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Abstract

Spreading speed of spatio-temporal nonlinear dynamical system can sometimes be determined either by 
its corresponding linear system with an explicit speed formula, or by the complicated nonlinear system 
itself with the existence of a pushed wavefront. In this paper, the spreading speed (the minimal speed of 
wavefronts) for a Lotka-Volterra competition model in spatially periodic habitats is investigated. We estab-
lish new results on the linear and nonlinear selections in terms of the spatio-periodic coefficient functions. 
In the case of nonlinear selection, lower and upper bound estimates of the minimal speed are provided.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is devoted to the spreading speed (the minimal wave speed of traveling waves) 
determinacy for the following Lotka-Volterra competition model in periodic habitats:
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⎧⎪⎪⎨⎪⎪⎩
∂u1

∂t
= d1(x)

∂2u1

∂x2 + u1(b1(x) − a11(x)u1 − a12(x)u2),

∂u2

∂t
= d2(x)

∂2u2

∂x2 + u2(b2(x) − a21(x)u1 − a22(x)u2), t > 0, x ∈R,

(1.1)

with all of the coefficients in system (1.1) to be L-periodic functions for a positive number 
L. Here, u1(t, x) and u2(t, x) are the population densities of two species respectively. The 
functions d1(x) and d2(x) represent the diffusive coefficients that are bounded below by pos-

itive constants so that the operators d1(x) ∂2u1
∂x2 and d2(x) ∂2u2

∂x2 are uniformly elliptic. Moreover, 
aij (x), 1 ≤ i, j ≤ 2 are positive, while b1(x) and b2(x) can change signs. We will also assume 
that all the coefficients are in Cν(R)(ν ∈ (0, 1)). For more details on the biological interpretation 
of the coefficient functions, readers are referred to [31].

Dynamics for reaction-diffusion models, time-delayed reaction-diffusion models and scalar 
evolutions in heterogeneous media (including periodic habitat), have been widely investigated in 
literature (see for examples [2–6,8,11,25–28,30,32]). In the spatial bounded domain with some 
particular boundary conditions, Dockery et al. [7] proved that the phenotype of a species with 
lowest diffusing speed dominates the other phenotypes, under conditions that the rate of mutation 
is small and the species is of haploid genetics. The uniqueness, stability of the coexistence steady 
states of a classic diffusive Lotka-Volterra competition model with spatially heterogeneous in-
trinsic growth rate have been studied in [19]. By incorporating advection-effect, Lutscher et al. 
in [21] studied pattern formations of a Lotka-Volterra competition model.

Spreading dynamics plays an important role in understanding the invasion of foreign species 
in competition for a common resource. In the case of homogeneous environment (the coefficients 
in system (1.1) are constant), patterns of traveling waves and their spreading speed (the minimal 
speed) determinacy have been studied extensively in [1,13,15–17,20,22] and references therein. 
However, when the coefficients are spatial-periodic functions, wave-propagation study becomes 
challenging, since not only the dynamics of co-existence steady state(s) is unclear, but also the 
method of phase plane analysis, which is useful in the study of classical KPP-Fisher model [18], 
cannot be applied to find the existence of wavefronts.

In the present paper, we adapt the upper-lower solution method to investigate the minimal 
speed determinacy of traveling waves, connecting two semi-trivial equilibria, of system (1.1)
with monostable nonlinearity that is illustrated in section 2. With a deep understanding of the 
dependence of wavefront V on the invasion front U , we first investigate the essential feature of 
nonlinear selection. As an application, several criteria in terms of the coefficients are established 
for the nonlinear speed and some estimates are provided. For the linear selection, we obtain a set 
of sufficient conditions that are completely different from the condition in [31] that implies the 
nonlinear system is bounded by the corresponding linear system along the direction of a partic-
ular eigenvector. The new upper and lower solutions constructed in this paper play an important 
role, which establish nonlinear selection of the minimal wave speed that has not been investigated 
before in [31].

The paper is arranged as follows. In section 2, we establish the monostable nonlinearity of the 
system. Detailed derivation for the linear speed c0 is provided. In section 3, we proceed to give 
a priori estimate of the wave profile and indicate the dependence of V on U . In sections 4 and 5, 
we establish the nonlinear and linear speed selection respectively. Section 6 is a short conclusion 
of our paper.



666 H. Wang et al. / J. Differential Equations 270 (2021) 664–693
2. Monostable nonlinearity and the linear spreading speed

Let us first study the dynamics of (1.1) when the initial data are spatially-periodic. Obviously 
(0, 0) is a steady state and it is unstable if
(A1) λ(di(x), bi(x)) > 0, i = 1, 2.
Here, the notation λ(d(x), b(x)) represents the principal eigenvalue of the system{

λϕ(x) = d(x)ϕ′′(x) + b(x)ϕ(x),

ϕ(x) = ϕ(x + L), x ∈R.

Under this condition (A1), for (1.1) there exist two semi-trivial equilibria

(p(x),0) and (0, q(x)) (2.1)

with unknown explicit formulas. Both p(x) and q(x) are twice-differentiable with respect to x
(see, e.g., [31, Proposition 2.1]). Linearizing the system around (0, q(x)), we know that it is 
unstable under a further condition
(A2) λ(d1(x), b1(x) − a12(x)q(x)) > 0, ∀x ∈ R.
However, due to such a complicated coupled system, we still don’t know whether there exists 
a co-existence positive equilibrium, even though we assume that (p(x), 0) is stable under the 
condition

λ(d2(x), b2(x) − a21(x)p(x)) < 0. (2.2)

As such, we follow [31] to assume
(A3) there is no steady solution in the interior of P+ for the system (1.1),
where P+ = {ϕ ∈ P : ϕ(x) ≥ 0, ∀x ∈ R} and P is the set of all continuous and L-periodic func-
tions from R to R2.

Remark 2.1. The condition (A3) combined with (A2) implies that (p(x), 0) is stable for all 
initial data in P+. For details, readers are referred to [31, Theorem 2.1]. Hence, it follows that 
λ(d2(x), b2(x) − a21(x)p(x)) ≤ 0. In addition, we remark that (A1) holds whenever bi(x) >
0, i = 1, 2 for all x ∈ R and (A2) holds whenever b1(x) − a12(x)q(x) > 0 for all x ∈ R. As far 
as (A3) is concerned, we can consider a special case: d1(x) = d1, d2(x) = d2 with 0 < d1 < d2, 
b1(x) = b2(x), a11(x) = a21(x) = a22(x) = 1 and a12(x) = c with c ∈ [0, 1]. Such a model 
was also reported in [31], where the authors showed that (A1)-(A3) hold true provided that 
b̄1 = 1

L

∫ L

0 b1(x)dx ≥ 0 (see page 58 of [31]).

From a biological point of view, conditions (A1)-(A3) are referred as the case of competition 
exclusion or the so-called monostable nonlinearity.

By making use of a transformation

v1(t, x) = u1(t, x)

p(x)
, v2(t, x) = 1 − u2(t, x)

q(x)
, (2.3)

we can rewrite the competitive system (1.1) into the following cooperative system
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂v1

∂t
= d1(x)

∂2v1

∂x2 + 2d1(x)
p′(x)

p(x)

∂v1

∂x
+ v1[a11(x)p(x)(1 − v1) − a12(x)q(x)(1 − v2)],

∂v2

∂t
= d2(x)

∂2v2

∂x2 + 2d2(x)
q ′(x)

q(x)

∂v2

∂x
+ (1 − v2)[a21(x)p(x)v1 − a22(x)q(x)v2].

(2.4)
The two equilibria (p(x), 0) and (0, q(x)) are changed into (1, 1) and (0, 0) respectively. As 
such, (2.4) has three equilibria

e0 = (0,1), e1 = (1,1), e2 = (0,0).

In the current paper, we are interested in the existence of positive traveling wave solution, 
connecting e1 and e2, to the system (2.4). It is a special solution in the form of

(v1(t, x), v2(t, x)) = (U(x, z),V (x, z)), z = x − ct. (2.5)

Here, c is the wave speed, and the pair of functions (U, V ) is called the wavefront. Substituting 
(2.5) into (2.4), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(x)(Uxx + 2Uxz + Uzz) + 2d1(x)
p′(x)

p(x)
(Ux + Uz) + cUz

+ U [a11(x)p(x)(1 − U) − a12(x)q(x)(1 − V )] = 0,

d2(x)(Vxx + 2Vxz + Vzz) + 2d2(x)
q ′(x)

q(x)
(Vx + Vz) + cVz

+ (1 − V )[a21(x)p(x)U − a22(x)q(x)V ] = 0,

(2.6)

prescribed by boundary conditions

(U,V )(x,−∞) = (1,1), (U,V )(x,+∞) = (0,0). (2.7)

In general, (2.6)-(2.7) does not always have a non-negative monotone solution for every c. How-
ever, it was proved in [31, Theorem 3.1] that there exists a number cmin such that the system 
possesses a non-negative monotone solution if and only if c ≥ cmin. Usually, it is difficult to ob-
tain the explicit expression for the minimal speed cmin. To estimate it, we can first linearize the 
system (2.4) near e2 to get a linear system⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂v1

∂t
= d1(x)

∂2v1

∂x2 + 2d1(x)
p′(x)

p(x)

∂v1

∂x
+ (a11(x)p(x) − a12(x)q(x))v1,

∂v2

∂t
= d2(x)

∂2v2

∂x2 + 2d2(x)
q ′(x)

q(x)

∂v2

∂x
+ a21(x)p(x)v1 − a22(x)q(x)v2.

