
1 23

Journal of Dynamics and Differential
Equations
 
ISSN 1040-7294
 
J Dyn Diff Equat
DOI 10.1007/s10884-020-09853-4

Propagation Direction of the Traveling
Wave for the Lotka–Volterra Competitive
Lattice System

Hongyong Wang & Chunhua Ou



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Journal of Dynamics and Differential Equations
https://doi.org/10.1007/s10884-020-09853-4

Propagation Direction of the Traveling Wave for the
Lotka–Volterra Competitive Lattice System

Hongyong Wang1 · Chunhua Ou2

Received: 21 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, the speed sign of the traveling wave to the bistable Lotka–Volterra competitive
lattice system is investigated via the upper–lower solution method as well as the comparison
principle. We provide an interval estimation for the bistable speed firstly. Two comparison
principles are further established to obtain new conditions to the determinacy of the sign of
the bistable speed. To our knowledge, this is the first investigation to the lattice system for
the propagation direction.
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1 Introduction

In this paper, we study the speed sign of the bistable traveling wave for the lattice Lotka–
Volterra competition system{

u′
j (t) = D2[u j ](t) + u j (t)[1 − u j (t) − kv j (t)],

v′
j (t) = dD2[v j ](t) + rv j (t)[1 − v j (t) − hu j (t)], t ∈ R, j ∈ Z,

(1.1)

whereD2 represents the second-order centre difference operator, i.e.,D2[u j ](t) = u j+1(t)+
u j−1(t)−2u j (t) andD2[v j ](t) = v j+1(t)+v j−1(t)−2v j (t). Here, u j (t) and v j (t) represent
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the population densities of two species at niches j and time t respectively; d is the diffusion
coefficient; r is the net birth rate; k, h are the competition coefficients. System (1.1) can be
directly modeled for two species in a patchy environment in the competition of a common
resource (see [3,10,21,23–25,27]), or it can be viewed as a discrete version of the classical
Lotka–Volterra competition-diffusion system{

ut = uxx + u(1 − u − kv),

vt = dvxx + rv(1 − v − hu), x ∈ R, t ∈ R,
(1.2)

that has been studied in [1,2,4–7,11,13–15,17–20,26,28–30]. However, lattice dynamic sys-
tem may have advantages over the continuous one in the applications in material science,
image processing, pattern formation (see e.g., [3,23–25]). This motivates us to study the
dynamic behavior for the system (1.1).

In this paper we assume that k and h satisfy the so-called bistable condition (or the case
with strong competition)

k > 1 and h > 1. (1.3)

For further biological interpretation of this condition, we refer to [9,12,31]. For the lattice
problem (1.1) in the bistable case, the existence of traveling wave was derived in [31]. We
refer readers to [9] for the monotonicity and uniqueness of traveling wave solution as well
as the occurrence of propagation failure phenomenon. The stability of the traveling wave
was implied by the result in [12], where the bistable traveling wave for a 3-species lattice
dynamic system has been studied. Despite all the success in the investigation of the existence,
uniqueness and stability of the wavefront, the propagation direction of the wave has remained
open for long time and it leaves a real challenge for the community of mathematical biology
group. Our purpose of this paper is on this direction.

For our purpose, we first utilize a transformation φ j (t) = u j (t) and ψ j (t) = 1− v j (t) to
change (1.1) into the following cooperative system{

φ′
j (t) = D2[φ j ](t) + φ j (t)[1 − k − φ j (t) + kψ j (t)],

ψ ′
j (t) = dD2[ψ j ](t) + r [1 − ψ j (t)][hφ j (t) − ψ j (t)], t ∈ R, j ∈ Z.

(1.4)

Under the condition (1.3), system (1.4) has four constant equilibria. For convenience, we
denote them by

o = (0, 0), α1 = (0, 1), α2 =
(

k − 1

kh − 1
,
h(k − 1)

kh − 1

)
and β = (1, 1).

Through a phase plane analysis, it is easy to find that the equilibrium solutions o and β are
stable, while the equilibrium solutions α1 and α2 are unstable for the following system{

ut = u(1 − u − kv),

vt = rv(1 − v − hu), t ∈ R.

As mentioned previously, we are interested in the traveling wavefront solution to (1.4) in
the form of

(φ j (t), ψ j (t)) = (�(z),�(z)), z = j + ct, (1.5)
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which connects o and β. Here, c is the wave speed. By plugging (1.5) into (1.4), we arrive at⎧⎪⎨
⎪⎩

D2[�] − c�′ + �(1 − k − � + k�) = 0,

dD2[�] − c� ′ + r(1 − �)(h� − �) = 0,

(�,�)(−∞) = (0, 0), (�,�)(∞) = (1, 1).

(1.6)

Here, for the sake of simplicity, we will name the first equation of (1.6) as the �-equation,
and the second one as the �-equation.

For the bistable nonlinearity, the existence of a traveling solution to system (1.6) has been
proved in [31] (Theorem 1.1 and Theorem 1.2) and can be stated as follows.

Lemma 1.1 If the assumption (1.3) holds, then there exists a solution (c,�(z),�(z)) of (1.6)
such that (�,�)(z) is nondecreasing.

The sign of the wave speed for the continuous system (1.2) has been studied in [8,16],
but for the lattice system (1.1), to our knowledge, this could be the first work concerning
this topic due to the fact that the second order centre-difference operator D2 appeared in
(1.6) causes nontrivial difficulties. Technically, we will come up with a new method that is
completely different from those in [8,16]. Based on the system parameters, suitable upper or
lower solutions will be constructed to approximate the exact bistable wave. By applying the
comparison principle, we will establish several novel results that can directly determine the
sign of the wave speed.

The rest of this paper is arranged as follows. In Sect. 2, an interval estimate of the bistable-
wave speed is established. In Sect. 3, two crucial comparison results on the sign of wave
speed are proved. In Sect. 4, we focus on the establishment of explicit conditions for the
direct determinacy of the speed sign. Finally, we will give a short discussion in Sect. 5.

