,0) = u0(x) ≥ 0, x ∈ [0,∞),

(1.1)

where D is the diffusivity and α is the sinking velocity. g(I (x, t)) is the growth rate of the 
phytoplankton as a function of light intensity I (x, t). Typical functions for g are given by

g(I) = aI

1 + bI
, or g(I) = b

1 − e−cI

c
,

for some constants a, b and c, see also [15]. Due to the absorption of water and the self-shading 
effect of phytoplankton, the light intensity is modeled by

I (x, t) = I0e
−k0x−k1

∫ x
0 u(s,t)ds,

where I0 is the light intensity at the surface, k0 and k1 are two constants. The water depth is 
assumed sufficiently large so that another boundary condition at the bottom is added as

lim
x→∞u(x, t) = 0. (1.2)

The system (1.1)–(1.2) is a non-local convection diffusion model. If the phytoplankton is as-
sumed to be sufficiently transparent (i.e., k1 = 0), (1.1) reduces to a linear model which was 
investigated in [8]. Fennel in [8] found that the species attains its peak density at the vertical 
location where the growth rate and the death rate are balanced. When water is assumed to be 
sufficiently transparent (i.e., k0 = 0) so that all of the light is absorbed by the phytoplankton 
itself, this is called a completely self-shading model. Steady-state solutions of the model were 
investigated by the phase plane method in [20]. When neither k0 nor k1 is equal to zero, the 
global stability of the stationary solutions were studied by way of comparison and energy method 
in [13].

It is interesting to study the model when the water depth is finite. In [15], Kolokolnikov, Ou 
and Yuan added a non-flux boundary condition at the bottom with depth L as

Dux − αu = 0, x = L, t > 0. (1.3)

When k0 = 0, the phytoplankton depth profiles and their transitions near the critical sinking 
velocity were studied. Depending on the sinking rate, light intensity and water depth, the plankton 
can concentrate either near the surface, or at the bottom of the water column, or both, resulting 
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in a so-called “double-peak” profile. Kolokolnikov, Ou and Yuan’s study generalized the results 
of Shigesada and Okubo where infinite depth was considered.

When k0 �= 0, most recently, there were intensive studies for the steady state solutions of 
this model by Du, Hsu and Lou, see e.g. [3–6,10]. In particular, in [3,4], Du and Hsu studied 
the existence of concentration phenomena and their limiting profile. In [10], Hsu and Lou also 
pointed out that the phytoplankton forms a thin layer at the surface of the water column for large 
buoyant rates, and it also forms a thin layer at the bottom of the water column for large sinking 
rates. Precise characterizations of these thin layers were also given, see [10] for details.

In [16,17], Peng and Zhao considered that the light intensity I0 at the surface should be time 
periodic due to diurnal light cycle and seasonal changes. Therefore, they studied

⎧⎪⎪⎨
⎪⎪⎩

ut = Duxx − αux + [g(I (x, t)) − d(t)]u, x ∈ (0,L), t > 0,

Dux − αu = 0, x = 0,L, t > 0,

u(x,0) = u0(x) ≥ 0, x ∈ [0,L]
(1.4)

with I0(t) and d(t) to be nonnegative periodic functions. Due to the incorporation of the time-
periodic functions, the model has been more practical. However, the analysis of the model 
becomes even more challenging. The persistence and extinction of the phytoplankton species 
were established in terms of a threshold value of the basic reproduction number. Most interest-
ingly, they also presented an open question on the uniqueness of positive periodic solutions as 
well as a conjecture on the global attractivity of these patterns.

In this paper, we consider the following model

⎧⎪⎪⎨
⎪⎪⎩

ut = D(t)uxx − α(t)ux + [g(I (x, t)) − d(t)]u, x ∈ (0,L), t > 0,

D(t)ux − α(t)u = 0, x = 0,L, t > 0,

u(x,0) = u0(x) ≥ 0, x ∈ [0,L],
(1.5)

where u(x, t) represents the population density of the phytoplankton at the depth x and time t ; 
D(t) > 0, d(t) > 0 and α(t) are all continuously differentiable T-periodic functions for some 
positive number T . They stand for the strength of the diffusion, the death rate of the species 
and the sinking effect, respectively. g(·) ∈ C1([0, L]) is a nonlinear function that describes the 
growth rate of phytoplankton and it satisfies

g(0) = 0 andg is continuous and strictly increasing function. (1.6)

Moreover, the light intensity I (x, t) is in the form of

I (x, t) = I0(t)e
−k0x−k1

∫ x
0 u(s,t)ds, x ∈ [0,L], t ≥ 0, (1.7)

where I0(t) > 0 is a continuous T-periodic function and represents the incident light intensity, 
k0 ≥ 0 is the background turbidity and k1 > 0 is the light attenuation coefficient of the phyto-
plankton species. The initial function u0(x) is continuous and nonnegative, and there exists a 
sub-interval in [0, L] such that u0(x) > 0. The boundary conditions show that there is no flux 
of phytoplankton species at the surface and the bottom of the water column. System (1.5)–(1.7)
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models the distribution of phytoplankton densities in a vertical water column with a cross section 
of one unit area and maximum depth L, see [16,17] and references therein.

We shall study the global behavior of this model. The first important and new contribution 
of this paper is that we obtain the uniqueness and the global attractivity of the positive periodic 
solution when it exists. This solves the open question as well as the conjecture in [16,17]. Fur-
thermore, we establish a new and rigorous result on the bifurcation of the solution in terms of the 
death rate. Near the bifurcation point, approximate formulas for the periodic solution are derived. 
Based on these formulas, the linear stability of the periodic patterns is also established. Lastly, 
due to the occurrence of periodic light intensity, the computation of the principal eigenvalue as 
well as the solution is non-trivial. In addressing this challenge, we give a numerical scheme for 
the calculations of the principal eigenvalue and the simulations of the underlying phytoplankton 
model to demonstrate our theoretical analysis.

The paper is arranged as follows. In Section 2, we study the stability of the zero solution. The 
existence, uniqueness and attractivity of the positive periodic solution are presented in Section 3. 
The bifurcation and asymptotic analysis of the positive solution are showcased in Section 4. 
Numerical simulations are arranged in Section 5. Section 6 includes conclusion and discussion.