(2.8)

The first equation can define a linear speed

c0 = inf {̃λ(μ)/μ}, (2.9)

μ>0
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where ̃λ(μ) is the principal eigenvalue of the following eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λφ = d1(x)φ′′ −
(

2d1(x)μ − 2d1(x)
p′(x)

p(x)

)
φ′

+
(

d1(x)μ2 − 2d1(x)
p′(x)

p(x)
μ + a11(x)p(x) − a12(x)q(x)

)
φ,

φ(x + L) = φ(x), x ∈ R.

(2.10)

Remark 2.2. By the well known Krein-Rutman theorem, it follows that for each μ, (2.10) has a 
principal eigenvalue λ̃(μ) and a corresponding positive eigen function φμ(x).

Besides the existence of traveling waves for c ≥ cmin, it follows also from [31, Proposition 
4.1] that cmin ≥ c0 under the conditions (A1)-(A3). Therefore, c0 becomes a lower bound of 
cmin, but we don’t know whether or when they are equal or not. We say this minimal speed is 
linearly selected if cmin = c0, and nonlinearly selected if cmin > c0. In [31], the authors studied 
the linear determinacy with two further technique conditions

(D1) λ0(μ0) > λ(μ0);

(D2)
ψ∗

1 (x)

ψ∗
2 (x)

≥ max
{

a12(x)
a11(x)

,
a22(x)
a21(x)

}
, ∀x ∈R,

where λ0(μ) is the principal eigenvalue of the equation

{
λψ = d1(x)ψ ′′ − 2d1(x)μψ ′ + [d1(x)μ2 + b1(x) − a12(x)q(x)]ψ,

ψ(x) = ψ(x + L), x ∈ R,
(2.11)

and λ(μ) is the principal eigenvalue of the equation

{
λψ = d2(x)ψ ′′ − 2d2(x)μψ ′ + [d2(x)μ2 + b2(x) − 2a22(x)q(x)]ψ,

ψ(x) = ψ(x + L), x ∈R.

The constant μ0 is the point such that λ0(μ)
μ

attains its minimum. Moreover, ψ∗
1 (x) and ψ∗

2 (x)

are two positive L-periodic eigenfunctions corresponding to λ0(μ0) to the following periodic 
eigenvalue problem⎧⎪⎪⎨⎪⎪⎩

λψ1 = d1(x)ψ ′′
1 − 2d1(x)μψ ′

1 + [d1(x)μ2 + b1(x) − a12(x)q(x)]ψ1,

λψ2 = d2(x)ψ ′′
2 − 2d2(x)μψ ′

2 + a21(x)q(x)ψ1 + [d2(x)μ2 + b2(x) − 2a22(x)q(x)]ψ2,

ψi(x) = ψi(x + L), i = 1,2, x ∈R.

(2.12)

Remark 2.3. Note that [31] requires assumption (D1) so that the eigenfunctions of (2.12) are 
positive. In addition, (D2) implies that the nonlinear system is bounded by the corresponding 
linear system along the direction of the initial data (e−μ0xψ∗

1 (x), e−μ0xψ∗
2 (x)). In our study, we 

can remove both restrictions to have new results.
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Remark 2.4. We should mention ̃λ(μ) = λ0(μ), with the eigenfunction ψ in (2.11) satisfying 
ψ = p(x)φ for φ in (2.10).

In summary, we will study the minimal wave speed selection for the traveling waves of (2.6)
under conditions (A1)-(A3) with the linear speed c0 defined in (2.9).

3. A priori estimate of the wave profile and the dependence of V on U

As we know, for c ≥ cmin, traveling wavefronts (U, V ) of (2.6) exist and we want to give a 
priori estimate of their behaviors as z → ∞. This will also give a derivation of (2.10). Indeed 
as z → ∞, we will see that the nonlinear system is well-approximated by its linear system. 
Linearization of system (2.6) around e2 gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(x)(Uxx + 2Uxz + Uzz) + 2d1(x)
p′(x)

p(x)
(Ux + Uz) + cUz + U [a11(x)p(x) − a12(x)q(x)]

= 0,

d2(x)(Vxx + 2Vxz + Vzz) + 2d2(x)
q ′(x)

q(x)
(Vx + Vz) + cVz + a21(x)p(x)U − a22(x)q(x)V

= 0,

(3.1)
where p(x) and q(x) satisfy{

0 = d1(x)p′′(x) + p(x)[b1(x) − a11(x)p(x)],
0 = d2(x)q ′′(x) + q(x)[b2(x) − a22(x)q(x)].

The first equation in (3.1) is decoupled. Let U = e−μzφ1(x), for some positive functions φ1(x)

and constant μ. Substituting it into the first equation of (3.1), we get the following problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 = d1(x)φ′′
1 −

(
2d1(x)μ − 2d1(x)

p′(x)

p(x)

)
φ′

1

+
(

d1(x)μ2 − 2d1(x)
p′(x)

p(x)
μ − cμ + a11(x)p(x) − a12(x)q(x)

)
φ1,

φ1(x + L) = φ1(x), x ∈ R.

(3.2)
For later use, we need to investigate the concavity of λ̃(μ) that is defined in (2.10). The 

following lemma can be found in [31].

Lemma 3.1 (Lemma 5.1 in [31]). Assume that L-periodic functions d(x), g(x), m(x) are in 
Cν(R)(ν ∈ (0, 1)). Let λm(μ) be the principal eigenvalue of the following elliptic eigenvalue 
problem {

λψ = d(x)ψ ′′ − [2d(x)μ + g(x)]ψ ′ + [d(x)μ2 + g(x)μ + m(x)]ψ,

ψ(x + L) = ψ(x), x ∈ R.
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Then λm(μ) is a convex function of μ on R.

Therefore, it follows from Lemma 3.1 that ̃λ(μ) in (2.10) is a convex function of μ on R. This 
together with the condition (A2) implies that, for each c > c0, ̃λ(μ) − cμ = 0 has two positive 
roots μ1(c) and μ2(c), with μ1(c) < μ2(c) for each c > c0. The corresponding positive eigen-
fuctions are denoted as φ1,μ1(x) and φ1,μ2(x). When c = c0, we have μ := μ1(c0) = μ2(c0). 
Moreover, it follows that μ1 is a decreasing function and μ2 is an increasing function with re-
spect to c. A straightforward way to understand this property is as follows. Divide both sides 
of the first equation of (3.2) by d1(x)φ1(x) and integrate it from 0 to L to obtain the following 
characteristic equation

μ2 − cĀμ + B̄ = 0,

where

Ā = 1

L

L∫
0

1

d1(x)
dx, B̄ = 1

L

L∫
0

(
a11(x)p(x) − a12(x)q(x)

d1(x)
+ φ′′

1

φ1
+ 2

p′(x)φ′
1(x)

p(x)φ1(x)
)dx.

The condition (A2) implies B̄ > 0. Hence, the two solutions are

μ1(c) = cĀ −
√

(cĀ)2 − 4B̄

2
> 0, μ2(c) = cĀ +

√
(cĀ)2 − 4B̄

2
> 0, (3.3)

as c ≥ c0. Here c0 satisfies

c2
0Ā

2 = 4B̄.

Remark 3.2. For each c > c0, the asymptotic behavior of positive U(x, z) is given by

U(x, z) ∼ C1φ1,μ1(x)e−μ1(c)z + C2φ1,μ2(x)e−μ2(c)z, as z → ∞,

with C1 > 0, or C1 = 0, C2 > 0. What should be pointed out is that the asymptotic behavior of 
U(x, z), as z → ∞, can not contain generalized eigen-models like φi,μi

(x)(1 + α1z + α2z
2 +

· · · + αnz
n)e−μi(c)z, n ≥ 1 as long as c > c0. For this result, one is referred to the work [14, 

Theorem 1.3]. We can give a short explanation. Take a single term α1φ1,μ1(x)ze−μ1(c)z as an 
example. Putting it into the first equation of (3.1) leads to

2
φ′(x)

φ(x)
− 2μ1 + 2

p′(x)

p(x)
+ c

d1(x)
= 0.