2 Estimation of the speed of the bistable wave

In this section, we shall provide an estimation for the bistable-wave speed. For simplicity, we
use C to denote the set of all continuous and bounded functions from R to R, and use [φ,ψ]C
to denote the set {ϕ ∈ C : φ ≤ ϕ ≤ ψ}. It is easy to see that αi ∈ [o, β]. When the initial
phase space is restricted in [αi , β] or [o, αi ], i = 1, 2, the system (1.6) reveals a monostable
property. Due to this property, it has been proved in Theorem 3.5 of [6] (also can be found in
[20]) that there exists a positive constant C∗−(αi , β) (the left-ward spreading speed) such that
when c ≥ C∗−(αi , β), (1.6) has a nonnegative monotone traveling wavefront, which satisfies

(�,�)(−∞) = αi , (�,�)(∞) = β.

Meanwhile, there also exists another positive constant C∗+(o, αi )(the right-ward spreading
speed) such that when c ≤ −C∗+(o, αi ), (1.6) has a nonnegative monotone traveling wave-
front, which satisfies

(�,�)(−∞) = o, (�,�)(∞) = αi .

For the existence of the bistable wave, we refer to Lemma 1.1. Now, we are going to
establish an estimation for the speed of the bistable traveling wave, in which the left-ward
and right-ward spreading speed are involved.
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Theorem 2.1 If the speed of the bistable traveling wave solution of (1.6) is denoted by c, then
we have

− C∗+(o, αi ) ≤ c ≤ C∗−(αi , β), i = 1, 2. (2.1)

Particularly, when i = 1, we have

− θ := −min
μ>0

{
d(eμ + e−μ − 2) + r

μ

}
≤ c ≤ min

μ>0

{
eμ + e−μ − 1

μ

}
:= ω. (2.2)

Proof We shall only prove the right inequality of (2.1) when i = 1, since the left inequality
can be dealt with in a similar manner. To this end, in (1.4), we can choose a pair of non-
decreasing functions (in j) (φ j , ψ j )(0) as the initial function which satisfies

(φ j , ψ j )(0) =
{

β, j ≥ 1,
α1, j ≤ 0.

(2.3)

On the other hand, we denote the bistable wave solution by (�,�)( j+ct), which is the exact
solution to (1.4) with the initial function (�,�)( j). Obviously, by shifting if it is necessary,
one can always suppose that

(φ j , ψ j )(0) ≥ (�,�)( j).

By the comparison principle, we conclude that

φ j (t) ≥ �( j + ct), ψ j (t) ≥ �( j + ct).

In addition, it is known that, for any monostable system, the asymptotic spreading speed with
the initial condition as (2.3) eventually approaches the minimal wave speed C∗−(α1, β). Thus
we claim that c ≤ C∗−(α1, β). To the contrary, if c > C∗−(α1, β), then at the line j + ct = z0
such that 0 < �(z0) < 1, we have

φ j (t) ≥ �( j + ct). (2.4)

By letting t → ∞ and noticing limt→∞, j<−ct φ j (t) = 0 which follows from the definition
of the spreading speed, the above equation (2.4) gives a contradiction. Hence, we know that
c ≤ C∗−(α1, β).

To get the explicit expression for C∗−(α1, β), we let (�,�) be a traveling wave solution
to the system of (1.6), which connects α1 and β. This implies � ≡ 1, and the �-equation
then can be changed into

D2[�] − c�′ + �(1 − �) = 0,

with

�(−∞) = 0, �(∞) = 1.

From [6], it is well-known that

C∗−(α1, β) = min
μ>0

{
eμ + e−μ − 1

μ

}
. (2.5)

To get the explicit expression forC∗+(o, α1), we assume (�,�) is a travelingwave solution
of (1.6), which connects o and α1. This implies � ≡ 0, and the �-equation then becomes

dD2[�] − c� ′ − r�(1 − �) = 0, (2.6)
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with

�(−∞) = 0, �(∞) = 1.

By the transformation � = 1 − W , (2.6) turns to be

dD2[W ] − cW ′ + rW (1 − W ) = 0,

with W (−∞) = 1, W (∞) = 0. Again from [6], it follows that

C∗+(o, α1) = min
μ>0

{
d(eμ + e−μ − 2) + r

μ

}
. (2.7)

By (2.5) and (2.7), the proof is complete. 
�

3 Sign of the speed of the bistable wave

In this section, we study the sign of the speed of the bistable wave solution. The method of
upper and lower solution will be used in the derivation, so we first give the definition of upper
and lower solutions to (1.6).

Definition 3.1 If a pair of functions (�(z),�(z)) is continuous, and differentiable on R
except at finite number of points zi , i = 1, 2, . . . , n, and satisfies⎧⎪⎨

⎪⎩
D2[�] − c�′ + �(1 − k − � + k�) ≤ 0,

dD2[�] − c� ′ + r(1 − �)(h� − �) ≤ 0,

(�,�)(−∞) ≥ (0, 0), (�,�)(∞) ≥ (1, 1),

for all z �= zi , and (�′−(zi ),� ′−(zi )) ≥ (�′+(zi ),� ′+(zi )) for all i , then we say that
(�(z),�(z)) is an upper solution to (1.6).

Reversing all the inequality signs gives the definition of a lower solution.

The next lemma plays a critical role in reducing the coupled system (1.6) to a scalar
nonlocal equation by solving abstractly the �-equation or the �-equation.

Lemma 3.2 Assume that c satisfies −θ < c < ω, where θ and ω are defined in (2.2). Then
we have

(1) For any given continuous and non-decreasing function �(z), with �(−∞) = 0 and
�(∞) = a > 0, there exists a non-decreasing function �(z) satisfying{

dD2[�] − c� ′ + r(1 − �)(h� − �) = 0

�(−∞) = 0, �(∞) = min{1, ha}. (3.1)

(2) For any given continuous and non-decreasing function �(z), with �(−∞) = 0 and
�(∞) = 1, there exists a non-decreasing function �(z) satisfying{

D2[�] − c�′ + �(1 − k − � + k�) = 0

�(−∞) = 0, �(∞) = 1.
(3.2)

Proof Let w(z) = 1 − �(z) and a(z) = 1 − h�(z), then (3.1) can be rewritten as{
dD2[w](z) − cw′(z) + rw(z)(a(z) − w(z)) = 0,

w(−∞) = 1, w(∞) = 1 − min{1, ha}, (3.3)
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with a(−∞) = 1 and a(∞) = 1− ha. By employing the upper–lower solution method, one
can prove the existence of w(z), which in turn gives the existence of �. Indeed, it is easy to
verify that w(z) = 1 is an upper solution to (3.3).