2. Stability of the zero equilibrium

For convenience, in this paper we denote B the space of all continuous functions from [0, L] to 
R with the supremum norm, i.e., B = C([0, L], R). Let Y = C([0, L], R+), Y0 = {φ ∈ Y : φ �≡ 0}
and ∂Y0 = {0}. Since the nonlinear term g(I (x, t)) satisfies the local Lipschitz condition, using 
the standard argument, we can prove the uniqueness and global existence of the solution u(x, t)
of (1.5) when the initial function u0(x) is in Y , and by the strong maximum principle and the 
Hopf boundary lemma, we can also know that u(x, t) is positive for (x, t) ∈ [0, L] × (0, ∞)

when u0(x) is in Y0. Let Qt [u0] = u(x, t; u0) be the unique solution of (1.5). It is easy to know 
that Qt is a continuously periodic semiflow on Y that follows the usual definition below.

Definition 2.1. A family of maps {Qt }t≥0 on the space B is said to be a T-periodic semiflow for 
some T > 0 provided that {Qt } satisfies

(i) Q0[ϕ] = ϕ, ∀ϕ ∈ B;
(ii) Qt ◦ QT [ϕ] = Qt+T [ϕ], t ≥ 0, ϕ ∈ B;

(iii) Qt [ϕ] is continuous in (t, ϕ) on [0, ∞) ×B.

The map QT is called the Poincaré map associated with this periodic semiflow.

In this section, we shall give conditions for the globally asymptotical stability of the equilib-
rium point u(x, t) ≡ 0 of (1.5). When D(t) and α(t) are not constants, essentially we can follow 
the idea in [17] based on a taste of biological language in terms of the Basic Reproduction Num-
ber. Here however, we shall provide a short presentation only in terms of the principal eigenvalue 
of the corresponding linear system.

Let

u(x, t) = 0 + εφ(x, t)eλt
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and substitute it into (1.5). Then the coefficients to the first-order power of ε satisfy the following 
system

⎧⎪⎪⎨
⎪⎪⎩

λφ = −φt + D(t)φxx − α(t)φx + [g(I0(t)e
−k0x) − d(t)]φ, x ∈ (0,L), t > 0,

D(t)φx − α(t)φ = 0, x = 0,L, t > 0,

φ(x,0) = φ(x,T ), x ∈ [0,L].
(2.1)

By the well known Krein–Rutman theorem [9], this problem has the existence of principal 
eigenvalue λ1 with the corresponding positive eigenfunction in the domain (0, L) × [0, T ]. The 
standard stability theory of partial differential equations indicates that the equilibrium u ≡ 0 is 
locally stable when the principal eigenvalue λ1 of (2.1) is less than zero. Furthermore, by using 
the comparison technique, we have the results below.

Theorem 2.1. If λ1 < 0, then the equilibrium u ≡ 0 of (1.5) is globally asymptotically stable.

Proof. Obviously, we need only to prove that u ≡ 0 is globally attractive. By (1.6) and (1.7), it 
follows that

ut ≤ D(t)uxx − α(t)ux + [g(I0(t)e
−k0x) − d(t)]u.

If a function U(x, t) satisfies

⎧⎪⎪⎨
⎪⎪⎩

Ut = D(t)Uxx − α(t)Ux + [g(I0(t)e
−k0x) − d(t)]U, x ∈ (0,L), t > 0,

D(t)Ux − α(t)U = 0, x = 0,L, t > 0,

U(x,0) = U0(x) ≥ 0, x ∈ [0,L],
(2.2)

then it is easy to know that u(x, t) ≤ U(x, t) for u0(x) ≤ U0(x). For the linear system (2.2), 
λ1 < 0 implies that U ≡ 0 is globally attractive, and so is u ≡ 0. The proof is complete. �
Remark 2.1. In the case when λ1 = 0, it is possible to develop the idea in the proof of Theo-
rem 3.4 of [5] to obtain the global attractivity of zero solution, see also [17]. We shall leave this 
job into next section by applying a new technique that can also obtain the global attractivity of 
positive periodic pattern. This will solve the open problem raised in [16,17].

In next section, we shall study the global behavior of the solutions when λ1 ≥ 0.

3. Periodic solutions of (1.5)

By applying the idea of Theorem 2.1 in [17], it is not difficult to obtain the existence of 
positive periodic solution of (1.5) as well as the persistence behavior of the system when λ1 > 0. 
However, here we are interested in dealing with not only the existence, but also the uniqueness 
and attractivity of the positive T-periodic solution of the system (1.5) which was raised as an open 
question in [17] and was conjectured in [16]. We shall proceed to provide a different method to 
handle the problem. For this purpose, by using the transformation
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v(x, t) =
x∫

0

u(s, t)ds, (3.1)

we first change (1.5) into a monotonic system as follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vt = D(t)vxx − α(t)vx + G(I0(t), v) − d(t)v, x ∈ (0,L), t > 0,

v(0, t) = 0, D(t)vxx − α(t)vx |x=L = 0, t > 0,

v(x,0) =
x∫

0

u0(s)ds = ϕ(x), x ∈ [0,L],
(3.2)

where

G(I0(t), v(x, t)) = 1

k1

k0x+k1v(x,t)∫
0

g
(
I0(t)e

−ξ
)
dξ − k0

k1

x∫
0

g
(
I0(t)e

−(k0s+k1v(s,t))
)

ds. (3.3)

Obviously, for biological reason, we need take ϕ(x) as a nondecreasing and differentiable func-
tion (i.e., ϕ′(x) ≥ 0) on [0, L] satisfying ϕ(0) = 0.

Let C1 = {ϕ : ϕ′ ∈ C([0, L], R) and ϕ(0) = 0} with the norm

‖ϕ‖ = max
x∈[0,L]

|ϕ(x)| + max
x∈[0,L]

|ϕ′(x)|

and C1+ = {ϕ ∈ C1 : ϕ(x) ≥ 0 for x ∈ [0, L]}. For any ϕ1, ϕ2 ∈ C1, we write ϕ1 ≤ ϕ2 if ϕ2 − ϕ1 ∈
C1+, ϕ1 < ϕ2 if ϕ2 −ϕ1 ∈ C1+\{0} and ϕ1 � ϕ2 if ϕ2 −ϕ1 is in Int (C1+), where Int (C1+) represents 
the interior of C1+. Since we require the initial function to be nondecreasing, we define a convex 
subset as

P = {ϕ : ϕ ∈ C1+ and ϕ′(x) ≥ 0 forx ∈ [0,L]}

and from now on we assume the initial function of (3.2) is inside P .
Since the initial function ϕ is in P , the existence and uniqueness of the solution v is implied 

by the existence and uniqueness of u. If ϕ ∈ P , then ϕ′ is continuous with ϕ′ ≥ 0. With ϕ′ as the 
initial function of (1.5), it is easy to obtain the non-negative solution u(x, t) of (1.5) for t > 0. 
Returning to (3.2), we can know that v(x, t) is non-decreasing in x on [0, L] for any t ∈ (0, ∞)

since vx(x, t) = u(x, t) is the nonnegative solution of (1.5). This means that P is invariant under 
the system (3.2). Therefore, in what follows, we shall focus on the study of (3.2).