Integrating the above equation from 0 to L with respect to x gives μ1 = cĀ
2 , which is impossible 

for c > c0. Hence, the term like α1φ1,μ1(x)ze−μ1(c)z can not be appeared in the asymptotic 
behavior of U(x, z) as z → ∞. Similar discussions can rule out the other terms with high order 
power of z.
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For the above given behavior of U , we can use the second equation of (3.1) to get the behavior 
of V . Denote the principal eigenvalue of the operator

Lμ(φ2) = d2(x)φ′′
2 −

(
2d2(x)μ − 2d2(x)

q ′(x)

q(x)

)
φ′

2

+
(

d2(x)μ2 − 2d2(x)
q ′(x)

q(x)
μ − a22(x)q(x)

)
φ2

by κ(μ), which is also a convex function. Then condition (A1) together with Remark 2.1 implies 
q(x) > 0, κ(0) ≤ 0, and κ(μ) − cμ = 0 has a unique positive root for each c > c0. Also denote 
this positive root by μ3(c). Then the behavior of V is given by

− lim
z→∞

1

z
logV =

{
min{μ1(c),μ3(c)}, if C1 > 0,

min{μ2(c),μ3(c)}, if C1 = 0,
(3.4)

where C1 is defined in Remark 3.2.
The next lemma plays an important role in obtaining our main result. It enables us to avoid 

constructing simultaneously the upper solution U and V (or lower solution) to the equations 
in system (2.6) and shows the dependence of V on U . Instead, we only need to focus on the 
construction of the solution U .

By an upper or lower solution, we have the following definitions.

Definition 3.3. (Upper/Lower solution) A pair of continuous functions (U, V )(x, z), which is 
twice continuously differentiable in x and z, is called a regular upper solution of (2.6) if it satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(x)(Uxx + 2Uxz + Uzz) + 2d1(x)
p′(x)

p(x)
(Ux + Uz) + cUz+

U [a11(x)p(x)(1 − U) − a12(x)q(x)(1 − V )] ≤ 0,

d2(x)(Vxx + 2Vxz + Vzz) + 2d2(x)
q ′(x)

q(x)
(Vx + Vz) + cVz+

(1 − V )[a21(x)p(x)U − a22(x)q(x)V ] ≤ 0,

(3.5)

for (x, z) ∈ [0, L) × R. The definition of a regular lower solution follows by reversing all the 
inequalities in (3.5).

Usually it is difficult to find upper or lower solution pairs twice-differentiable in subdomains. 
We can relax to find upper or lower solutions domain-wisely. This results in the definition of 
irregular upper or lower solutions. The notion of “irregular solution” is now more commonly 
known as “weak solutions” in the H 1 sense.

Definition 3.4. (see, [12]) A pair of continuous functions (Ū , V̄ ) is said to be an irregular upper 
solution of (2.6), if there exist regular upper solutions (Ū1, V̄ 1), ..., (Ū k, V̄ k) of (2.6) such that 
(Ū , V̄ ) = min (Ū i , V̄ i) componentwise. Similarly (U, V ) is called an irregular lower solution 
1≤i≤k
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of (2.6) if there exist regular lower solutions (U1, V 1), ..., (Uk, V k) of (2.6) such that (U, V ) =
max

1≤i≤k
(Ui,V i) componentwise.

From now on, by an upper solution (lower solution), we always mean an irregular upper 
solution (lower solution).

Lemma 3.5. For c > 0 and any given continuous function U(x, z) which is non-increasing 
in z and is L-periodic in x, and satisfies U(x, +∞) = 0, with a21(x)p(x)

a22(x)q(x)
U(x, −∞) > 1 or 

a21(x)p(x)
a22(x)q(x)

U(x, −∞) < 1, the equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2(x)(Vxx + 2Vxz + Vzz) + 2d2(x)
q ′(x)

q(x)
(Vx + Vz) + cVz

+ (1 − V )[a21(x)p(x)U − a22(x)q(x)V ] = 0,

V (x,−∞) = min{1,
a21(x)p(x)

a22(x)q(x)
U(x,−∞)}, V (x,+∞) = 0, x ∈R,

V (x, z) = V (x + L,z),

(3.6)

has a continuous solution V which is non-increasing in z and is L-periodic in x. The solution V
is also monotone in U .

Proof. By putting ξ = −z and W(x, ξ) = 1 − V (x, z), the equation (3.6) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2(x)(Wxx − 2Wxξ + Wξξ ) + 2d2(x)
q ′(x)

q(x)
(Wx − Wξ) − cWξ + a22(x)q(x)W [a(x, ξ) − W ]

= 0,

W(x,−∞) = 1, W(x,+∞) = 1 − min{1,
a21(x)p(x)

a22(x)q(x)
U(x,−∞)}, x ∈ R,

W(x, ξ) = W(x + L,ξ),

(3.7)
where

a(x, ξ) = 1 − a21(x)p(x)

a22(x)q(x)
U(x,−ξ),

with

a(x,−∞) = 1, a(x,∞) = 1 − a21(x)p(x)

a22(x)q(x)
U(x,−∞), x ∈ R.

Next, we use the upper and lower solution method to prove the existence of W which then gives 
rise to the existence of V . To proceed, we will consider two cases: (i) a21(x)p(x)

a22(x)q(x)
U(x, −∞) > 1

and (ii) a21(x)p(x)
a22(x)q(x)

U(x, −∞) < 1. Firstly, it is easy to check that W ≡ 1 is an upper solution of 
(3.7), no matter for case (i) or case (ii). For the construction of lower solution, it is completely 
different for the two cases.
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Case 1. We intend to apply the result of bistable wave in [10]. Indeed, for a sufficient small 
number ε, we define

fε(x, Ŵ ) =
{

a22(x)q(x)Ŵ (1 − ε − Ŵ ), Ŵ ≥ 0,

a22(x)q(x)Ŵ (ε + Ŵ ), Ŵ < 0,

and consider the following equation

d2(x)(Ŵxx − 2Ŵxξ + Ŵξξ ) + 2d2(x)
q ′(x)

q(x)
(Ŵx − Ŵξ ) + ĉεŴξ + fε(x, Ŵ ) = 0, (3.8)

which has three equilibria −ε, 0, 1 − ε. This is a bistable system and by following the idea in 
[10], one can prove that equation (3.8) has a non-increasing solution Ŵ = Ŵε , subject to

Ŵ (x,−∞) = 1 − ε, Ŵ (x,+∞) = −ε. (3.9)

As ε → 0, we claim that ĉε → ĉ0 and the limit of Ŵε , say Ŵ , satisfies

d2(x)(W̃xx − 2W̃xξ + W̃ξξ ) + 2d2(x)
q ′(x)

q(x)
(W̃x − W̃ξ ) + ĉ0W̃ξ + a22(x)q(x)W̃ (1 − W̃ ) = 0,

(3.10)
which admits a non-negative solution, connecting 1 and 0, with

ĉ0 = max
μ>0

{
λ̂(μ)

μ

}
> 0.

Here λ̂(μ) is the principal eigenvalue of the following eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ̂(μ)φ(x) = d2(x)φ′′(x) + 2d2(x)

(
μ + q ′(x)

q(x)

)
φ′(x)

+
(

d2(x)μ2 + 2μd2(x)
q ′(x)

q(x)
+ a22(x)q(x)

)
φ(x),

φ(x + L) = φ(x), x ∈ R.

Assume that this claim is true and we proceed to prove our main result. There exists a number ξ0
such that a(x, ξ) ≥ 1 − ε if ξ ≤ ξ0 since a(x, −∞) = 1. Due to any translation of Ŵ(x, ξ) in ξ
is still a solution to (3.8), we can assume that Ŵ(x, ξ) ≥ 0 if ξ ≤ ξ0, and Ŵ (x, ξ) < 0 if ξ > ξ0. 
Let Ŵ (x, ξ) be the solution to (3.8)-(3.9). Then we can define the following function

W(x, ξ) = max{0, Ŵ (x, ξ)} =
{

0, for ξ > ξ0,

Ŵ (x, ξ), for ξ ≤ ξ0.

We readily see that W is a lower solution to (3.7). Actually, the proof of the case ξ > ξ0 is 
obvious. As for the case ξ ≤ ξ0, we have
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d2(x)(Wxx − 2Wxξ + Wξξ ) + 2d2(x)
q ′(x)

q(x)
(Wx − Wξ) − cWξ + a22(x)q(x)W [a(x, ξ) − W ]

= −(c + ĉε)Ŵξ + a22(x)q(x)Ŵ [a(x, ξ) − (1 − ε)]
≥ 0,

for c > 0. Thus, for given U , we find a solution V . The monotonicity of V on U comes from the 
positivity of p(x) and a21(x) in (3.6).