As for the lower solution, we need to distinguish with two cases.
Case 1 If a ≤ 1/h, then it is readily to see that the function w(z) = 1− ha can be served

as a lower solution.
Case 2 If a > 1/h, we can assume, for sufficient small number ε > 0, that there exists a

number z0 ∈ R so that a(z) ≥ 1 − ε when z ≤ z0 since a(−∞) = 1. To construct a lower
solution, we first focus on the bistable wave profile equation

dD2[ŵ(z)] + ĉŵ′(z) + f (ŵ(z)) = 0, (3.4)

where f (ŵ(z)) is a function defined as

f (ŵ(z)) =
{
rŵ(−ε − ŵ), ŵ < 0,
rŵ(1 − ε − ŵ), ŵ ≥ 0.

Here, 0 < ε 
 1 is a constant. Obviously, the system (3.4) has three equilibria ŵ =
0,−ε, 1 − ε. It has been proved in [6] that, there exists a speed ĉ = cε such that the system
(3.4) has a decreasing solution satisfying

ŵ(−∞) = 1 − ε, ŵ(∞) = −ε.

Letting ε → 0, we consider a limiting system of (3.4) as

dD2[w̃(z)] + c̃w̃′(z) + rw̃(z)(1 − w̃(z)) = 0. (3.5)

It is known that equation (3.5) possesses a monotone traveling solution with

c̃ = min
μ>0

{
d(eμ + e−μ − 2) + r

μ

}
= θ > 0.

Thus it is easy to verify

lim
ε→0

ĉ = θ.

Without loss of generality, we may assume that ŵ(z) ≥ 0 as z ≤ z0, and ŵ(z) < 0 as z > z0
since any translation of ŵ(z) is still a solution. We now claim that

w(z) = max{0, ŵ(z)}
is a lower solution to (3.3) as long as ε is small. In fact, when w(z) = 0 the proof is trivial.
For the case when w(z) = ŵ(z), we substitute it into (3.3) to obtain

dD2[w](z) − cw′(z) + rw(z)(a(z) − w(z))

= −(c + ĉ)ŵ′(z) + rŵ(z)(a(z) − (1 − ε)).
(3.6)

Let c = −θ + δ for some positive δ. We can choose ε sufficiently small so that ĉ − θ < δ

and c + ĉ > 0. The value of (3.6) is nonnegative when z ≤ z0. Therefore, our proof of part
one is complete.

For the second part, by introducing the transformation w(z) = �(−z), then (3.2) reduces
to {

D2[w] + cw′ + w(1 − k + k� − w) = 0,

w(−∞) = 1, �(∞) = 0.
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By virtue of the same analysis as in part one, one can accomplish the proof. We omit the
details here. Thus the proof is complete. 
�

Now, we are going to construct a lower solution to the system (1.6) which is crucial to
establish our main results. To begin with, we provide some notations. Denote

f (u, v) = u(1 − k − u + kv), g(u, v) = r(1 − v)(hu − v).

The Jacobian matrix of ( f , g) is given by

J =
(
1 − k − 2u + kv ku

rh(1 − v) −r(hu + 1 − 2v)

)
. (3.7)

This matrix evaluated at (0, 0) and (1, 1) are given respectively by

J0 =
(
1 − k 0
rh −r

)
, J1 =

(−1 k
0 −r(h − 1)

)
. (3.8)

Based on (3.7) and (3.8), we further set

J− =
(
1 − k + kν kν

rh r(2ν − 1)

)
, J+ =

(−1 + 2ν k
rhν r(1 − h + hν)

)
,

where ν is a small positive constant. For sufficiently small ν, a direct calculation shows that
J± has two negative eigenvalues λ±

1 , λ±
2 . If the principal eigenvalues of J

± are denoted by
λ±, then it can be seen that

λ± = max{λ±
1 , λ±

2 } < 0,

with the corresponding eigenfunctions φ± = (φ±
1 , φ±

2 ) are positive. Hence we have

J±φ± = λ±φ±.

In addition, for small number ν > 0, we have

Ji j < J−
i j , for 0 < u, v ≤ ν,

Ji j < J+
i j , for 0 < 1 − u, 1 − v ≤ ν.

Since (�,�)(−∞) → (0, 0), (�,�)(∞) → (1, 1), there exists a number R1 = R1(ν) > 0
such that

0 < �(z), �(z) < ν, for z ≤ −R1,

1 − ν < �(z), �(z) < 1, for z ≥ R1.
(3.9)

Let ρi (z), i = 1, 2 be smooth positive functions satisfying

(ρ1(z), ρ2(z)) → pφ−, as z → −∞,

(ρ1(z), ρ2(z)) → qφ+, as z → ∞.
(3.10)

Here, we choose p, q > 0 satisfying 0 < qφ+ < pφ− ≤ 1. As a result, we can make an
assumption that ρ1(z), ρ2(z) are also monotone decreasing functions satisfying 0 < ρi (z) ≤
1, |ρ′

i (z)| ≤ 1 with i = 1, 2 and z ∈ R.
Denote

κ = min

{
min|ξ |≤R0

�′(ξ), min|ξ |≤R0
� ′(ξ)

}
> 0, M = max{k, rh}.
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and

δ0 = min

{
βκ

|c| + β + 2 + 2M
,

βκ

|c| + β + 2d + 2M

}
.

Remark 3.3 The positivity of κ has been proved in Theorem 3 of [10].

With the above notations and analysis, we are able to give the following lemma, by
developing the idea in [12].

Lemma 3.4 The following pair of functions{
u−
j (t) = �( j + ct + ξ− − σ(1 − e−βt )) − σδe−βtρ1( j + ct + ξ−),

v−
j (t) = �( j + ct + ξ− − σ(1 − e−βt )) − σδe−βtρ2( j + ct + ξ−),

(3.11)

is a lower solution to the system (1.4), where β = 1
2 min{−λ+,−λ−}, δ ∈ (0, δ0), ξ− ∈ R

and σ is a positive number.

