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ABSTRACT
This work deals with the speed sign of travelling waves to the Lotka-
Volterra model with diffusion and bistable nonlinearity. We obtain
new conditions for the determinacy of the sign of the bistable wave
speedby constructingupperor lower solutionswith an insideparam-
eter to be adjusted. The established conditions improve or supple-
ment the results in the references and give insight into the combined
effect of system parameters on the propagation direction of the
bistable wave.
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1. Introduction

We study the diffusive Lotka-Volterra competitive model

φt = d1φxx + r1φ(1 − b1φ − a1ϕ),

ϕt = d2ϕxx + r2ϕ(1 − a2φ − b2ϕ),
(1)

where φ(x, t) and ϕ(x, t) are the population densities at time t and spatial coordinate x
of species φ and ϕ, respectively; di, ri, ai and bi, i = 1, 2 are positive constants. Among
them, d1 and d2 denote diffusion coefficients, r1 and r2 represent net birth rates, and 1/b1
and 1/b2 are carrying capacities of φ and ϕ, respectively. a1 and a2 measure competition
strength of ϕ and φ, respectively. For the biological interpretation of this model, we refer
the reader to [16,18]. By selecting dimensionless variables

x̄ =
√
r1/d1x, t̄ = r1t, φ̄ = b1φ, ψ̄ = b2ψ ,

we rewrite (1) in a dimensionless form and drop the upper bars on the variables to have a
new system below

φt = φxx + φ(1 − φ − a1ϕ),
ϕt = dϕxx + rϕ(1 − a2φ − ϕ), (2)
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where

d = d2/d1, r = r2/r1, a1/b2
def= a1, a2/b1

def= a2. (3)

Moreover, by setting u = φ and v = 1 − ϕ, we have a cooperative system of the form

ut = uxx + u(1 − a1 − u + a1v),

vt = dvxx + r(1 − v)(a2u−v)
(4)

with initial data

u(x, 0) = φ(x, 0), v(x, 0) = 1 − ϕ(x, 0), ∀ x ∈ R.

Obviously, system (4) is monotone with respect to initial data in the phase space
C(R,R+)× C(R,R+).

In the monostable case (i.e. 0 < a1 < 1 < a2), travelling wave solutions of system (4)
have been extensively investigated, for example, see [1,2,6–9–10,12,14,15,18–20] and the
references therein; while for the bistable case where

a1 > 1 and a2 > 1, (5)

the travelling wavefront for this model has been studied in [3–5,11,13]. Particularly, the
existence and stability was discussed in Conley and Gardner [3] and Gardner [4], and
the uniqueness and parameter dependence of the bistable wave speed was proved in Kan-
on [13]. Recently, Ma et al. in [17] investigated the sign of the bistable wave speed. They
proved that the bistable speed is bounded via the spreading speeds of monostable travel-
ling waves induced by the system (2), established comparison theorems on wave speed,
obtained explicit conditions for determining the wave speed sign, and derived an identity

c(d, r, a1, a2) = −
√
dr c

(
1
d
,
1
r
, a2, a1

)
. (6)

Based on these results, they established new theorems on several cases (including the cases
where a1 or a2 is close to 1) that could not be dealt with in [5] or [12].

Due to the assumption (5), system (4) has four non-negative constant equilibria

o = (0, 0), α1 = (0, 1), α2 =
(

a1 − 1
a1a2 − 1

,
a2(a1 − 1)
a1a2 − 1

)
and β = (1, 1).

Furthermore, for the kinetic system

u′ = u(1 − a1 − u + a1v),

v′ = r(1 − v)(a2u − v),
(7)

equilibria o andβ are stable, whileα1 andα2 are unstable.Abistable travelling wave solution
of (4), which connects o to β , is given by

u(x, t) = U(z), v(x, t) = V(z), z = x + ct,

(U,V)(−∞) = o, (U,V)(∞) = β ,
(8)

where (U,V) is called the wavefront, z is the wave variable and c ∈ R is called the bistable
wave speed. Thewave profile (U,V)(z) satisfies the following systemof ordinary differential
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equations:

U ′′ − cU ′ + U(1 − a1 − U + a1V) = 0,

dV ′′ − cV ′ + r(1 − V)(a2U − V) = 0.
(9)

The sign of the bistable wave speed indicates the propagation direction of the bistable trav-
elling wave solution. Hence it predicts which stable state has an advantage over another
one and thus the outcome of competition between two species. Specifically, for model (2),
if c>0, then the bistable travelling wave spreads to the left, and the species φ will be the
winner; otherwise, the species ϕ will win the competition. In [17], the authors obtained
the following explicit conditions for the speed sign of the bistable travelling wave.