We are left to prove our claim.
By developing the ideas in [33, Lemma 3.6], we first show that lim

ε→0+ ĉε ≤ ĉ0. We start 

with showing that ĉε is nonincreasing with respect to ε. Suppose 0 < ε1 < ε2 and v1(x, t) =
Ŵε1(x, x − ĉε1 t) and v2(x, t) = Ŵε2(x, x − ĉε2 t) are solutions of (3.8) with (3.9). Translate so 
that

Ŵε2(x, η) > 0 (3.11)

for some η. It is easy to see that Ŵε1(x, −∞) = 1 −ε1 > 1 −ε2 = Ŵε2(x, −∞) and Ŵε1(x, ∞) =
−ε1 > −ε2 = Ŵε2(x, ∞). As a result, due to the fact that any translation of Ŵ(x, ξ) in ξ is still 
a solution to (3.8), one can assume that Ŵε1(x, x) > Ŵε2(x, x) for x ∈ R. Noting fε1 ≥ fε2 and 
by use of the comparison principle to the parabolic equation, we obtain

v1(x, t) = Ŵε1(x, x − ĉε1 t) > Ŵε2(x, x − ĉε2 t) = v2(x, t) for (x, t) ∈ (R,R+).

To the contrary, if ĉε1 < ĉε2 , by letting η = x − ĉε2 t , it follows that

Ŵε2(x, η) < Ŵε1(x, (ĉε2 − ĉε1)t) → −ε1, as t → ∞,

which contradicts to (3.11). Consequently, we get ĉε1 ≥ ĉε2 if ε1 < ε2, which indicates ĉε is 
nonincreasing in ε. This together with ĉε ≤ ĉ0 implies the existence of limit of ĉε as ε → 0+. We 
denote it by c̄ which satisfies c̄ ≤ ĉ0.

Next, we shall prove that c̄ ≥ ĉ0. Replacing ε by εn, n = 1, 2, · · · , k in (3.8) and denoting 
the unique solution by (cεn, Ŵεn). Here, the sequence εn is chosen so that lim

n→∞ εn = 0 and 

Ŵεn(0, 0) = 1
2 by a translation. Passing to a subsequence of εn if it is necessary and by virtue 

of some a priori estimates, one can show that (cεn, Ŵεn) converges to a solution (c̄, W̄ ) of the 
following system⎧⎪⎪⎨⎪⎪⎩

d2(x)(W̄xx − 2W̄xξ + W̄ξξ ) + 2d2(x)
q ′(x)

q(x)
(W̄x − W̄ξ ) + c̄W̄ξ + a22(x)q(x)W̄ (1 − W̄ ) = 0,

W̄ (0,0) = 1

2
, W̄ (x + L,z) = W̄ (x, z), (x, z) ∈R×R.

We deduce from the monotonicity and boundedness of Ŵεn(x, z) that W̄z ≤ 0 and 0 ≤ W̄ ≤ 1. 
Hence, W̄ (x, ±∞) exists and satisfies

d2(x)W̄ ′′(x) + 2d2(x)
q ′(x)

W̄x + a22(x)q(x)W̄ (1 − W̄ ) = 0. (3.12)

q(x)
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By the assumption (A3), the second equation of (1.1) has and only has two steady states 0 and 
q(x). Taking the transformation (2.3) into account, it is obvious that (3.12) has and only has two 
steady states 1 and 0. This is equivalent to W̄(x, ±∞) ∈ {0, 1}. In view of the monotonicity of 
Ŵ (x, z) in z, we get

W̄ (0,∞) ≤ W̄ (0,0) = 1

2
≤ W̄ (0,−∞).

Therefore W̄ (x, −∞) = 1 and W̄ (x, ∞) = 0. It is proven that W̄(x, x − c̄t) is a traveling wave-
front of (3.10) connecting 1 to 0. This further implies c̄ ≥ ĉ0, since (3.10) is a KPP-Fisher type 
system with minimal speed ĉ0. Thus, we have shown that c̄ = ĉ0.

Case 2. For this case, we can simply choose

W = min
x∈[0,L)

{
1 − a21(x)p(x)

a22(x)q(x)
U(x,−∞)

}
as the lower solution. Thus, the proof is complete. �
4. Nonlinear speed selection

In what follows, we will first concentrate on the nonlinear speed selection of system 
(2.6)-(2.7). Our result shows that the nonlinear selection is realized if we can find a pair of lower 
solutions of system (2.6) with U to be decayed with a faster rate μ2 at infinity. Note that the 
choice of larger decay rate μ2 in z for “pushed fronts” was also observed by Roques et al. [24] in 
a conjecture. To some extent, the following theorem provides a justification for that conjecture. 
Moveover, lower and upper bounds of the minimal speed cmin can be derived.

Theorem 4.1 (Nonlinear selection). For a given c = c1 > c0, let (U, V )(x, z) be a pair of 
nonnegative functions which are non-increasing in z and L-periodic in x with z = x − c1t . If 
(U, V )(x, z) is a lower solution to the system (2.6), and satisfies

lim
z→−∞U(x, z) < 1, U(x, z) ∼ φμ2(x)e−μ2z, z → +∞,

where μ2 := μ2(c1) is the eigenvalue that is given in (3.3), φμ2(x) is the corresponding eigen-
function in (2.10), then for any speed c ∈ [c0, c1), no traveling wave solution exists for system 
(2.6)-(2.7). This means cmin ≥ c1.

Proof. Conversely, suppose that there exists a traveling wave solution (U, V )(x, x − ct) for a 
given number c in [c0, c1) to the system (2.4). In other words, (U, V )(x, x − ct + ξ0) is an exact 
solution of (2.4) with the following initial conditions

u(x,0) = U(x,x + ξ0) and v(x,0) = V (x, x + ξ0)

for any constant ξ0. Additionally, (U, V )(x, z) is a lower solution to the system (2.4), subject to 
the initial conditions

u(x,0) = U(x,x) and v(x,0) = V (x, x).
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Because μ1(c) is decreasing and μ2(c) is increasing with respect to c, it follows from Remark 3.2
that U(x, x) ≤ U(x, x + ξ0) for a chosen negative enough ξ0. By Lemma 3.5 we conclude that 
(U, V )(x, x) ≤ (U, V )(x, x + ξ0) for x ∈R. Then it follows from comparison principle that

U(x,x − c1t) ≤ U(x,x − ct + ξ0) and V (x, x − c1t) ≤ V (x, x − ct + ξ0). (4.1)

By the assumption, we can fix a value for z = x − c1t such that U(x, z) is fixed and positive. 
Thus, we obtain

U(x,x − ct + ξ0) = U(x, z + ξ0 + (c1 − c)t) ∼ U(x,∞) = 0 as t → ∞.

Therefore, the first inequality of (4.1) gives U(x, z) ≤ 0 which is contradicted to U(x, z) > 0. 
The proof is complete. �

The above theorem not only gives a criterion for nonlinear selection, but also provides a lower 
bound to the minimal speed cmin. Our next result gives an upper bound to this speed.

Theorem 4.2 (Upper bound for the minimal wave speed). For c2 > c0, suppose that
there exists a positive and nonincreasing upper solution pair (U2, V2)(x, x − c2t) of (2.4), satis-
fying

lim inf
z→−∞ (U2(x, z),V2(x, z)) > (0,0), U2(x, z) = φμ2(c2)(x)e−μ2(c2)z as z → ∞, (4.2)

where μ2(c2) is defined in (3.3). Then, cmin ≤ c2.

Proof. First we recall the definition of the spreading speed in [9] (see also the paper [23]). 
For any initial data (ρ1(x), ρ2(x)) to (2.4), its solution (v1(t, x, ρ1(x)), v2(t, x, ρ2(x))) defines a 
monotone semiflow map Qt . At time t = 1, we have a map Q1. Now we can define the spreading 
speed c∗ of Q1 as

c∗ := sup{c : lim
i→∞,x∈[iL,(i+1)L]a(c;x) = (1,1)}, (4.3)

where

a(c;x) = lim
n→∞an(c;x).