Proof For simplicity, we first set

N j (t) = (u−
j )′(t) − D2[u−

j ](t) − u−
j (t)[1 − k − u−

j (t) + kv−
j (t)],

Mj (t) = (v−
j )′(t) − dD2[v−

j ](t) − r [1 − v−
j (t)][hu−

j (t) − v−
j (t)]. (3.12)

Substituting (3.11) into the equation (3.12) gives

N j (t) = �′(ξ)(c − σβe−βt ) − σδe−βt [c(ρ1)′(η) − βρ1(η)]
− {D2[�](ξ) − σδe−βtD2[ρ1](η)} + �(1 − k − � + k�)

− σδe−βt (1 − k − 2� + k�)ρ1 − σδe−βt k�ρ2 + σ 2δ2e−2βt (−ρ1 + kρ2)ρ1.

and

Mj (t) = � ′(ξ)(c − σβe−βt ) − σδe−βt [c(ρ2)′(η) − βρ2(η)]
− d{D2[�](ξ) − σδe−βtD2[ρ2](η)} + r(1 − �)(h� − �)

− σδe−βt rh(1 − �)ρ1 + σδe−βt r(1 + h� − 2�)ρ2 − rσ 2δ2e−2βt (hρ1 − ρ2)ρ2.

where ξ = j + ct + ξ− −σ(1− e−βt ) and η = j + ct + ξ−. By virtue of the fact that (�,�)

is the exact solution, we obtain

N j (t) = −σe−βt {β�′(ξ) + δ(I1 − I2)},
Mj (t) = −σe−βt {β� ′(ξ) + δ(I3 − I4)},

where

I1(t) = c(ρ1)
′(η) − βρ1(η) − D2[ρ1](η),

I2(t) = (1 − k − 2� + k�)ρ1 + k�ρ2 − σδe−βt (−ρ1 + kρ2)ρ1,
(3.13)

and

I3(t) = c(ρ2)
′(η) − βρ2(η) − dD2[ρ2](η),

I4(t) = rh(1 − �)ρ1 − r(1 + h� − 2�)ρ2 + σδe−βt r(hρ1 − ρ2)ρ2.
(3.14)
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In addition, we let

� := max{3 + k + β − 2ν, β + h + 2d − 1, β + rh + 2d + r − 2rν},
μ := βq

|c| + �
min{φ+

1 , φ+
2 }. (3.15)

Then it follows from (3.10) that there exists a number R2 := R2(μ) so that

|ρi (z) − pφ−
i | < μ, for z < −R2; |ρi (z) − qφ+

i | < μ, for z > R2, i = 1, 2,

(3.16)

and

|(ρi )′(z)| < μ, for |z| > R2, i = 1, 2. (3.17)

By denoting R0 := max{R1 + σ, R2 + 1}, we shall divide the discussions into three cases:
(i) η > R0; (ii) η < −R0; (iii) −R0 ≤ η ≤ R0.

Case (i) If η > R0 ≥ R2 + 1, bearing (3.16) and (3.17) in mind, then we have

I1 ≥ −βqφ+
1 − (β + |c| + 2)μ,

I3 ≥ −βqφ+
2 − (β + |c| + 2d)μ.

(3.18)

For sufficiently small δ, it can be seen that the last terms in I2, I4 are dominated by the
previous two terms, see (3.13) and (3.14). On the other hand, since η > R0 ≥ R1 + σ , then
we conclude that ξ = η − σ(1 − e−βt ) > R1. Therefore, by (3.9), we obtain

1 − ν < �(ξ),�(ξ) < 1, for ξ > R1.

As a result, I2, I4 can be estimated by

I2(t) ≤ (−1 + 2ν)ρ1 + kρ2,

I4(t) ≤ rhνρ1 + r(1 − h + hν)ρ2.
(3.19)

Furthermore, by (3.16), we get

I2(t) ≤ (−1 + 2ν)ρ1 + kρ2

≤ q((−1 + 2ν)φ+
1 + kφ+

2 ) + μ(1 − 2ν + k)

= qλ+φ+
1 + μ(1 − 2ν + k)

and

I4(t) ≤ rhνρ1 + r(1 − h + hν)ρ2

≤ q(rhνφ+
1 + r(1 − h + hν)φ+

2 ) + r(h − 1)μ

= qλ+φ+
2 + r(h − 1)μ.

Consequently, by the definition of β in the lemma and μ in (3.15), we have

N j (t) ≤ −σe−βt {β�′(ξ) + δ[(−β − λ+)qφ+
1 − (|c| + 3 + k + β − 2ν)μ]}

< −σδe−βt {βqφ+
1 − (|c| + 3 + k + β − 2ν)μ}

≤ 0

(3.20)
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and

Mj (t) ≤ −σe−βt {β� ′(ξ) + δ[(−β − λ+)p+φ+
2 − (β + |c| + 2d)μ − r(h − 1)μ]}

< −σδe−βt {βqφ+
2 − (|c| + β + h + 2d − 1)μ}

≤ 0.

(3.21)

Case (ii) when η < −R0, in a similar way to case (i), we can get

I1 ≥ −β pφ−
1 − (β + |c| + 2)μ,

I3 ≥ −β pφ−
2 − (β + |c| + 2d)μ.

(3.22)

Moreover, a direct calculation leads to

I2(t) ≤ (1 − k + kν)ρ1 + kνρ2

≤ p((1 − k + kν)φ−
1 + kνφ−

2 ) + μ(k − 1)

= pλ−φ−
1 + μ(k − 1)

(3.23)

and

I4(t) ≤ rhρ1 + r(2ν − 1)ρ2

≤ p(rhφ−
1 + r(2ν − 1)φ−

2 ) + r(h + 1 − 2ν)μ

= pλ−φ−
2 + r(h + 1 − 2ν)μ.

(3.24)

Equations (3.22), (3.23) combined with (3.24) and (3.15) yield

N j (t) ≤ −σδe−βt {β pφ−
1 − (|c| + 1 + k + β − 2ν)μ} ≤ 0,

Mj (t) ≤ −σδe−βt {β pφ−
2 − (|c| + β + rh + 2d + r − 2rν)μ} ≤ 0.

(3.25)

Case (iii) In this case, because of 0 < ρ+
1 ≤ 1 and |(ρ+

1 )′| ≤ 1,we have I1 ≥ −(|c|+β+2)
and I3 ≥ −(|c| + β + 2d). Additionally, it is easy to see that

I2 ≤ 2M, M = max{k, rh}.
Hence, we have the following two estimations

N j (t) ≤ −σe−βt {β�′(ξ) − δ(|c| + β + 2 + 2M)}
< −σe−βt {βκ − δ(|c| + β + 2 + 2M)},

Mj (t) ≤ −σe−βt {β� ′(ξ) − δ(|c| + β + 2d + 2M)}
< −σe−βt {βκ − δ(|c| + β + 2d + 2M)}.