Remark 3.1. Although the boundary condition at x = L is not standard, still we can provide 
a general existence and uniqueness result for model (3.2) with the initial function ϕ in a weak 
space C([0, L], R). Using the equation, the boundary value v(L, t) satisfies

vt (L, t) = G(I0(t), v(L, t)) − d(t)v(L, t). (3.4)
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Let

F(t, v(x, t)) = G(I0(t), v(x, t)) − d(t)v(x, t) (3.5)

and we are easy to know that it satisfies the global Lipschitz condition

‖F(t, u) − F(t, v)‖ ≤ k‖u − v‖

for some positive constant k. Define a modified Picard iteration as v0(x, t) = ϕ, and

⎧⎪⎪⎨
⎪⎪⎩

(vn+1)t = D(t)(vn+1)xx − α(t)(vn+1)x + F(t, vn), x ∈ (0,L), t > 0,

(vn+1)(0, t) = 0, (vn+1)t = F(t, vn), at x = L, t > 0,

vn+1(x,0) = ϕ(x), x ∈ [0,L],
(3.6)

for any n ≥ 0. Note that the boundary value vn+1(L, t) can be worked out based on the known 
function vn(x, t). Thus, (3.6) is essentially a standard parabolic Dirichlet boundary value prob-
lem. Obviously, we have

‖F(t, v0‖ ≤ ‖F(t,0)‖ + k‖v0‖ ≤ (1 + k)m,

where m = ‖v0‖. First we can derive

‖v1 − v0‖ ≤ Mt

for some positive constant M . Set

Mn(t) = sup{‖vn(x, t) − vn−1(x, s)‖ : s ≤ t}.

Using the technique of Green’s function to re-write (3.6) into an integral equation, by induction, 
we can obtain

Mn(t) ≤ Mkntn

n! .

The above inequality implies that the sequence vn(x, t) converges uniformly to some continuous 
function v(x, t). This provides the existence of the solution. The uniqueness of v can be proved 
by the standard contradiction argument.

To obtain the existence and stability of the positive periodic solution to (3.2), we shall use the 
following lemma.

Lemma 3.1. ([21], Theorem 2.3.4) Suppose that f : P → P is a continuous map. Also assume 
that

(1) f is monotone and strongly subhomogeneous;
(2) f is asymptotically smooth, and every positive orbit of f in P is bounded;
(3) f (0) = 0, and Df (0) is compact and strongly positive.
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Then there exists threshold dynamics:

(a) If r(Df (0)) ≤ 1, then every positive orbit in P converges to 0;
(b) If r(Df (0) > 1), then there exists a unique fixed point u∗ > 0 in P such that every positive 

orbit in P \{0} converges to u∗,

where r(Df (0)) is the spectral radius of Df (0), and Df (0) is the Fréchet derivative of f at 
zero.

The definitions of “monotone”, “strongly subhomogeneous” and “asymptotically smooth” can 
be found in [21].

We first construct a lemma in regard to the boundedness of solutions of (3.2).

Lemma 3.2. The solutions of the system (3.2) are bounded uniformly in x and t .

Proof. In view of the above discussion, for any given initial function ϕ in P , if v(x, t) is a 
solution of (3.2), then we have

v(x, t) =
x∫

0

u(s, t)ds

where u(x, t) is the solution of (1.5) with the initial function u(x, 0) = ϕ′ ≥ 0. To show the 
boundedness of v, we only need to provide the boundedness of u of (1.5). This directly comes 
from the proof of Lemma 2.4 in [17] by a minor change, see also Lemma 3.2 and its proof in [5]. 
In other word, there exists a constant C > 0 such that u(x, t) < C for all x ∈ [0, L] and t ≥ 0.

Therefore, returning to v, we have 0 ≤ v(x, t) ≤ M for M = LC. �
The following lemma aims to show the monotonicity of the periodic semiflow defined 

from (3.2).

Lemma 3.3. Assume that v(x, t, ϕ) and v̄(x, t, ϕ̄) are two solutions of (3.2) with initial functions 
ϕ ≥ ϕ̄. Then we have v(x, t, ϕ) ≥ v̄(x, t, ϕ̄), for all (x, t) ∈ [0, L] × (0, ∞).

Proof. Since v(x, t, ϕ) and v̄(x, t, ϕ̄) are two solutions of (3.2), we then have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vt = D(t)vxx − α(t)vx + G1(k0x + k1v)

− k0
k1

∫ x

0 g(I0(t)e
−k0s−k1v(s,t))ds,

x ∈ (0,L), t > 0,

v(0, t) = 0, [D(t)vxx − α(t)vx]x=L = 0, t > 0,

v(x,0) = ϕ, x ∈ [0,L]

(3.7)
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and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v̄t = D(t)v̄xx − α(t)v̄x + G1(k0x + k1v̄)

− k0
k1

∫ x

0 g(I0(t)e
−k0s−k1v̄(s,t))ds,

x ∈ (0,L), t > 0,

v̄(0, t) = 0, [D(t)v̄xx − α(t)v̄x]x=L = 0, t > 0,

v̄(x,0) = ϕ̄, x ∈ [0,L],
where

G1(k0x + k1v) = 1

k1

k0x+k1v(x,t)∫
0

g(I0(t)e
−ξ )dξ.

We can define a function sequence {vn}∞n=0 inductively by the following iteration, with v0 = v1 =
v̄(x, t), and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(vn)t = D(t)(vn)xx − α(t)(vn)x + G1(k0x + k1vn)

− k0
k1

∫ x

0 g(I0(t)e
−k0s−k1vn−1(s,t))ds,

x ∈ (0,L), t > 0,

vn(0, t) = 0, [D(t)(vn)xx − α(t)(vn)x]x=L = 0, t > 0,

vn(x,0) = ϕ, x ∈ [0,L],

(3.8)

for n ≥ 2. The existence and uniqueness of vn, n ≥ 2 can be easily proved by a standard argument. 
We next prove by induction that

vn−1(x, t) ≤ vn(x, t)

for n ≥ 1.
For n = 1, it is true. Assume that it is true for some n ≥ 1. We then proceed to show vn(x, t) ≤

vn+1(x, t).
Put w(x, t) = vn+1 − vn. Then we have

wt ≥ D(t)wxx − α(t)wx + h(x, t)w, (3.9)

where

h(x, t) =
1∫

0

g(I0(t)e
−k0x−k1θvn(x,t)−k1(1−θ)vn+1(x,t))dθ.