For a given real number c, the sequence of functions {an}∞n=0 is defined as

a0(c;x) = φ(x), an+1(c;x) = Rc[an(c; ·)](x), (4.4)

and

Rc[a](x) = max{φ(x), T−c[Q1[a]](x)}, (4.5)

where



H. Wang et al. / J. Differential Equations 270 (2021) 664–693 677
Ty(u)(x) = u(x − y),

and φ(x) is a non-increasing function that satisfies

φ(x) = (0,0) for x > 0 and lim
x→−∞(φ(x) − ω) = 0,

(0, 0) < ω < (1, 1). Here, c∗ is well-defined and independent of the choice of φ, see [9,23]. As it 
can be seen from [31], there is no traveling wave connecting (0, 1) and (0, 0). As such, a single 
spreading speed c∗ exists and it is equal to the minimal wave speed cmin. Therefore, we can let 
φ(−∞) be small so that the upper solution (U2, V2) (or a shift of (U2, V2) if needed) satisfies

a0(c2;x) ≤ (U2,V2)(x, x) (4.6)

for all x ∈ (−∞, ∞). From (4.4) and (4.5), by induction, it follows that

an+1(c2;x) ≤ (U2,V2)(x, x), n ≥ 0.

Thus a(c2; −∞) = 0. By (4.3), we have c∗ ≤ c2, that is cmin ≤ c2. The proof is complete. �
Based on Theorem 4.1, we will derive results on nonlinear selection by construction of lower 

solutions. To proceed, for 0 < k < 1 and sufficient small number ε, we choose

U(x, z) = k

1 + eμ2z

φμ2 (x)

, μ2 := μ2(c),

where c = c1 = c0 + ε. Let V (x, z) be the function determined by Lemma 3.5. By substituting 
(U, V ) into the U -equation, one can show directly that (U, V ) is a lower solution to the system 
(1.1) provided that

−2d1(x)

(
μ2 − φ′

μ2

φμ2

)2

+ Y1(x, z) ≥ 0, (4.7)

where

Y1(x, z) =
a12(x)q(x)V + U

[
a11(x)p(x)( 1

k
− 1) − a12(x)q(x) 1

k

]
U

k

(
1 − U

k

) .

Thus, for the nonlinear selection, we have the following result.

Proposition 4.3. If (4.7) is true, then cmin > c0.

Furthermore, by virtue of choosing explicit function V , we can obtain the following results 
concerning the nonlinear selection.
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Theorem 4.4. The minimal wave speed of (2.6)-(2.7) is nonlinearly selected provided that there 
exist ε, k > 0 such that

a22(x)q(x) + 2d2(x)
(
μ2 − φ′

μ2
φμ2

)2 − d2(x)
d1(x)

(cμ2 − �(x)) + cμ2 − Qμ2(x)

a21(x)p(x)

≤ k ≤ min
x∈[0,L)

⎧⎪⎨⎪⎩1 −
2d1(x)

(
μ2 − φ′

μ2
φμ2

)2

a11(x)p(x)

⎫⎪⎬⎪⎭ ,

(4.8)

holds for c = c0 + ε, where

�(x) := a11(x)p(x) − a12(x)q(x), (4.9)

and

Qμ2(x) := 2d2(x)

(
φ′

μ2
(x)

φμ2(x)
− μ2

)(
q ′(x)

q(x)
− p′(x)

p(x)

)
.

Proof. By a substitution of

V (x, z) = 1

k
U(x, z) with U(x, z) = k

1 + eμ2z

φμ2 (x)

,

formula (4.7) can be estimated by

−2d1(x)

(
μ2 − φ′

μ2

φμ2

)2

+ a11(x)p(x)(1 − k) ≥ 0. (4.10)

It is true due to the right part of (4.8). In view of (4.8), a substitution of (U, V ) into the V -
equation enables us to get

V (1 − V )

{
d2(x)

d1(x)
(cμ2 − �(x)) − cμ2 + Qμ2(x)

+ (a21(x)p(x)k − a22(x)q(x)) − 2d2(x)

(
μ2 − φ′

μ2

φμ2

)2}
≥ 0.

(4.11)

Thus, (4.10) and (4.11) guarantee that (U, V ) is a lower solution. By Theorem 4.1, the proof is 
complete. �
Remark 4.5. In Theorem 4.4, we have chosen c = c0 + ε. As ε → 0+, we have c → c0, μ2 → μ̄

and φμ (x) → φ(x). As a result, (4.8) can reduce to
2
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a22(x)q(x) + 2d2(x)
(
μ̄ − φ′

φ

)2 − d2(x)
d1(x)

(c0μ̄ − �(x)) + c0μ̄ − Qμ̄(x)

a21(x)p(x)

≤ k ≤ min
x∈[0,L)

⎧⎨⎩1 − 2d1(x)
(
μ̄ − φ′

φ

)2

a11(x)p(x)

⎫⎬⎭ ,

where

Qμ̄(x) := 2d2(x)

(
φ′(x)

φ(x)
− μ̄

)(
q ′(x)

q(x)
− p′(x)

p(x)

)
. (4.12)

Inspired by Remark 4.5, hereafter, we will always denote the principal eigenfunction corre-
sponding to λ̃(μ̄) in (2.10) by φ(x) for brevity. Alternatively, we can choose

U(x, z) = k

1 + eμ2(c)z

φμ2(c)(x)

, V (x, z) = U(x, z)

k

(
2 − U(x, z)

k

)
, (4.13)

where c = c0 + ε and φμ2(c)(x) is the principal eigenfunction corresponding to λ̃(μ2(c)) (see 
(2.10)), to have a different result on the nonlinear selection. By performing an analogous limiting 
analysis as in Remark 4.5, we have the following conclusion.

Theorem 4.6. The minimal wave speed of (2.6)-(2.7) is nonlinearly selected provided that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
6d2(x)

(
μ − φ′

φ

)2

− a22(x)q(x) < 0,

2a22(x)q(x) − 2�(x)

a21(x)p(x)
< min

x∈[0,L)

⎧⎨⎩1 − 2d1(x)
(
μ̄ − φ′

φ

)2 − a12(x)q(x)

a11(x)p(x)

⎫⎬⎭ ,

(4.14)

where

�(x) := d2(x)

d1(x)
[c0μ̄ − �(x)] − c0μ̄ + Qμ̄(x).

Proof. From the second condition in (4.14), we can select the constant k in (4.13) satisfying

2a22(x)q(x) − 2�(x)

a21(x)p(x)
< k < min

x∈[0,L)

⎧⎪⎨⎪⎩1 −
2d1(x)

(
μ̄ − φ ′̄

μ

φμ̄

)2 − a12(x)q(x)

a11(x)p(x)

⎫⎪⎬⎪⎭ . (4.15)

Substituting (4.13) into Y1(x, z) gives

Y1(x, z) ≥ a12(x)q(x) + a11(x)p(x)(1 − k),

hence, for small ε, (4.7) holds true if
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−2d1(x)

(
μ̄ − φ ′̄

μ(x)

φμ̄(x)

)2

+ a12(x)q(x) + a11(x)p(x)(1 − k) > 0, (4.16)

which can be deduced from the second inequality of (4.15). Next, by a substitution of (4.13) into 
V -equation, we can rewrite the left-side of V -equation as U

k
(1 − U

k
)F0(

U

k
), where

F0(
U

k
) =2�(x) + a21(x)p(x)k − 2a22(x)q(x) −

[
6d2(x)

(
μ2 − φ′

μ2

φμ2

)2

+ 2�(x)

+ a21(x)p(x)k − 3a22(x)q(x)

]
U

k
+

[
6d2(x)

(
μ2 − φ′

μ2

φμ2

)2

− a22(x)q(x)

](
U

k

)2

.

(4.17)
It is easy to check that F0(1) = 0. As ε → 0, the first condition of (4.14) indicates that F0(

U

k
) is 

a concave downward function, and the first inequality of (4.15) implies

F0(0) = 2�(x) + a21(x)p(x)k − 2a22(x)q(x) ≥ 0.

Consequently, we have F0(
U

k
) ≥ 0 for U ∈ (0, k). This combined with (4.16) shows that the pair 

of functions (U, V ) is a lower solution. Thus, by use of Theorem 4.1, the proof is complete. �
Remark 4.7. We illustrate an application of Theorem 4.6 to the following constant-coefficient 
system

⎧⎪⎪⎨⎪⎪⎩
∂u1

∂t
= ∂2u1

∂x2 + u1(1 − u1 − a1u2),

∂u2

∂t
= d

∂2u2

∂x2 + ru2(1 − a2u1 − u2), t > 0, x ∈R.

(4.18)

As a result, we obtain that the minimal wave speed of (4.18) is nonlinearly selected provided that

⎧⎪⎨⎪⎩
6d(1 − a1) − r < 0,

2r − 2(d − 2)(1 − a1)

ra2
< 3a1 − 1,

(4.19)

which is new comparing with results in [1].