(3.26)

The desired inequality N j (t), Mj (t) < 0 follows directly from the definition of δ. Thus, by
(3.20), (3.21), (3.25) and (3.26), we have proved that N j (t), Mj (t) ≤ 0 on the whole line,
which implies that (u−

j (t), v−
j (t)) is a lower solution. The proof is complete. 
�

The following two results are concerned with the comparison between the speed of an
upper solution (or a lower solution) and c (the speed of the bistable traveling wave solution).
To be exact, we have

Theorem 3.5 If there exists a non-negative and non-decreasing upper solution (�,�)(z)
with speed c < 0 for the system (1.6), satisfying

(�,�)(−∞) < (1, 1), (�,�)(∞) ≥ (1, 1), (3.27)
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then

c ≤ c < 0.

Proof For the system (1.4), we can choose a pair of continuous and non-decreasing functions
(φ, ψ) as the initial function which satisfies

(φ j , ψ j )(0) = (0, 0), for j < −M; (φ j , ψ j )(0) = (1 − δ, 1 − δ), for j > M .

Here M is a positive number, and δ ∈ (0, 1) is a sufficient small number. By shifting if it is
necessary, we can always suppose that

φ j (0) ≤ �( j), ψ j (0) ≤ �( j).

By the comparison principle, we have

�( j + ct) ≥ φ j (t), �( j + ct)) ≥ ψ j (t), (3.28)

for all t ≥ 0. On the other hand, we have shown in Lemma (3.4) that (u−
j (t), v−

j (t)) forms a
lower solution to the system (1.4). This implies

φ j (t) ≥ �( j + ct + ξ− − σ(1 − e−βt )) − σδe−βtρ1( j + ct + ξ−). (3.29)

From the assumption (3.27), we know that there exists a number γ such that �(γ ) < 1. To
the contrary, if c > c, then on the line γ = j + ct , it follows from (3.28) and (3.29) that

�(γ ) = �( j + ct) ≥ �( j + ct + (c − c)t + ξ− − σ(1 − e−βt ))

− σδe−βtρ1( j + ct + ξ−)

≥ �( j + ct + (c − c)t + ξ− − σ(1 − e−βt )) − σδe−βt ,

(3.30)

which gives a contradiction as �(γ ) ≥ 1, for t → ∞. Hence, we have c ≤ c. The proof is
complete. 
�

Analogous to Theorem 3.5, we arrive at a similar theorem below.

Theorem 3.6 If there exists a non-negative and non-decreasing lower solution (�,�)(z)
with speed c > 0 for the system (1.6) such that

(�,�)(−∞) = (0, 0) < (�,�)(∞) ≤ (1, 1).

Then we have

c ≥ c > 0.

For later use, we need to analyze the eigenvalue problem of the system (1.6). Firstly, the
characteristic equation of the �-equation near o is given by

�1(μ) := (eμ + e−μ − 2) − cμ + (1 − k) = 0.

By the concavity of �1(μ) as well as �1(−∞) > 0, �1(∞) > 0 and �1(0) = 1 − k < 0, it
can be shown that there always exist two zeros for the function �1(μ) for any given c: the
positive zero μ1(c), and the negative one μ2(c).

Additionally, the characteristic equation of the �-equation near β is given by

�2(μ) := d(eμ + e−μ − 2) + cμ − r(h − 1) = 0.
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Similar to the discussion on �1(μ), it is easy to see that the equation �2(μ) = 0 has two
different roots, which are denoted byμ3(c) for the positive one, and byμ4(c) for the negative
one.

Based on the above analysis, now we proceed to establish some criteria for the determi-
nation of the speed sign.

First we define (�,�)(z) as follows. Let

�(z) = 1

1 + e−μ1(−ε)z
,with 0 < ε 
 1, (3.31)

and �(z) be a solution to the �-equation, whose existence is ensured by Lemma 3.2 (1).

Corollary 3.7 The speed c of the bistable travelingwave solution of (1.6) satisfies c ≤ −ε < 0
provided that

− 2(k − 1) + kY1(z) + (k − 1)2

k + 3 + 2
√
k + 3

< 0, where Y1(z) = � − �

�
(
1 − �

) . (3.32)

Proof By substituting the pair of functions (�,�)(z) into the �-equation, we have

D2[�] + ε�
′ + �(1 − k − � + k�)

= �
2 (

1 − �
) [

−2(eμ1 + e−μ1 − 2) + k
� − �

�
(
1 − �

) + (eμ1 + e−μ1 − 2)2R1(�)

]
,

where

R1(�) := e−μ1z(1 − e−μ1z)

1 + e−μ1z(eμ1 + e−μ1) + e−2μ1z
. (3.33)

In the above derivation, the equality (eμ1 +e−μ1 −2)+εμ1+(1−k) = 0 and the relationship
�

′ = μ1�(1 − �) have been used. In addition, the maximum of R1(�) can be deduced
directly and is given by χ := 1

τ+4+2
√

τ+4
where τ = eμ1 + e−μ1 −2. Moreover, as ε → 0+,

it can be seen that eμ1 + e−μ1 − 2 → k − 1. As ε can be taken sufficiently small, (3.32)
implies that (�,�) is an upper solution. As a result of Theorem 3.5, the proof is complete.


�

Similarly by redefining

�(z) = 1

1 + e−μ3(−ε)z
, with 0 < ε 
 1,

and �(z) as the solution to the �-equation (see Lemma 3.2 (2)), we have the following
corollary.

Corollary 3.8 The speed c of the bistable travelingwave solution of (1.6) satisfies c ≤ −ε < 0
provided that

2(h − 1) + hY2(z) + r(h − 1)2

d
< 0, where Y2(z) = � − �

�
(
1 − �

) . (3.34)

123

Author's personal copy



Journal of Dynamics and Differential Equations

Proof We first work on the second-order centre difference operator. In fact, by denoting
μ3(−ε) by μ3 for short, we have

D2[�] = �(z + 1) + �(z + 1) − 2�(z)

= 1

1 + e−μ3(z+1)
+ 1

1 + e−μ3(z−1)
− 2

1

1 + e−μ3z

= �(1 − �)
(eμ3 + e−μ3 − 2)(e−μ3z − 1)(e−μ3z + 1)

(1 + e−μ3(z+1))(1 + e−μ3(z−1))
.