Now we know that w(x, 0) = 0, w(0, t) = 0 and

D(t)wxx(L, t) − α(t)wx(L, t) = 0. (3.10)

Combining together (3.9) and (3.10) gives

w(L, t)t ≥ h(x, t)w(L, t), w(L,0) = 0. (3.11)
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It is easy to obtain from (3.11) that

w(L, t) ≥ 0. (3.12)

Now applying the maximum principle to equation (3.9), we have

w(x, t) = vn+1 − vn ≥ 0.

Then it follows that

vn+1 ≥ vn ≥ · · · ≥ v1 = v(x, t), n = 2,3, · · ·. (3.13)

Furthermore, by Lemma 3.2 and induction, it is easy to know that there exists a sufficiently large 
constant M satisfying

vn(x, t) ≤ M for all n.

For (3.8), by using the standard estimate of the solution as well as its derivative with respect 
to the variable x ((vn)x is uniformly bounded for all n), we can derive

vn(x, t) → v(x, t)

uniformly in [0, L] × [0, t], t > 0, for some positive function v(x, t) which is the solution of 
(3.7). From (3.13) and the uniqueness of the solution of (3.7), we can obtain

v(x, t) ≥ v̄(x, t).

The proof is complete. �
Lemma 3.4. The function G(I0(t), v(x, t)) satisfies

G(I0(t), λv(x, t)) � λG(I0(t), v(x, t)), λ ∈ (0,1), (3.14)

for any v ∈ Int (P ).

Proof. From (3.3) it also follows that

G(I0(t), v(x, t)) =
x∫

0

g
(
I0(t)e

−k0s−k1v(s,t)
) ∂v(s, t)

∂s
ds.

Then, we have

G(I0(t), λv(x, t)) = λ

x∫
g

(
I0(t)e

−k0s−λk1v(s,t)
) ∂v(s, t)

∂s
ds
0
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� λ

x∫
0

g
(
I0(t)e

−k0s−k1v(s,t)
) ∂v(s, t)

∂s
ds

= λG(I0(t), v(x, t)) (3.15)

for v ∈ Int (P ). Here we have used the fact that if v ∈ Int (P ), then vx(0, t) �= 0. The proof is 
complete. �

Define {Qt }t≥0 as

Qt [ϕ](x) = v(x, t;ϕ),∀ϕ ∈ P,x ∈ [0,L], t ≥ 0,

where v(x, t; ϕ) is the unique solution of system (3.2) satisfying v(·, 0; ϕ) = ϕ. The following 
lemma shows that {Qt }t≥0 is a monotonic T-periodic semiflow.

Lemma 3.5. {Qt }t≥0 is a monotonic T-periodic semiflow on P .

Proof. By Lemma 3.3, the map Qt is monotonic on P for each t . We now prove that Qt is a 
periodic semiflow on P in the sense of Definition 2.1. The initial condition implies that (i) is 
satisfied by Qt , and (ii) follows from the existence and uniqueness of solutions of (3.2). Next, 
we prove (iii). It is evident that Qt [ϕ] = v(., t; ϕ) is continuous in t ∈ R+. It remains to prove 
that Qt [ϕ] is continuous in ϕ on [0, ∞) × P , that is, we will prove the following claim.

Claim. For any ε > 0, there exist δ(ε) > 0 such that if ϕ1, ϕ2 ∈ P with ‖ϕ1(x) − ϕ2(x)‖ < δ

for all x ∈ [0, L], then ‖v1(t, x) − v2(t, x)‖ < ε for any fixed t , where v1(x, t) and v2(x, t) are 
solutions to (3.2) with initial functions ϕ1 and ϕ2, respectively.

Let ω(x, t) = v1(x, t) − v2(x, t). Then ω(x, t) solves the following system

⎧⎪⎪⎨
⎪⎪⎩

ωt = D(t)ωxx − α(t)ωx − d(t)ω + H(x, t,ω1,ω2), x ∈ (0,L), t > 0,

ω(0, t) = 0, D(t)ωxx − α(t)ωx |t=L = 0, t > 0,

ω(x,0) = ϕ1(x) − ϕ2(x), x ∈ [0,L],
(3.16)

where

H(x, t,ω1,ω2) = G(I0(t), v1(x, t)) − G(I0(t), v2(x, t))

= 1

k1

k0x+k1v1(x,t)∫
k0x+k1v2(x,t)

g
(
I0(t)e

−ξ
)
dξ

− k0

k1

x∫
0

[
g(I0(t)e

−k0x−k1v1(s,t)) − g(I0(t)e
−k0x−k1v2(s,t))

]
ds.

There are two cases to discuss.
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Case 1. ϕ1 ≥ ϕ2. Set ϕ1(x) − ϕ2(x) < δ for some δ > 0 and x ∈ [0, L]. By (1.6), (1.7), for 
each fixed t we have

H(x, t,ω1,ω2) ≤ 1

k1

k0x+k1v1(x,t)∫
k0x+k1v2(x,t)

g (I0(t)) dξ

+ k0

k1

x∫
0

g′(θ)I0(t)e
−k0x−k1v2(s,t)

(
1 − e−k1(v1(s,t)−v2(s,t)

)
dx

≤ B1ω + B2B3k0

x∫
0

ω(s, t)ds ≤ C0ω,

where Bi, i = 1, 2, 3, are positive constants such that g (I0(t)) ≤ B1, g′(θ) ≤ B2, and I0(t) ≤ B3, 
θ is located between I0(t)e

−(k0x+k1v1(s,t) and I0(t)e
−(k0x+k1v2(s,t) for each fixed t and s ∈ [0, x], 

the constant C0 is sufficiently large. Then, from (3.16) it follows that

⎧⎪⎪⎨
⎪⎪⎩

ωt ≤ D(t)ωxx − α(t)ωx + [C0 − d(t)]ω, x ∈ (0,L), t > 0,

ω(0, t) = 0, D(t)ωxx − α(t)ωx |t=L = 0, t > 0,

ω(x,0) = ϕ1(x) − ϕ2(x) < δ, x ∈ [0,L].
(3.17)

We know that

ω = eC0t δ (3.18)

is a solution of the following ordinary differential system

{
ωt = C0ω, t > 0,

ω|t=0 = δ.
(3.19)

It is easy to verify that (3.18) is an upper solution of system (3.16). Then, we have

ω ≤ ω = eC0t δ. (3.20)

Thus, for ∀ε > 0, by taking δ = e−C0t ε, we have

‖v1(x, t) − v2(x, t)‖ = ‖ω‖ ≤ ‖ω‖ = ‖eC0t δ‖ = ε

for each t when ϕ1(x) −ϕ2(x) < δ for x ∈ [0.L]. Since vx = u, similarly we can use model (1.5)
to show that u is continuous function of ϕ′ for each t > 0. Therefore we can derive that v is 
continuous jointly for (t, ϕ) ∈ [0, ∞) × P . Part (iii) in Definition 2.1 is true.