5. Linear speed selection

In this section, we are concerned with the linear speed selection. We will construct a pair of 
upper solutions to establish the existence of traveling waves for c = c0. For (2.6), recall that there 
are three equilibria (0, 0), (0, 1) and (1, 1). It is easy to see that there is no traveling wavefront of 
(2.6), connecting (0, 1) and (0, 0) for c ≥ c0. As such, by Theorem 5.3 in [9], a single spreading 
speed exists, which is equal to the minimal speed of traveling waves to (2.6)-(2.7).
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Theorem 5.1 (Linear selection). For c = c0, assume that there exists a continuous and positive 
function (U(x, z), V (x, z)) as an upper solution of (2.6) such that

lim inf
z→−∞(U(x, z),V (x, z)) > (0,0), lim

z→∞(U(x, z),V (x, z)) = (0,0). (5.1)

Then the minimal wave speed is linearly selected. This means cmin = c0.

Proof. The proof here is similar to that of Theorem 4.2 and omitted. �
Next, we prepare to construct an upper solution to (2.6). Let μ = μ1(c0), and φ(x) be the 

corresponding eigenfunction, see (2.10). Then, by keeping Lemma 3.5 in mind, we can define

U(x, z) = 1

1 + eμz

φ(x)

, V (x, z) is the corresponding solution, see Lemma 3.5, (5.2)

which satisfy

Ux = φ′

φ
U(1 − U), Uz = −μU(1 − U), Uzz = μ2U(1 − U)(1 − 2U), (5.3)

and

Uxz = −μ
φ′

φ
U(1 − U)(1 − 2U), Uxx = φ′′φ − φ′2

φ2 U(1 − U) +
(

φ′

φ

)2

U(1 − U)(1 − 2U).

(5.4)
By virtue of (5.3) and (5.4), the U -equation (the left of the first equation of (2.6)) becomes

U(1 − U)

{[
d1(x)

φ′′

φ
−

(
2d1(x)μ − 2d1(x)

p′(x)

p(x)

)
φ′

φ
+

(
d1(x)μ2 − 2d1(x)

p′(x)

p(x)
μ − cμ

)]

− 2d1(x)U

(
μ − φ′

φ

)2

+ U
[
a11(x)p(x)(1 − U) − a12(x)q(x)(1 − V )

]}

= U(1 − U)

{
− (a11(x)p(x) − a12(x)q(x)) − 2d1(x)U

(
μ − φ′

φ

)2 }
+ U

[
a11(x)p(x)(1 − U) − a12(x)q(x)(1 − V )

]
= U

2
(1 − U)

{
− 2d1(x)

(
μ − φ′

φ

)2

+ a12(x)q(x)
V − U

U(1 − U)

}
.

Thus, the pair of functions (U, V ) turns to be an upper solution if

−2d1(x)

(
μ − φ′

φ

)2

+ a12(x)q(x)Y2(x, z) ≤ 0, where Y2(x, z) = V − U

U(1 − U)
. (5.5)

By Theorem 5.1, we arrive at the following result.
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Proposition 5.2. The minimal wave speed of (2.6)-(2.7) is linearly selected if there exists an 
upper solution (Ū , V̄ ) in the form of (5.2) such that (5.5) is satisfied.

Now we provide explicit formulas for the upper solution pair to establish new results on the 
linear selection. Bearing the notations �(x) and Qμ̄(x) (see (4.9) and (4.12) respectively) in 
mind, we have the following result.

Theorem 5.3. Assume that there exists a number η > 1 such that

a21(x)p(x)

a22(x)q(x) − Qμ̄(x) − [
(
d2(x)
d1(x)

− 1)c0μ − d2(x)
d1(x)

�(x)
]

≤ η ≤ min
x∈[0,L)

⎧⎨⎩a21(x)p(x)

a22(x)q(x)
,

2d1(x)(μ − φ′
φ

)2

a12(x)q(x)

⎫⎬⎭ .

(5.6)

Then the minimal wave speed of (2.6) is linearly selected if

d2(x)

d1(x)
≤ a22(x)q(x) + c0μ − Qμ̄(x)

c0μ − �(x)
, (5.7)

where c0 is the wave speed of the linear system and is defined in (2.9).

Proof. Let U(x, z) be the function defined in (5.2), and redefine an irregular upper solution

V (x, z) = min{1, ηU(x, z)}. (5.8)

In the case V (x, z) = 1, it is obvious that

d2(x)(V xx + 2V xz + V zz) + 2d2(x)
q ′(x)

q(x)
(V x + V z) + c0V z

+ (1 − V )(a21(x)p(x)U − a22(x)q(x)V ) = 0.

(5.9)

As for the case V (x, z) = ηU(x, z), a straightforward calculation combined with (5.6) and (5.7)
results in

d2(x)(V xx + 2V xz + V zz) + 2d2(x)
q ′(x)

q(x)
(V x + V z) + c0V z

+ (1 − V )(a21(x)p(x)U − a22(x)q(x)V )

≤ ηU(1 − U)

{
d2(x)

d1(x)
(c0μ − �(x)) − c0μ + Qμ̄(x) +

(
a12(x)p(x)

η
− a22(x)q(x)

)}
≤ 0.

(5.10)

In addition, from (5.5), it is easy to check that
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Y2(x, z) =

⎧⎪⎪⎨⎪⎪⎩
1

U
≤ η, if ηU ≥ 1,

η − 1

1 − U
≤ η, if ηU < 1.

(5.11)

Hence, in view of the condition (5.6), we obtain

−2d1(x)

(
μ − φ′

φ

)2

+ a12(x)q(x)η ≤ 0. (5.12)

Based on (5.9), (5.10) and (5.12), we can conclude that (U, V ) is an upper solution to the system 
(2.6). By Theorem 5.1, the proof is complete. �

Next, we want to construct a new pair of upper solution to establish some sharper sufficient 
conditions for linear selection. In fact, we can set up

U = 1

1 + eμz

φ(x)

, V = U(a + bU + (1 − a − b)U
2
), (5.13)

where a, b are two constants that will be determined later. By substituting (5.13) into the U -
equation, we have a new condition for linear selection. Before stating it, we need some notations:

�1(x) = a21(x)p(x) − a22(x)q(x)a,

A = a�(x) + �1(x),

B = −2ad2(x)

(
φ′

φ
− μ̄

)2

+ 2b

[
�(x) + d2(x)

(
φ′

φ
− μ̄

)2
]

+ [(1 − a)�1(x) − ba22(x)q(x)],

C = −6bd2(x)

(
φ′

φ
− μ̄

)2

+ 3(1 − a − b)

[
�(x) + 2d2(x)

(
φ′

φ
− μ̄

)2
]

+ (1 − a − b)�1(x) − (1 − a)ba22(x)q(x),

D = −12(1 − a − b)d2(x)

(
φ′

φ
− μ̄

)2

.

(5.14)

Theorem 5.4. The minimal wave speed of (2.6)-(2.7) is linearly selected provided that there exist 
two numbers a and b satisfying

a ≥ a21(x)p(x)

a22(x)q(x) − �(x)
, a12(x)q(x)(b + 2(a − 1)) ≤ 2d1(x)

(
μ − φ′

φ

)2

(5.15)

and

1 − a − b ≤ 0, B ≤ 0, B + C + D ≤ 0. (5.16)
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Proof. Substituting (5.13) into the function Y2(x, z) gives

Y2(x, z) = a − 1 + (a + b − 1)U. (5.17)

Therefore, the conditions (5.15) and 1 − a − b ≤ 0 in (5.16) imply that (5.5) can be evaluated by

− 2d1(x)

(
μ − φ′

φ

)2

+ a12(x)q(x)(a − 1 + (a + b − 1)U)

≤ −2d1(x)

(
μ − φ′

φ

)2

+ a12(x)q(x)(b + 2(a − 1))

≤ 0.

(5.18)

The following formulas can be obtained by a direct computation (n is an integer),

(U
n
)x = n

φ′

φ
U

n
(1 − U), (U

n
)z = −nμ̄U

n
(1 − U),

(U
n
)xx = nU

n
(1 − U)

φ′′φ − φ′2

φ2 + n

(
φ′

φ

)2

U
n
(1 − U)(n − (n + 1)U),

(U
n
)zx = −nμ̄

φ′

φ
U

n
(1 − U)(n − (n + 1)U), (U

n
)zz = −nμ̄2U

n
(1 − U)(n − (n + 1)U).