Due to �
′ = μ3�(1 − �), it follows that

dD2[�] + ε�
′ + r(1 − �)(h� − �)

= �(1 − �)[d(eμ3 + e−μ3 − 2)(1 − 2�) + εμ3 − r + rh
�

�

+ d(eμ3 + e−μ3 − 2)2(1 − �)R2(�)],
where

R2(�) := (1 + e−μ3z)(1 − e−μ3z)

1 + e−μ3z(eμ3 + e−μ3) + e−2μ3z
.

The replacement of R2(�) by its maximum (which is 1) leads to

dD2[�] + ε�
′ + r(1 − �)(h� − �)

≤ �(1 − �)2

[
2d(eμ3 + e−μ3 − 2) + rh

� − �

�
(
1 − �

) + d(eμ3 + e−μ3 − 2)2
]

.

(3.35)

As ε → 0+, it can be obtained directly from�2(μ3) = 0 that eμ3 +e−μ3 −2 → r(h−1)
d . This,

together with (3.34) and (3.35) implies that (�,�) is an upper solution. By Theorem 3.5,
the proof is complete. 
�

Next, we are going to provide two corollaries from which one can derive that the speed
sign is positive.

Let

�(z) = p

1 + e−μ1(ε)z
, and �(z) be the function determined by Lemma 3.2 (1),

where 0 < ε 
 1 and p ∈ ( 1h , 1). By this choice of (�,�), we have

Corollary 3.9 The speed c of the bistable traveling wave solution of (1.6) satisfies c ≥ ε > 0
provided that

− 2(k − 1) + kY3(z) − (k − 1)2 > 0, where Y3(z) =
� − �

(
k−1+p

kp

)
�
p

(
1 − �

p

) . (3.36)

Proof A substitution of (�,�)(z) into the �-equation leads to

D2[�] − ε�′ + �(1 − k − � + k�)

= �2

p

(
1 − �

p

) ⎛
⎝−2(eμ1 + e−μ1 − 2) + k

� − �
(
k−1+p

kp

)
�
p

(
1 − �

p

) + R3(�)

⎞
⎠ ,
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where R3(�) is the same as the function R1(�) in (3.33), but with μ1(−ε) replaced by
μ1(ε). The fact that the minimum of R3(�) is −1 combined with the relationship �′ =
μ1�

(
1 − �

p

)
shows that

D2[�] − ε�′ + �(1 − k − � + k�)

>
�2

p

(
1 − �

p

)
⎛
⎝−2(eμ1 + e−μ1 − 2) + k

� − �
(
k−1+p

kp

)
�

p

(
1 − �

p

) − (eμ1 + e−μ1 − 2)2

⎞
⎠ .

(3.37)

The above formula (3.37), along with (3.36), implies that (�,�)(z) is a lower solution, as
long as ε is sufficiently small. By Theorem 3.6, the proof is complete. 
�
Remark 3.10 When p = 1, we have

Y3(z) = � − �

�
(
1 − �

) .

Let �(z) = 1
1+e−μ3(ε)z , 0 < ε 
 1, and �(z) be the corresponding solution for the

�-equation (see Lemma 3.2 (2)). Then we have

Corollary 3.11 The speed c of the bistable travelingwave solution of (1.6) satisfies c ≥ ε > 0,
provided that

2(h − 1) + hY4(z) − χ̄r(h − 1)2

d
> 0, where Y4(z) = � − �

�
(
1 − �

)
and

χ̄ =
(
r(h − 1)

d
+ 4 + 2

√
r(h − 1)

d
+ 4

)−1

.

For the proof of Corollary 3.11, we omit it here, since it follows from the similar discussion
as Theorem 3.6 and Corollary 3.9.

4 Explicit formulas for the wave speed sign

In this section, we provide explicit conditions on the determination of the direction of the
bistable traveling wave via the construction of suitable upper or lower solutions to the system
(1.6).

Theorem 4.1 For fixed parameters k, h, d and r, the speed of the bistable traveling wave of
(1.6) is negative if

1 <
rh

r + d(1 − k)
<

k − 1

k
[2 − χ(k − 1)] , (4.1)

where χ = (k + 3 + 2
√
k + 3)−1.
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Proof Let � be the function defined in (3.31), namely, �(z) = 1
1+e−μ1(−ε)z , and meanwhile

redefine �(z) as

�(z) = min{1, p1�(z)} =
{
1, z > z1,
p1�, z ≤ z1,

where z1 is the unique root of p1�(z) = 1 for some p1 > 1. By virtue of condition (4.1),
we can choose p1 to satisfy

1 <
rh

r + d(1 − k)
< p1 <

k − 1

k
[2 − (k − 1)χ] . (4.2)

When z ≥ z1 + 1, we have �(z) ≡ 1 and

dD2[�] + ε�
′ + r(1 − �)(h� − �) = 0.

When z1 ≤ z < z1 + 1, we have

dD2[�] + ε�
′ + r(1 − �)(h� − �) = d(p1�(z − 1) − 1) < 0.

When z1 − 1 ≤ z < z1, it is easy to see that p1�(z + 1) ≥ 1, hence

dD2[�] + ε�
′ + r(1 − �)(h� − �)

= d
(
1 + p1�(z − 1) − 2p1�(z)

) + ε�
′ + r(1 − �)(h� − �)

= dp1
(
�(z + 1) + �(z − 1) − 2�(z)

) + ε�
′ + r(1 − �)(h� − �)

+ d(1 − p1�(z + 1))

≤ dp1
(
�(z + 1) + �(z − 1) − 2�(z)

) + ε�
′ + r(1 − �)(h� − �).

(4.3)

When z < z1 − 1, we obtain

dD2[�] + ε�
′ + r(1 − �)(h� − �)

= dp1
(
�(z + 1) + �(z − 1) − 2�(z)

) + ε�
′ + r(1 − �)(h� − �).

(4.4)

Thus, when z < z1, (4.3) and (4.4) enable us to deal with the �-equation in a unified way.
More precisely, we get

dD2[�] + ε�
′ + r(1 − �)(h� − �)

≤ �(1 − �)

{
dp1τ(1 − 2�) + ε p1μ1 + r(h − p1)

1 − p1�

1 − �
+ dp1τ

2χ�

}

:= �(1 − �)F(�).