Case 2. ϕ1(x) � ϕ2(x). Define

ϕ̂1(x) = max{ϕ1(x),ϕ2(x)}, ϕ̂2(x) = min{ϕ1(x),ϕ2(x)}, ∀x ∈ [0,L],
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and let v̂1(x, t) and v̂2(x, t) be solutions of (3.2) with initial functions ϕ̂1 and ϕ̂2, respectively. It 
is clear that ϕ̂1(x) − ϕ̂2(x) = |ϕ1(x) − ϕ2(x)| and v̂2(x, t) ≤ v1(x, t), v2(x, t) ≤ v̂1(x, t) for all 
(x, t) ∈ [0, L] × [0, ∞). Then, |v1(x, t) − v2(x, t)| ≤ v̂1(x, t) − v̂2(x, t). Repeating the process 
of Case 1 for v̂1 and v̂2, we have that the claim also holds. Therefore, Qt [ϕ] is continuous in ϕ
for each t in [0, ∞). This indicates that Qt satisfies (iii). The proof is complete. �

We now present the main results.

Theorem 3.6. The following results hold:

(a) If the principal eigenvalue λ1 of (2.1) satisfies λ1 ≤ 0, then every solution of (3.2) converges 
to zero;

(b) If the principal eigenvalue λ1 of (2.1) is positive, then system (3.2) possesses a unique posi-
tive periodic solution v∗ and every solution with initial function in P \{0} converges to v∗.

Proof. We will apply Lemma 3.1 to prove this theorem. It is obvious that the Poincaré map QT

is monotone, every positive orbit of QT in P is bounded and QT (0) = v(x, T ; 0) = 0. Thus, we 
need only to verify that QT is asymptotically smooth, strongly subhomogeneous and DQT (0) is 
compact and strongly positive.

For the asymptotic smoothness, since the diffusion coefficient D(t) is always positive, it is 
easy to know that QT is asymptotically smooth.

Next, we will verify that QT is strongly subhomogeneous, that is,

QT (λϕ) � λQT (ϕ), ϕ ∈ Int (P ),λ ∈ (0,1), (3.21)

where QT (ϕ) = v(x, T ; ϕ) satisfying (3.2) and QT (λϕ) = v(x, T ; λϕ) satisfying

⎧⎪⎪⎨
⎪⎪⎩

vt = D(t)vxx − α(t)vx + G(I0(t), v) − d(t)v, x ∈ (0,L), t > 0,

v(0, t) = 0, D(t)vxx − α(t)vx |x=L = 0, t > 0,

v(x,0) = λϕ(x), x ∈ [0,L].
(3.22)

Thus, it suffices to verify v � λv. Multiplying system (3.2) by λ yields

⎧⎪⎪⎨
⎪⎪⎩

(λv)t = D(t)(λv)xx − α(t)(λv)x + λG(I0(t), v) − d(t)(λv), x ∈ (0,L), t > 0,

λv(0, t) = 0, D(t)(λv)xx − α(t)(λv)x |x=L = 0, t > 0,

λv(x,0) = λϕ(x), x ∈ [0,L].
(3.23)

By Lemma 3.4, from (3.23) it follows that

⎧⎪⎪⎨
⎪⎪⎩

(λv)t < D(t)(λv)xx − α(t)(λv)x + G(I0(t), λv) − d(t)(λv), x ∈ (0,L), t > 0,

λv(0, t) = 0, D(t)(λv)xx − α(t)(λv)x |x=L = 0, t > 0,

λv(x,0) = λϕ(x), x ∈ [0,L].
(3.24)

Comparing (3.22) with (3.24), we have v � λv.
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We now verify the last condition. The linearized system of (3.2) at v ≡ 0 is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt = D(t)vxx − α(t)vx − d(t)v +
x∫

0

g
(
I0(t)e

−k0s
)

vs(s, t)ds, x ∈ (0,L), t > 0,

v(0, t) = 0, D(t)vxx − α(t)vx |x=L = 0, t > 0,

v(x,0) =
x∫

0

u0(s)ds = ϕ(x), x ∈ [0,L].

(3.25)

Let V (t) be the linear semigroup generated by (3.25) on P . Then the Fréchet derivative 
DQT (0) = V (T ). In view of (1.6) and (1.7), DQT (0) is compact and strongly positive.

Furthermore, taking the derivative of (3.25) with respect to x, we have

⎧⎪⎪⎨
⎪⎪⎩

ut = D(t)uxx − α(t)ux + [g(I0(t)e
−k0x) − d(t)]u, x ∈ (0,L), t > 0,

D(t)ux − α(t)u = 0, x = 0,L, t > 0,

u(x,0) = u0(x) ≥ 0, x ∈ [0,L].
(3.26)

It is easy to see that (2.1) is the characteristic equation of (3.26). If λ1 ≤ 0, then r(DQT (0)) ≤ 1. 
By Lemma 3.1, every solution of (3.2) converges to zero. On the other hand, if λ1 > 0, then 
r(DQT (0)) > 1. Again by Lemma 3.1, the Poincaré map QT has a unique fixed point v∗ > 0 in 
P such that every positive orbit with the initial function in P \{0} converges to v∗. It means that 
in system (3.2) there exists a unique T-periodic solution v∗(x, t) satisfying

lim
t→+∞||v(x, t) − v∗(x, t)|| = 0.

The proof is complete.

We shall deal with the simplified case of (1.5) when all of the light is absorbed by the plankton 
itself (i.e., k0 = 0). System (1.5) is now called the completely self-shading model with transparent 
water. The main result is as follows.

Corollary 3.7. Assume k0 = 0. If all the coefficients D > 0, d > 0 and α ∈R are constants and

d <
1

T

T∫
0

g(I0(s))ds, (3.27)

then system (3.2) has a unique positive T-periodic solution v∗ such that every solution with initial 
function in P \{0} converges to v∗.
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Proof. Using the given conditions, (3.2) is simplified as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt = Dvxx − αvx − dv +
v(x,t)∫
0

g(I0(t)e
−k1s)ds, x ∈ (0,L), t > 0,

v(0, t) = 0, Dvxx − αvx |x=L = 0, t > 0,

v(x,0) =
x∫

0

u0(s)ds = ϕ(x), x ∈ [0,L].