By taking n = 1, 2, 3 respectively and plugging the above relationships into the V -equation, we 
can rewrite the left-side of the V -equation as U(1 − U)F(U), with F(U) = A + BU + CU

2 +
DU

3
, where A, B, C and D are defined in (5.14). Under the assumption (5.15), we can further 

estimate the left-side of the V -equation as

U
2
(1 − U)G(U),

with G(U) = B + CU + DU
2
. Formulas in (5.16) imply that G(U) ≤ 0 for U ∈ [0, 1]. This, 

combined with (5.18), indicates (U, V ) is an upper solution. In view of Theorem 5.1, the proof 
is complete. �
Remark 5.5. By letting a = 2, b = −1, c = 0, the choice in (5.13) becomes

U(x, z) = 1

1 + eμz

φ(x)

, V = 2U − U
2
. (5.19)

It follows that the minimal wave speed of (2.6) is linearly selected provided that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 2d1(x)

(
μ − φ′

φ

)2

+ a12(x)q(x) ≤ 0,

6d2(x)

(
μ − φ′

φ

)2

− a22(x)q(x) ≥ 0,
(5.20)
2�(x) + a21(x)p(x) − 2a22(x)q(x) ≤ 0.
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A further application of (5.20) on the constant-coefficient system (4.18) indicates that the mini-
mal wave speed of (2.6) is linearly selected provided that

a1 ≤ 2

3
, 6d(1 − a1) − r ≥ 0, (2d − 4)(1 − a1) ≤ r(2 − a2). (5.21)

This is a new result, and is not covered in [16,29]. In fact, to some extent, our result is much 
sharper than the previous ones. For example, if we take a1 = 0.5, a2 = 1.5, r = 2, d = 1, then 
(5.21) holds true. Hence, the linear selection of the minimal wave speed of (2.6) is realized, but 
this case cannot be handled in [16,29].

Remark 5.6. It is possible to establish a unified type of upper solution with the following form

U(x, z) = 1

1 + eμz

φ(x)

, V (x, z) = max{1,U
γ
(α1 + α2U + · · · )},

where

γ = μ3(c0)

μ1(c0)
.

Taking the system (4.18) as an example, it gives

γ =
1 +

√
1 + dr

1−a1

d
.

According to the previous analysis, one can find that the sufficient conditions obtained in 
Theorem 5.3 and Theorem 5.4 rely heavily on the choice of upper solutions. In particular, smooth 
functions can be constructed so that we can have regular upper or lower solutions. For instance, 
we let

U = 1

(1 + e
1
2 μz

φ(x)
)2

, V = √
U(a + (1 − a)

√
U), a ≥ 1. (5.22)

Then the following relations are readily to verify.

Uz = −μU(1 − U
1
2 ), Ux = 2

φ′

φ
U(1 − U

1
2 ),

Uzz = μ2U(1 − U
1
2 )(1 − 3

2
U

1
2 ), Uxz = −2μ

φ′

φ
U(1 − U

1
2 )(1 − 3

2
U

1
2 ),

Uxx = 2
φ′′φ − φ′2

φ2 U(1 − U
1
2 ) + 4

(
φ′

φ

)2

U(1 − U
1
2 )(1 − 3

2
U

1
2 ).

(5.23)

For simplicity, we need the following notations:
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E1 = d2(x)
φ′′

φ
− d2(x)

(
μ̄ − 2

q ′(x)

q(x)

)
φ′

φ
+ 1

4
d2(x)μ̄2 − d2(x)μ̄

q ′(x)

q(x)
− 1

2
c0μ̄,

E3 = 2d2(x)
φ′′

φ
+ 2d2(x)

φ′2

φ2 − d2(x)

(
4μ̄ − 4

q ′(x)

q(x)

)
φ′

φ
+ d2(x)μ̄2 − 2d2(x)μ̄

q ′(x)

q(x)
− c0μ̄,

E2 = 1

2
d2(x)

(
μ̄ − 2

φ′

φ

)2

, E4 = 3

2
d2(x)

(
μ̄ − 2

φ′

φ

)2

. (5.24)

Theorem 5.7. Assume that⎧⎪⎨⎪⎩
φ′′

φ
+ 2

(
p′(x)

p(x)
− μ

)
φ′

φ
+ 2

φ′2

φ2 ≤ 0,

− E4 + a11(x)p(x) − (1 − a)a12(x)q(x) ≤ 0,

(5.25)

or⎧⎪⎨⎪⎩
φ′′

φ
+ 2

(
p′(x)

p(x)
− μ

)
φ′

φ
+ 2

φ′2

φ2 + 1

d1(x)
[−E4 + a11(x)p(x) − (1 − a)a12(x)q(x)] ≤ 0,

− E4 + a11(x)p(x) − (1 − a)a12(x)q(x) > 0.

(5.26)
The minimal wave speed of (2.6)-(2.7) is linearly selected provided that⎧⎪⎪⎨⎪⎪⎩

a21(x)p(x) − a22(x)q(x)(1 − a) − E4 ≤ 0,

E1 − a22(x)q(x) ≤ 0,

a(E1 − E2) + (1 − a)(E3 − E4) + (2 − a)(a21(x)p(x) − a22(x)q(x)) ≤ 0.

(5.27)

Proof. Let U and V be the functions defined in (5.22). Using the relations in (5.23) to the U -
equation, we arrive at

d1(x)(Uxx + 2Uxz + Uzz) + 2d1(x)
p′(x)

p(x)
(Ux + Uz) + cUz

+ U [a11(x)p(x)(1 − U) − a12(x)q(x)(1 − V )]

= U(1 − U
1
2 )

{
2d1(x)

φ′′

φ
+ 2d1(x)

φ′2

φ2 − d1(x)

(
4μ̄ − 4

p′(x)

p(x)

)
φ′

φ
+ d1(x)μ̄2

− 2d1(x)μ̄
p′(x)

p(x)
− c0μ̄ + a11(x)p(x) − a12(x)q(x)

+ U
1
2

[
− 3

2
d1(x)

(
μ − 2φ′

φ

)2

+ a11(x)p(x) − (1 − a)a12(x)q(x)

]}

= U(1 − U
1
2 )

{
d1(x)

φ′′

φ
+ 2d1(x)

(
p′(x)

p(x)
− μ

)
φ′

φ
+ 2d1(x)

φ′2

φ2

+ U
1
2

[
− 3

d1(x)

(
μ − 2φ′ )2

+ a11(x)p(x) − (1 − a)a12(x)q(x)

]}

2 φ
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≤ 0.

The negativity comes from (5.25) or (5.26). Inserting (5.22) into the V -equation leads to

d2(x)(Vxx + 2Vxz + Vzz) + 2d2(x)
q ′(x)

q(x)
(Vx + Vz) + c0Vz

+ (1 − V )(a21(x)p(x)U − a22(x)q(x)V )

= √
U(1 − √

U)

{
aE1 − aa22(x)q(x) + [a21(x)p(x) − (1 − a)a22(x)q(x)

− a(1 − a)a22(x)q(x) + (1 − a)E3 − aE2]
√

U + (1 − a)[a21(x)p(x)

− a22(x)q(x)(1 − a) − E4]U
}

≤ 0.

The negativity follows from (5.27). Consequently, the pair of functions (U, V ) defined in (5.22)
is an upper solution. By Theorem 5.1, the proof is complete. �
6. Simulations

In order to verify numerically the result of Theorem 4.6, we consider

⎧⎪⎪⎨⎪⎪⎩
∂u1

∂t
= ∂2u1

∂x2 + u1(1 + 0.1 cos(0.2x) − u1 − 0.98u2),

∂u2

∂t
= 3

∂2u2

∂x2 + u2(1 + 0.1 cos(0.2x) − 2u1 − u2), t > 0, x ∈R.

(6.1)

The graph of u1(t, x) is shown by Fig. 6.1, when the initial data are taken as step functions.
We numerically calculate out

λ(1,1 + 0.1 cos(0.2x)) = 1.0785 > 0, λ(3,1 + 0.1 cos(0.2x)) = 1.0722 > 0,

which indicates that (A1) is satisfied. Moreover,

λ(1,1 + 0.1 cos(0.2x) − 0.98q(x)) = 0.0214 > 0,

λ(3,1 + 0.1 cos(0.2x) − 2p(x)) = −0.9711 < 0,

which implies that (A2) is valid and (p(x), 0) is stable. By performing a similar argument 
as [31, Lemma 5.3], one can prove that under the condition b1(x) = b2(x) = 1

10π

∫ 10π

0 (1 +
0.1 cos(0.2x))dx > 0 (which is obvious true), (A3) is ensured. A further computation shows that 
(4.14) is also valid for system (6.1). Thus, the minimal wave speed of (2.6) must be nonlinearly 
selected. In fact, we have

λ̂ = 0.0425, μ̄ = 0.15, c0 = 0.02834, cnum = 0.6614.
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Fig. 6.1. The wave profile of u1(t, x) of (6.1).

As we can see, the numerically computed speed cnum is greater than the linear speed c0. The 
solution evolves into a pushed wave.