Here τ = eμ1 + e−μ1 − 2, and χ = (τ + 4 + 2
√

τ + 4)−1. By noticing τ → k − 1, as
ε → 0+, we rewrite F(�) in the form of

F(�) = dp1(k − 1)(1 − 2�) + r(h − p1)
1 − p1�

1 − �
+ dp1(k − 1)2χ�.

It is easy to check that F ′′(�) > 0. Furthermore, by (4.2), one can show immediately that
F(1/p1) = d(k − 1)(p1 − 2 + (k − 1)χ) < 0 and F(0) = dp1(k − 1) + r(h − p1) < 0.
Hence, we have

dD2[�] + ε�
′ + r(1 − �)(h� − �) < 0, for z ∈ R. (4.5)
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For the �-equation, by the estimation

Y1(z) =
{

1
�

≤ p1, when z > z1,
p1−1
1−�

≤ p1, when z ≤ z1,

and the condition (4.2), we conclude that −2(k − 1) + kp1 + χ(k − 1)2 ≤ 0. This together
with (4.5) ensures that (�,�) is an upper solution to the system (1.6). Then by Corollary 3.7,
we finish the proof. 
�

Since the sign of the speed of bistable wavefront to be negative is dependent on the choice
of upper solutions, we may construct different upper solutions to produce different sufficient
conditions. For example, we let

�(z) = 1

1 + e− 1
2μ1(−ε)z

, where 0 < ε 
 1,

which is a solution to the following differential equation

� ′ = 1

2
μ1�(1 − �).

Here, we use μ1 := μ1(−ε) for short. We further set � = �2, which satisfies

�′ = μ1�
(
1 − �

1
2

)
, �(−∞) = 0, �(∞) = 1.

Now, we are going to give an estimation of D2[�]. To this end, we first rewrite D2[�] as

D2[�] = τ�
(
1 − �

1
2

)(
1 − 3

2
�

1
2

)
+ R(x,�),

where

R(x,�) = τ�(1 − �
1
2 )�

1
2 g(x),

with

g(x) = a1 + a2x + a3x2 + a4x3 + a5x4

1 + 2
√

τ + 4x + (τ + 6)x2 + 2
√

τ + 4x3 + x4
,

where a =
√

τ+4−2
τ

, e
1
2μ1z = x and

a1 = −2a + 1

2
, a2 = a2τ − 4a − 1 + √

τ + 4, a3 = 2a2τ + 6 − 4a − 2
√

τ + 4 + τ

2
,

a4 = a2τ − 4a − τ − 1 + √
τ + 4, a5 = 9

2
− 2a − 2

√
τ + 4.

The maximum of g(x), x ∈ (0,+∞) can be deduced through a direct calculation and if it is
denoted by �, then D2[�] can be estimated by

D2[�] ≤ τ�
(
1 − �

1
2

) (
1 − 3

2
�

1
2

)
+ τ��

(
1 − �

1
2

)
�

1
2 . (4.6)

On the basis of the above analysis, we arrive at the following theorem.
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Theorem 4.2 For fixed parameters k, h, d and r, the speed of the bistable traveling wave
connecting o and β is negative provided that 5 − 3k + 2(k − 1)� ≤ 0 (here, � is the limit
of � as ε → 0+), and one of the following conditions is satisfied,

dδ < r <
dδ(

√
δ + 4 + 2)2

h(δ + 4 + 4
√

δ + 4)
, (4.7)

or

dδ(
√

δ + 4 + 2)2

h(δ + 4 + 4
√

δ + 4)
≤ r <

dδ(4 + 2
√

δ + 4)

(h − 1)(δ + 4 + 2
√

δ + 4)
, (4.8)

where

δ = √
k + 3 − 2.

Proof By virtue of (4.6), substituting (�,�) into the�-equation and the�-equation respec-
tively leads to

D2[�] − ε�′ + �(1 − k − � + k�)

≤ ��
1
2 (1 − �

1
2 )

(
−3

2
τ − εμ1�

− 1
2 + 1 + τ�

)
, (4.9)

and

dD2[�] − ε� ′ + r(1 − �)(h� − �)

≤ �(1 − �)

[
dτ1 + 1

2
εμ1 − r + (−2dτ1 + rh + dχ1τ

2
1 )�

]
,

(4.10)

where

τ1 = √
τ + 4 − 2, χ1 = 1

τ1 + 4 + 2
√

τ1 + 4
.

Let ε → 0+, we have τ → k − 1. The right expression of (4.9) is negative follows
naturally from the assumption, while the last expression of (4.10) is negative follows from
(4.7) and (4.8). This implies that the pair of function (�,�) is an upper solution to system
(1.6). By Theorem 3.5 and Corollary 3.7, the proof is thus complete. 
�

Next, we shall apply Corollary 3.9 to establish sufficient conditions for the speed of the
bistable traveling wave solution to be positive.

Theorem 4.3 For fixed parameters k, h, d and r, the speed of the bistable traveling wave of
(1.6) is positive provided that

1 <
k

1 − r(h−1)
d − r2(h−1)2

d2

< min

{
2d + r(h − 1)

d + r(h − 1)
,
1

h

[
2(h − 1) − χ̄r(h − 1)2

d

]}
,

(4.11)

where

χ̄ =
(
r(h − 1)

d
+ 4 + 2

√
r(h − 1)

d
+ 4

)−1

.
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Proof In view of the condition (4.11), one can take the constant p2 to satisfy

1 <
k

1 − r(h−1)
d − r2(h−1)2

d2

< p2

< min

{
2d + r(h − 1)

d + r(h − 1)
,
1

h

[
2(h − 1) − χ̄r(h − 1)2

d

]}
.

(4.12)

As in Corollary 3.11, we choose �(z) = 1
1+e−μ3(ε)z with 0 < ε 
 1, and redefine � by

� =
{
0, when z ≤ z2,
1 − p2�(−z), when z > z2,

where z2 is the root of the equation 1− p2�(−z) = 0. By the definition of�(z), the following
two relations are not hard to verify, one is �(z) = 1 − �(−z), and another one is

� ′(z) = μ3�(z)(1 − �(z)).

Moreover, we have the estimation for the term D2[�], that is
D2[�] > τ̃�(1 − �)

(
1 − 2� − τ̃�

)
, for all z ∈ R.

Here τ̃ = eμ3 + e−μ3 − 2.
Because� is a piecewise function, we need to divide our discussion into four cases.When

z ≤ z2 − 1, � ≡ 0, hence

D2[�] − ε�′ + �(1 − k − � + k�) = 0.