(3.28)

Then, obviously, by the proof of Theorem 3.6, it suffices to verify λ1 > 0. The linearized system 
of (3.28) about the zero equilibrium is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vt = Dvxx − αvx + [g(I0(t)) − d]v, x ∈ (0,L), t > 0,

v(0, t) = 0, Dvxx − αvx |x=L = 0, t > 0,

v(x,0) =
x∫

0

u0(s)ds = ϕ(x), x ∈ [0,L].
(3.29)

Differentiating (3.29) with respect to x leads to

⎧⎪⎪⎨
⎪⎪⎩

ut = Duxx − αux + [g(I0(t)) − d]u, x ∈ (0,L), t > 0,

Dux − αu|x=0,L = 0, t > 0,

u(x,0) = u0(x), x ∈ [0,L].
(3.30)

The characteristic system of (3.30) is (2.1) with k0 = 0 and D, α and d being constants, i.e.,

⎧⎪⎪⎨
⎪⎪⎩

λφ = −φt + Dφxx − αφx + [g(I0(t)) − d]φ, x ∈ (0,L), t > 0,

Dφx − αφ = 0, x = 0,L, t > 0,

φ(x,0) = φ(x,T ), φt (x,0) = φT (x,T ) x ∈ [0,L].
(3.31)

Now we want to find the principal eigenvalue of the above system. To this end, we can assume 
that the solutions of the linear system (3.31) have the form

φ(x, t) = w(x)v(t), w(x) �= 0, v(t) �= 0. (3.32)

Substituting it into (3.31), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vt

v(t)
+ λ + d − g(I0(t)) = Dwxx − αwx

w(x)
, x ∈ (0,L), t > 0,

Dwx − αw = 0, x = 0,L,

v(0) = v(T ).

(3.33)
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Thus, there exists a constant μ such that

vt

v(t)
+ λ + d − g(I0(t)) = Dwxx − αwx

w(x)
= μ.

Then (3.33) is equivalent to the following two systems{
Dwxx − αwx = μw(x), x ∈ (0,L),

Dwx − αw = 0, x = 0,L
(3.34)

and {
vt = [μ − λ − d + g(I0(t)]v(t), t > 0,

v(0) = v(T ).
(3.35)

Solving (3.34) leads to

μ = 0, − α2

4D
, − α2

4D
− Dk2π2

L2
, k = 1, 2, 3, · · · . (3.36)

Then, by (3.35), we get

λ = μ − d + 1

T

T∫
0

g(I0(s))ds.

It is obvious that the principal eigenvalue of (3.31) is

λ1 = −d + 1

T

T∫
0

g(I0(s))ds. (3.37)

By (3.27), we have λ1 > 0. Therefore, the result is true. �
Now we return to the dynamics of positive periodic solution of (1.5). Let (v∗)x = u∗, where 

v∗ is defined in Theorem 3.6. From Theorem 3.6, we have the following theorem.

Theorem 3.8. The following results hold:

(a) If the principal eigenvalue λ1 of (2.1) satisfies λ1 ≤ 0, then every solution of (1.5) converges 
to zero;

(b) If the principal eigenvalue λ1 of (2.1) is positive, then system (1.5) possesses a unique pos-
itive periodic solution u∗ such that every solution with initial function in Y\{0} converges 
to u∗.

Remark 3.2. The first part of this theorem agrees with our globally asymptotical stability of zero 
solution in section 2. The second part of this theorem answers the open question in [17] as well 
the conjecture in [16].
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4. Bifurcation

In this section, we study the birth of positive periodic solution bifurcated from the trivial zero 
solution when the death rate d is less than some critical value. For simplicity, we shall assume that 
D(t), α(t) and d(t) are positive constants and I0(t) is still a T-periodic function. Biologically, 
this means that the light strength is seasonal. Under this assumption, we suppose that W(x, t) is 
the non-negative periodic solution to (1.5), i.e.,⎧⎪⎨

⎪⎩
Wt = DWxx − αWx + W (g(I (x, t) − d) , x ∈ (0,L), t > 0,

DWx − αW = 0, x = 0,L, t > 0,

W(x,0) = W(x,T ), Wt(x,0) = Wt(x,T ), x ∈ [0,L].
(4.1)

As we already know, the stability of the trivial solution W ≡ 0 is determined by the following 
periodic eigenvalue problem:⎧⎪⎨

⎪⎩
λφ = −φt + Dφxx − αφx + φ

(
g(I0(t)e

−k0x) − d
)
,

Dφx − αφ = 0, x = 0,L,

φ(x,0) = φ(x,T ), φt (x,0) = φt (x, T ).

(4.2)

By the Krein–Rutman theorem, problem (4.2) has a principal eigenvalue λ1 with a positive eigen-
function. Obviously, λ1 is a decreasing function of d . Suppose that there exists d = d0 so that 
λ1(d0) = 0 with the positive eigenfunction φ = φ0. Then we can know

λ1(d) > 0 if d < d0; λ1(d) < 0 if d > d0. (4.3)

Thus, by Theorem 3.8, when d > d0, (4.1) has the only trivial solution W = 0, and when d < d0, 
there will be a bifurcated positive periodic solution. In next subsections, we shall prove that 
(d0, 0) is a bifurcation point and derive the asymptotic expression of the bifurcated periodic 
solution.

4.1. Rigorous analysis of the bifurcation

Let �T = (0, L) × [0, T ], X = L2(�T ) be the Hilbert space with the inner product

(u1, u2)X = (u1, u2)L2(�T ) =
T∫

0

L∫
0

u1(x, t)u2(x, t)dxdt

for u1, u2 ∈ X, and

E = {u : u ∈ C2,1(�T );Dux − αu = 0 at x = 0,L;u(x,0) = u(x,T )},
which is a Banach space with the usual supremum norm. Rewrite the first equation of (4.1) as

D
(
e− α

D
x(W)x

)
x

+ e− α
D

x
[−(W)t + W (g(I (x, t) − d)

] = 0

and define a map � : (0, ∞) × E → X by
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�(d,W) = D
(
e− α

D
x(W)x

)
x

+ e− α
D

x
[−(W)t + W (g(I (x, t) − d)

]
.

Then the periodic solutions of (4.1) are just zeros of this map. It is easy to see that

�(d,0) = 0 for all d > 0.

According to the Theorem 1.7 of [2], (d0, 0) is a bifurcation point provided that

(a) the partial derivatives �d, �W, �dW exist and are continuous;
(b) ker�W(d0, 0) and X/R(�(d0, 0)) are one-dimensional;
(c) let ker�W(d0, 0) = span{φ}, then �dW(d0, 0)φ /∈ R(�W(d0, 0)).

By verifying the three conditions above, we have the following theorem.

Theorem 4.1. Let d0 satisfy (4.3). Then (d0, 0) is a bifurcation point of �(d, W) = 0 with respect 
to the curve (d, 0), d > 0.