Lemma 1.1 (Theorems 4.1–4.4 in [17]): Let the parameters a1, a2, d and r be fixed. Then
the bistable wave speed of (4) is positive provided that one of the following conditions is
satisfied:

(P1) 1 < da1/d − r(a2 − 1) < 2(a2 − 1)/a2;
(P2) (r + d(a1 − 1))/ra2 < 3 − 2a1.

The bistable wave speed of (4) is negative if one of the following statements is true:

(N1) 1 < a2r/(r − d(a1 − 1)) < 2(a1 − 1)/a1;
(N2) a1 > 5/3, 1 < a2 < 2, and either

d(a1 − 1)
4

< r <
d(a1 − 1)

2a2
, (10)

or

d(a1 − 1)
2a2

< r <
d(a1 − 1)
4(a2 − 1)

. (11)

The purpose of this paper is to improve or supplement the results established in [17] by
way of constructing novel upper or lower solutions and developing analytical techniques.
Our presentation of this effort to determine the sign of the bistable wave speed can be
summarized as follows: In Section 2, we introduce definitions, lemmas and decay rates at
infinity of the bistable travelling wave which will be used later. Our main results and their
proofs are presented in Section 3. Conclusion and discussion of how our results improve
and perfect Lemma 1.1 are given in Section 4.

2. Preliminaries

We first give the definitions of upper solutions and lower solutions of system (9).

Definition 2.1: A pair of continuous functions (U(z),V(z)) is an upper solution to sys-
tem (9) means that (U(z),V(z)) is twice-differentiable on R except at finite number of
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points zi, i = 1, . . . , n and satisfies

U ′′ − cU ′ + U(1 − a1 − U + a1V) ≤ 0, U(−∞) ≥ 0,U(∞) ≥ 1,

dV ′′ − cV ′ + r(1 − V)(a2U − V) ≤ 0, V(−∞) ≥ 0,V(∞) ≥ 1,
(12)

for z 	= zi, and U ′−(zi) ≥ U ′+(zi) and V ′−(zi) ≥ V ′+(zi) for all zi.
A lower solution to system (9) can be defined by reversing all the above inequality signs.

The following two comparison theorems on the wave speed to system (9) were proved
in [17].

Lemma 2.2 (Theorem 3.1 in [17]): If system (9) has a non-negative and non-decreasing
upper solution (U(z),V(z)) with speed c < 0, satisfying

(U,V)(−∞) < (1, 1), (U,V)(∞) ≥ (1, 1),

then the wave speed of the bistable travelling wave solution of (4) is negative, i.e.

c ≤ c < 0. (13)

Lemma 2.3 (Theorem 3.2 in [17]): If system (9) has a non-negative and non-decreasing
lower solution (U,V)(x + ct) with speed c > 0, satisfying

(U,V)(−∞) = (0, 0) < (U,V)(∞) ≤ (1, 1),

then the wave speed of the bistable travelling wave solution of (4) is positive, i.e.

c ≥ c > 0. (14)

In order to look for upper/lower solutions of system (9) in the shape of the bistable
travelling wave, we compute the decay rate μ of the bistable travelling wave as z → −∞ by
linearizing system (4) at the equilibrium o. Then μ satisfies characteristic equation

μ2 − cμ+ (1 − a1) = 0,

which has two roots

μ1 = c +
√
c2 + 4(a1 − 1)

2
def= μ1(c) > 0 and

μ2 = c −
√
c2 + 4(a1 − 1)

2
def= μ2(c) < 0. (15)

Similarly, the decay rate μ of the bistable travelling wave near β as z → ∞ satisfies the
characteristic equation

dμ2 + cμ+ r(1 − a2) = 0,

which has solutions

μ3 = −c −
√
c2 + 4dr(a2 − 1)

2d
def= μ3(c) < 0 and

μ4 = −c +
√
c2 + 4dr(a2 − 1)

2d
def= μ4(c) > 0. (16)
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Therefore, μ1(c) and μ4(c) are the decay rates near o and β , respectively. Moreover, μ1(c)
is increasing and μ4(c) is decreasing in c ∈ R.