To verify the condition (5.20) so that the minimal wave speed of the system (2.6) is linearly 
selected, we set

⎧⎪⎪⎨⎪⎪⎩
∂u1

∂t
= ∂2u1

∂x2 + u1(1 + 0.1 cos(0.2x) − u1 − 0.5u2),

∂u2

∂t
= 2

∂2u2

∂x2 + u2(1 + 0.1 cos(0.2x) − u1 − u2), t > 0, x ∈R.

(6.2)

The graph of u1(t, x) is given by Fig. 6.2.
Noting that

1

10π

10π∫
0

(1 + 0.1 cos(0.2x))dx = 1 > 0,

it follows from Remark 2.1 that conditions (A1)-(A3) are valid. Additionally, by the software 
MATLAB, one can check that the condition (5.20) is also true. Hence, the minimal wave speed 
is expected to be linearly selected. In fact, by the simulation, we have λ̂ = 1.0046, μ̄ = 0.71, c0 =
1.4150 and the numeric speed is cnum = 1.4122. As we can see, the relative error is as small as 
O(10−3) which demonstrates the linear selection of the minimal wave speed.

The above graph demonstrates that our numerical simulations agree with the theoretical results 
from Theorems 4.14 and 5.4. One can confirm the theoretical results of Theorems 4.8, 5.3 as well 
as Theorem 5.7 by setting more general coefficients in (1.1). We omit them here.
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Fig. 6.2. The wave profile of u1(t, x) of (6.2).

7. Conclusions

In this paper, by means of the upper or lower solution method as well as comparison princi-
ple, we studied speed selection mechanism to the spreading speed of a two-species competitive 
reaction diffusion model in periodic habitats in the monostable case. Nonlinear selection can be 
obtained, as long as we can find a pair of lower solutions to the wave profile system with the 
first species decaying with a faster rate. Upper and lower bounds for the nonlinearly-selected 
spreading speed were provided. Explicit results for the determinacy of the nonlinear selection 
were established, based on various constructions of the lower solutions. On the other side, for the 
linear selection, our results showed that it is sufficient to find the existence of an upper solution at 
the linear speed c0. This helped us to contribute a series of new results in terms of the coefficient 
functions.

Finally, to simplify the conditions of (4.14), we look at the special case when a11(x) =
a22(x) = 1, a12(x) = a1 < 1, a21(x) = a2 > 1, di(x) = 1 and bi(x) = b̄ + δ cos(2πx/L + ξ), i =
1, 2. In this case, we have

b̄ − δ < p(x) < b̄ + δ, b̄ − δ < q(x) < b̄ + δ. (7.1)

We can use asymptotic analysis to obtain an explicit condition of (4.14). To give an estimate 
for p′(x)/p(x), we consider the equation

p′′(x) + p(x)(b̄ + δ cos(2πx/L + ξ) − p(x)) = 0. (7.2)

For small δ, we set p(x) ∼ b̄ + p1(x)δ, where p1(x) is an L-periodic function. Substituting it 
into the above equation and equating the coefficient of δ yield

p′′(x) − b̄p1(x) = −b̄ cos(2πx/L + ξ). (7.3)
1
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Owing to the fact that p1(x) is an L-periodic function, we find

p1(x) = b̄

(2π/L)2 + b̄
cos(2πx/L + ξ).

As a result, an integral of (7.2) can lead to

p′(x)

p(x)
∼ − 2πL

4π2 + b̄L2
sin(2πx/L + ξ)δ (7.4)

for small δ. Since q(x) satisfies the same equation as (7.2), we get q(x) = p(x). Next, we turn 
to the estimate of φ′/φ. To this end, let φ ∼ 1 + φ1(x)δ, λ ∼ λ0 + λ1δ and μ ∼ μ0 + μ1δ, where 
φ1(x) is an L-periodic function, λ0 = 2(1 − a1)b̄ and μ0 =

√
(1 − a1)b̄. Plugging them into 

(2.10) leads to

(λ0 + λ1δ)(1 + φ1δ) = φ′′
1 δ − 2(μ0 + μ1δ − p′(x)

p(x)
)φ′

1δ

+ [(μ0 + μ1δ)
2 − 2

p′(x)

p(x)
(μ0 + μ1δ) + p(x) − a1q(x)](1 + φ1δ).

Equating the constant term, we get λ0 = μ2
0 + b̄(1 − a1). Equating the coefficient of δ, we have

λ0φ1 + λ1 =φ′′
1 − 2μ0φ

′
1 + [2μ0μ1 + 2Mμ0 sin(2πx/L + ξ)

+ (1 − a1)M1 cos(2πx/L + ξ)] + [μ2
0 + (1 − a1)b̄]φ1,

where M = 2πL

4π2+b̄L2 and M1 = b̄

(2π/L)2+b̄
. Bearing λ0 = μ2

0 + b̄(1 − a1) in mind, one can see 
that the above equation is equivalent to

λ1 = φ′′
1 − 2μ0φ

′
1 + [2μ0μ1 + 2Mμ0 sin(2πx/L + ξ) + (1 − a1)M1 cos(2πx/L + ξ)].

Integrating it from 0 to L yields λ1 = 2μ0μ1. Hence,

0 = φ′′
1 − 2μ0φ

′
1 + [2Mμ0 sin(2πx/L + ξ) + (1 − a1)M1 cos(2πx/L + ξ)]. (7.5)

To find the expression of φ1, we set

φ1 = C1 cos(2πx/L + ξ) + C2 sin(2πx/L + ξ),

and put it into (7.5) to get

(
2π

L
)2C1 + 2μ0(

2π

L
)C2 = (1 − a1)M1,

− 2μ0(
2π

L
)C1 + (

2π

L
)2C2 = 2Mμ0.

Then we have
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C1 = (1 − a1)M1
2π
L

− (2μ0)
2M

( 2π
L

)3 + (2μ0)2 2π
L

,C2 = 2μ0(1 − a1)M1 + 2μ0M
2π
L

( 2π
L

)3 + (2μ0)2 2π
L

.

As a result, for small δ, we get

φ′

φ
∼ (−C1

2π

L
sin(2πx/L + ξ) + C2

2π

L
cos(2πx/L + ξ))δ.

In view of (3.3) in our manuscript, we know μ̄ =
√

B̄ , with

B̄ = 1

L

L∫
0

(p(x) − a1(x)q(x) + φ′′
1

φ1
+ 2

p′(x)φ′
1(x)

p(x)φ1(x)
)dx

= 1

L

L∫
0

(p(x) − a1(x)q(x) + (
φ′

1

φ1
)2 + 2

p′(x)φ′
1(x)

p(x)φ1(x)
)dx.

Consequently, we have

(μ0 + μ1δ + o(δ))2 = b̄(1 − a1) + o(δ).

From which, it follows that

μ2
0 = b̄(1 − a1),μ1 = 0.

In view of λ1 = 2μ0μ1, we further obtain λ1 = 0. Thus, λ = λ0 + o(δ) and μ̄ = μ0 + o(δ).
Due to the fact that p(x) = q(x) in our special case, we get

Qμ̄(x) := 2d2(x)

(
φ′(x)

φ(x)
− μ̄

)(
q ′(x)

q(x)
− p′(x)

p(x)

)
= 0.

Based on the above analysis, there exists a small δ1 so that

p(x) > b̄ − δ,

(
μ̄ − φ′(x)

φ(x)

)2

< (μ0 + 2π + 1

L

√
C2

1 + C2
2δ)2

for δ < δ1. The first condition of (4.14) can be ensured provided that

6(μ0 + 2π + 1

L

√
C2

1 + C2
2δ)2 − (b̄ − δ) < 0,

which can be further ensured if

δ < min{δ1,
b̄ − 6b̄(1 − a1)

1 + 24μ0(π + 1 )

√
C2 + C2/L

}. (7.6)
2 1 2
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Similarly, the second equation of (4.14) can be guaranteed by

2 + 2(1 − a1)

a2
< 1 + a1 −

2(μ0 + 2π+1
L

√
C2

1 + C2
2δ

b̄ − δ
,

which can be further ensured if

δ < min{δ1,
C3b̄ − 2(1 − a1)b̄

C3 + 4μ0(π + 1
2 )

√
C2

1 + C2
2/L

}, (7.7)

where C3 = ((1 +a1)a2 −4 +2a1)/a2. Then one can conclude from (7.6) and (7.7) that condition 
(4.14) holds true provided that

δ < min{δ1,
b̄ − 6b̄(1 − a1)

1 + 24μ0(π + 1
2 )

√
C2

1 + C2
2/L

,
C3b̄ − 2(1 − a1)b̄

C3 + 4μ0(π + 1
2 )

√
C2

1 + C2
2/L

}.
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