Proof. By a simple computation, we have �d = −e− α
D

xW, �dW = −e− α
D

x and

�W(d,W)φ = D

(
e− α

D
x ∂φ

∂x

)
x

+ e− α
D

x

[
−∂φ

∂t
+ φg(I0(t)e

−k0x−k1
∫ x

0 W(s,t)ds) − dφ

]

−e− α
D

xk1W(x, t)g′(I0(t)e
−k0x−k1

∫ x
0 W(s,t)ds)I0(t)e

−k0x−k1
∫ x

0 W(s,t)ds

x∫
0

φds,

where φ ∈ E. Thus, it is evident that (a) is true. Moreover, the Fréchet derivative of the map �
at W = 0 is the linear operator

�W(d,0) = D

(
e− α

D
x ∂

∂x

)
x

+ e− α
D

x

[
− ∂

∂t
+ g(I0(t)e

−k0x) − d

]
.

Set L(d) = �W(d, 0). By the choice of d0, L(d0)φ = 0 has a unique positive solution φ0(x, t). 
Thus, dim ker�W(d0, 0) = 1. Again, the adjoint system of L(d0)φ = 0 is as follows

⎧⎪⎪⎨
⎪⎪⎩

D
(
e− α

D
xφx

)
x

+ e− α
D

x
[
φt + (

g(I0(t)e
−k0x) − d0

)]
φ = 0,

Dφx − αφ = 0, x = 0,L,

φ(x,0) = φ(x,T ), φt (x,0) = φt (x, T ).

(4.4)

This system has one unique solution φ
∗ = φ0(x, T − t), that is dim kerL∗ = 1, where L∗ is the 

adjoint operator of L, which leads to dimX/R(�W(d0, 0)) = 1. Then (b) is verified.
Finally, since �dW(d0, 0)φ0 = −e− α

D
xφ0, and

(�dW (d0,0)φ0, φ
∗
)Y = (e− α

D
xφ0(x, t), φ0(x, T − t))L2(�T ) > 0,

we know that �dW(d0, 0)φ0 /∈ R(L), and condition (c) is satisfied. The proof is completed.
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4.2. Asymptotic analysis of the positive solution

We now apply asymptotic analysis to study the formula of the small-amplitude solution of 
(4.1) bifurcated from (d0, 0). We assume

d = d0 + d1ε + d2ε
2 + · · · , (4.5)

and

W = εW0 + ε2W1 + ε3W2 + · · · , (4.6)

where ε is a constant parameter satisfying 0 < ε � 1. Substituting (4.5) and (4.6) into (4.1), it is 
easily derived that W0 = φ0 from the first order system of ε. Up to the power of ε2, it gives the 
following system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(W1)t = D(W1)xx − α(W1)x + W1
(
g(I0(t)e

−k0x) − d0
) − d1W0

− k1g
′(I0(t)e

−k0x)I0(t)e
−k0xW0

∫ x

0 W0(s, t)ds,

D(W1)x − αW1 = 0, x = 0,L,

W1(x,0) = W1(x, T ), (W1)t (x,0) = (W1)t (x, T ).

(4.7)

The first equation of (4.7) can be re-written as

D
(
e− α

D
x(W1)x

)
x

+ e− α
D

x
[
−(W1)t + W1

(
g(I0(t)e

−k0x) − d0

)]
(4.8)

= e− α
D

x

⎡
⎣d1W0 + k1g

′(I0(t)e
−k0x)I0(t)e

−k0xW0

x∫
0

W0(s, t)ds

⎤
⎦ .

Therefore, the adjoint system of the homogeneous system of (4.7) is exactly the system (4.4). 
Then it has a nonnegative solution W = W ∗

0 (x, t) = φ0(x, T − t). Multiplying both side of (4.8)
by W ∗

0 (x, t) and integrate it on [0, T ] × [0, L], we get

d1 = −

(
k1e

− α
D

xg′(I0(t)e
−k0x)I0(t)e

−k0xW0
∫ x

0 W0(s, t)ds,W ∗
0

)
L2(�T )

(e− α
D

xW0,W
∗
0 )

L2(�T )

, (4.9)

which shows that d1 < 0. Similarly we can proceed further to work out the formulas for 
d2, d3, · · · , and the formulas for W1, W2, · · · .

4.3. Stability of the positive periodic solution

As we already have the formula (4.6) for the positive periodic solution, we now study the 
stability of this solution.

Assume that the solution u of (1.5) has the ansatz u = W + φ̄eλ̄t . This gives rise to an eigen-
value problem around the positive solution W :
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φ̄t + λ̄φ̄ = Dφ̄xx − αφ̄x − dφ̄ (4.10)

+φ̄g(I0(t)e
−k0x−k1

∫ x
0 W(s,t)ds)

−k1Wg′(I0(t)e
−k0x−k1

∫ x
0 Wds)I0(t)e

−k0x−k1
∫ x

0 Wds

x∫
0

φ̄ds.

Assume further that

λ̄ = ελ̄1 + ε2λ̄2 + · · · ,

and

φ̄ = φ̄0 + εφ̄1 + ε2φ̄2 + · · · .

Obviously by (4.5) and (4.6), we have φ̄0 = W0. After substituting these formulas to (4.10), we 
also obtain

D(φ̄1)xx − α(φ̄1)x − d0φ̄1 + φ̄1g(I0(t)e
−k0x) = λ̄1φ̄0 + d1φ̄0

+2k1g
′(I0(t)e

−k0x)φ̄0

x∫
0

φ̄0ds.

We multiply both side by e− α
D

xW ∗ and integrate it on [0, T ] × [0, L]. This gives

λ̄1 = −k1(e
− α

D
xg′(I0(t)e

−k0x)I0(t)e
−k0xW0

∫ x

0 W0(s, t)ds,W ∗
0 )L2(�T )

(e− α
D

xW0,W
∗
0 )L2(�T )

.

This means that λ̄1 < 0 and we have the stability of the positive periodic solution.

Proposition 4.2. When d < d0 and d is close to d0, the bifurcated positive periodic solution is 
stable.

5. Numerical results

In this section, we first carry out the computation of the principal eigenvalue of the system. 
The simulations of the solution to system (1.5) are also presented for two sets of parameters.

5.1. Numerical computations of the principal eigenvalue

For the eigenvalue problem

⎧⎪⎨
⎪⎩

φt = D(t)φxx − α(t)φx + φ
(
g(I0(t)e

−k0x) − d(t)
) − λφ, x ∈ (0,L), t > 0,

D(t)φx − α(t)φ = 0, x = 0,L, t > 0,

φ(x,0) = φ(x,T ), φ (x,0) = φ (x,T ), x ∈ [0,L].
(5.1)
t t
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We want to show numerically how to find the principal eigenvalue. For the space [0, L], we can 
divide it into N even intervals with xi = ih and

h = L

N
.