When z2 − 1 < z ≤ z2, we obtain

D2[�] − ε�′ + �(1 − k − � + k�) = 1 − p2�(−(z + 1)) > 0.

When z2 < z ≤ z2 + 1, we have

D2[�] − ε�′ + �(1 − k − � + k�)

= �(z + 1) − 2�(z) − ε�′ + �(1 − k − � + k�)

≥ �(z + 1) + (1 − p2�(−(z − 1))) − 2�(z) − ε�′ + �(1 − k − � + k�).

When z > z2 + 1, we get

D2[�] − ε�′ + �(1 − k − � + k�)

= �(z + 1) + (1 − p2�(−(z − 1))) − 2�(z) − ε�′ + �(1 − k − � + k�).

Therefore, we can handle the case z2 < z ≤ z2 + 1 and z > z2 + 1 in a unified way.
Furthermore, when z > z2, we have � = 1− p2 + p2�. Substituting it into the �-equation
gives

D2[�] − ε�′ + �(1 − k − � + k�)

≥ (1 − �)
[̃
τ p2�(1 − 2�) − εμ3 p2� + (p2 − k)(1 − p2 + p2�) − τ̃ 2 p2�

2]
:= (1 − �)G(�).

Since τ̃ tends to r(h−1)
d for sufficient small ε, it is easy to calculate that

G(1) =
(
1 − r(h − 1)

d
− r2(h − 1)2

d2

)
p2 − k
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and

G

(
p2 − 1

p2

)
= (p2 − 1)

r(h − 1)

d

(
2 − p2
p2

− r(h − 1)(p2 − 1)

dp2

)
.

By making use of (4.12), one can show that G(1) > 0 and G(
p2−1
p2

) > 0. This together with
G ′′(�) < 0 implies

D2[�] − ε�′ + �(1 − k − � + k�) > 0, for z > z2.

When z > z2, we deal with the �-equation in a similar way. Indeed, we have

dD2[�] − ε� ′ + r(1 − �)(h� − �)

≥ r�(1 − �)2

[
2(h − 1) + h

� − �

�
(
1 − �

) − χ̄r(h − 1)2

d

]

≥ 0

(4.13)

due to the right inequality of (4.12), that is, p2 < 1
h

[
2(h − 1) − χ̄r(h−1)2

d

]
. For another case

z ≤ z2, and the same inequality for the �-equation holds by a similar derivation to (4.13).
The above discussion implies that (�,�) is a lower solution to (1.6). Thus, the proof is
complete by Theorem 3.6 and Corollary 3.11. 
�
Theorem 4.4 For fixed parameters k, h, d and r, the speed of the bistable traveling wave is
positive provided that

r + d(k − 1) + χd(k − 1)2

hr
< 3 − 2k − (k − 1)2. (4.14)

Proof Here, to construct a lower solution, we choose

� = p3
1 + e−μ1(ε)z

, � = �

p3
, (4.15)

where 0 < ε 
 1. Additionally, according to (4.14), one can take p3 so that

r + d(k − 1) + χd(k − 1)2

hr
< p3 < 3 − 2k − (k − 1)2. (4.16)

We first substitute (4.15) into (3.36) to obtain

−2(k − 1) + kY3(z) − (k − 1)2 = −2(k − 1) + 1 − p3

1 − �

p3

− (k − 1)2.

Notice 0 < � < p3 and use the right inequality of (4.16) to get

− 2(k − 1) + kY3(z) − (k − 1)2 ≥ −2(k − 1) + 1 − p3 − (k − 1)2 > 0. (4.17)

Inequality (4.17) indicates that

D2[�] − ε�′ + �(1 − k − � + k�) > 0. (4.18)

In addition, a substitution of (4.15) into the�-equation together with an estimation ofD2[�]
gives

dD2[�] − ε� ′ + r(1 − �)(h� − �)

≥ �(1 − �)[dτ(1 − 2�) − εμ1 − r + rhp3 − χdτ 2�].
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Since τ → k − 1 as ε → 0+, it is sufficient to prove

dD2[�] − ε� ′ + r(1 − �)(h� − �)

≥ �(1 − �)(−r − d(k − 1) − χd(k − 1)2 + rhp3)

≥ 0,

(4.19)

which is true by the first inequality of (4.16). Equations (4.18) and (4.19) imply that (�,�)

is a lower solution to (1.6). By Theorem 3.6 and Corollary 3.9, the proof is complete. 
�

5 Conclusion and discussion

The sign of the bistable wavefront speed to the lattice (discrete) system (1.1) was investi-
gated in this paper via the upper–lower solution method. Although we employed the idea
developed in [1,2] to reduce the coupled system (1.6) to a scalar non-local equation by way
of abstractly solving the �-equation and the �-equation (the latter is not required in the
above two mentioned references, but we need it), the existence of the second-order differ-
ence operator makes the overall analysis quite different and even difficult than those in [1,2].
We gave an interval estimation for the bistable speed firstly, then two comparison principles
were finally established to produce new conditions on the determinacy of the sign of the
bistable speed. To our knowledge, this was the first investigation to the lattice system (1.1)
for the propagation direction.

In the continuous version of system (1.2), by re-scaling the original variables t and x and
reversing the roles of u and v, one can find that there exists a symmetry property for the
bistable wave speed as

c(d, r , k, h) = −√
drc

(
1

d
,
1

r
, h, k

)
,

which implies we can obtain dual conditions for the speed sign by replacing d, r , k and h by
1
d , 1

r , h and k, see [22]. However, such an interesting symmetry property does not hold for
the discrete system (1.1). To see this, it follows from (4.1) that the range of k, h, r and d is
given equivalently by

k ∈
(
2.1328, 1 + r

d

)
, h ∈ (1, 2), r > d. (5.1)

Here, the number 2.1328 is the approximation of the unique root of the equation

k − 1

k

(
2 − k − 1

k + 3 + 2
√
k + 3

)
= 1.

Hence, for fixed r , d and k satisfying (5.1), the speciesU fails towin the competition provided
that its competitiveness h is relatively weaker and is bounded by

h <
k − 1

k

(
2 − k − 1

k + 3 + 2
√
k + 3

) (
1 + d(1 − k)

r

)
.

From (4.11), we can find that, when h = 5, r = 0.5 and d = 9, the species U wins the
competition provided that k < 1.0877. This result cannot be derived by the symmetry.
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