We denote φi(t) as the value of φ(ih, t), i = 0, 1, 2, · · ·N . Near the left boundary i = 0, we can 
obtain

D(t)
φ1 − φ0

h
− α(t)φ0 ≈ 0

and it gives

φ0 = D(t)

D(t) + α(t)h
φ1.

Similarly we have

D(t)
φN − φN−1

h
− α(t)φN ≈ 0

and this gives

φN = D(t)

D(t) − α(t)h
φN−1.

For the equation, we have the following systems:
When i = 1,

(φ1)t = D(t)
φ2 − 2φ1 + φ0

h2
− α(t)

φ2 − φ0

2h
+ φ1

[
g(I0(t)e

−k0x1) − d(t)
]
− λφ1; (5.2)

when i = 2, 3, · · ·N − 2,

(φi)t = D(t)
φi+1 − 2φi + φi−1

h2
− α(t)

φi+1 − φi−1

2h
+ φi

[
g(I0(t)e

−k0xi ) − d(t)
]
− λφi; (5.3)

when i = N − 1,

(φN−1)t = D(t)
φN − 2φN−1 + φN−2

h2
− α(t)

φN − φN−2

2h

+ φN−1

[
g(I0(t)e

−k0xN−1) − d(t)
]
− λφN−1. (5.4)

Assume � = [φ1, φ2, · · ·φN−1]T . We then have

�t = A(t)� − λ�
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Fig. 1. Principal eigenvalues vs. k0 in [0,20].

and its solution

�(T ) = e
∫ T

0 (A(t)−λI)dt�(0),

where �(0) is the initial data and A(t) is the coefficient matrix of the system (5.2)–(5.4). Denote

B = 1

T

T∫
0

A(t)dt.

Then the eigenvalues of B are the ones of our system (5.1). We denote its principal eigenvalue 
as λ1.

For a special case, we take g(x) = x
1+x

, I0(t) = 1 + sin t, D = 0.1, α = 0.01, k0 = k1 = 1
and d = 0.2, by a numerical computation, the principal eigenvalue is λ1 = 0.1303 > 0. When 
we change k0 from 1 to 10, the principal becomes λ1 = −0.1346 < 0. When we fix all other 
parameters above and vary only the coefficient k0 in the interval [0, 20], the graph of λ1 vs. k0 is 
given in Fig. 1.

It shows that the principal eigenvalue is a decreasing function of k0 and there exists a unique 
value k0 ≈ 3.5 so that λ1 = 0.

Remark 5.1. Similarly, it can show that λ1 is a decreasing function of d . The corresponding 
curve λ1-d is a straight line.

5.2. Numerical simulations of the plankton density solution u(x, t)

In this subsection, we give the numerical simulations of our system (1.5). As before, the inter-
val [0, L] is divided into N even subintervals with xi = ih, h = L/N . Denote ui(t) = u(ih, t).
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Fig. 2. Stability of the zero solution. Here g(x) = x
1+x

, I0(t) = 1 + sin t, D = 0.1, α = 0.01, k0 = k1 = 1 and d = 0.365. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

For the boundary condition, we still use the same argument above to get

u0(t) = D(t)

D(t) + α(t)h
u1(t), uN(t) = D(t)

D(t) − α(t)h
uN−1(t).

The PDE is transformed into the ODE system

(ui)t = D(t)

h2 (ui+1 − 2ui + ui−1) − α(t)
ui+1 − ui−1

2h

+ui

[
g(I0(t)e

−k0xi−k1Ii

]
,

where Ii, i = 1, 2, · · ·, N , denotes the nonlocal term

Ii =
xi∫

0

u(x, t)dx ≈ h

2

⎡
⎣u0 + ui + 2

i−1∑
j=1

uj

⎤
⎦ ,

which can be obtained by the composite Trapezoid Rule.
The simulation, when g(x) = x

1+x
, I0(t) = 1 + sin t, D = 0.1, α = 0.01, k0 = k1 = 1 and d =

0.365 shows that the zero solution is stable, see Fig. 2. When we change the death rate to d =
0.265, the positive periodic solution appears and is stable, see Fig. 3. This verifies our theoretical 
analysis in the previous sections.

6. Conclusions and discussions

In this paper, we study the existence, uniqueness, global attractivity and bifurcation of periodic 
patterns for a seasonal single phytoplankton model with self-shading effect. We have assumed 
that the diffusion rate, the sinking or buoyant velocity and the light intensity are all seasonal. 
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Fig. 3. Stability of the positive periodic solution. Here g(x) = x
1+x

, I0(t) = 1 + sin t, D = 0.1, α = 0.01, k0 = k1 = 1
and d = 0.265. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

This also includes the case in [17] where they investigated the dynamics of plankton in terms of 
the basic reproduction number when the light intensity is seasonal. By the comparison principle, 
we obtain the globally asymptotical stability of the zero solution when the principal eigenvalue 
λ1 of the corresponding linear system is less than zero. When λ1 > 0, the uniqueness and attrac-
tivity of the positive periodic pattern were left open in [17] and also were raised as a conjecture 
in [16]. By transforming the model into a new system, we successfully answer the open problem 
and prove the conjecture in [16,17] by applying the theory of monotone system coupled with 
subhomogeneous property. As a byproduct, the dynamics of the bottom plankton is obtained 
automatically. In particular when k0 = 0, it obeys a law of periodic ordinary differential equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv(L, t)

dt
=

v(L,t)∫
0

g
(
I0(t)e

−k1s
)

ds − dv(L, t), t > 0,

v(L,0) =
L∫

0

u0(s)ds = ϕ(L).

(6.1)

The positive periodic pattern bifurcating from the zero solution, when the death rate is less 
than a critical value, is a very interesting phenomenon. Here we apply the theory in [2] to prove 
rigorously the existence of a bifurcation point. When the parameter d is near this point, by way 
of asymptotic analysis, we derive an asymptotic formula for the positive pattern. This provides 
another method to compute the positive pattern. Based on this formula, we find the linear stability 
of this periodic pattern. Finally, for the periodic model (1.5), we provide a numerical scheme for 
the simulations of the solution and the calculations of the principal eigenvalue vs. the parame-
ter k0. Two figures are provided to indicate the solution behaviors for different parameter groups, 
which are in agreement with the theoretical results.
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For future study, it may be challenging to study periodic plankton models with two species 
competing in the same environment. It is also interesting to study the stability of the numerical 
scheme in this paper.
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