3. Main result and its proof

We first establish conditions for the positive wave speed, under which the bistable trav-
elling wave solution will spread to the left. This means that the species φ will survive in
competition.

Theorem 3.1: Let parameters a1, a2, d and r be fixed and a2 > 2. If there exists an integer
m ≥ 2 such that

1 < a1 < 1 + m
(m − 1)(2m − 1)

, (17)

and either

2d(a1 − 1)
a2

(m − 1)2

m2 < r < d(a1 − 1)
(m − 1)2

m2 , (18)

or

d(a1 − 1)
a2 − 1

(m − 1)2

m2 < r <
2d(a1 − 1)

a2
(m − 1)2

m2 , (19)

then the bistable wave speed of (4) is positive.

Proof: Let U be a solution of the boundary value problem

U ′ = μ1(c)U(1 − U(m−1)/m), 4̧ U(−∞) = 0, U(∞) = 1

andV = U(m−1)/m, where c = ε, 0 < ε � 1. If (U,V) can be proved to be a lower solution
of (9), then, by Lemma 2.3, we have the desired result.

Indeed, by a computation, we have

U ′′ = μ2
1(c)U

(
1 − U(m−1)/m

)(
1 − 2m − 1

m
U(m−1)/m

)

and

V ′ = m − 1
m

μ1(c)V(1 − V), V ′′ =
(
m − 1
m

)2
μ2
1(c)V(1 − V)(1 − 2V).
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Substituting these expressions into system (9), and by notice of the fact that μ1(c) →√
a1 − 1 as ε → 0, letting ε → 0, by conditions (17)–(19), we have that

U ′′ − cU ′ + U(1 − a1 − U + a1V)

= U
(
1 − U(m−1)/m

) [
μ2
1(c)− cμ1(c)+ (1 − a1)− 2m − 1

m
μ2
1(c)U

(m−1)/m

+U(m−1)/m(1 − U1/m)

1 − U(m−1)/m

]

= U(2m−1)/m(1 − U(m−1)/m)

[
−2m − 1

m
μ2
1(c)+ (1 − U1/m)

1 − U(m−1)/m

]

= U(2m−1)/m(1 − U(m−1)/m)

[
−2m − 1

m
μ2
1(c)

+ 1
U(m−2)/m + U(m−3)/m + · · · + U1/m + 1

]

→ U(2m−1)/m(1 − U(m−1)/m)

[
−2m − 1

m
(a1 − 1)+ 1

m − 1

]
≥ 0,

and

dV ′′ − cV ′ + r(1 − V)(a2U − V)

= V(1 − V)

[
d
(
m − 1
m

)2
μ2
1(c)(1 − 2V)− cμ1(c)

m − 1
m

− r + ra2V1/(m−1)

]

≥ V(1 − V)

[
d
(
m − 1
m

)2
μ2
1(c)− r +

(
ra2 − 2d(m − 1)2μ2

1(c)
m2

)
V

]

→ V(1 − V)

[
d
(
m − 1
m

)2
(a1 − 1)− r +

(
ra2 − 2d(m − 1)2(a1 − 1)

m2

)
V

]
.

By this, if r > 2d(a1 − 1)(m − 1)2/a2m2, then we get

d
(
m − 1
m

)2
(a1 − 1)− r +

(
ra2 − 2d(m − 1)2(a1 − 1)

m2

)
V

≥ d
(
m − 1
m

)2
(a1 − 1)− r ≥ 0,

or if r < 2d(a1 − 1)(m − 1)2/a2m2, then it follows that

d
(
m − 1
m

)2
(a1 − 1)− r +

(
ra2 − 2d(m − 1)2(a1 − 1)

m2

)
V

≥ −d(a1 − 1)
(
m − 1
m

)2
+ r(a2 − 1) ≥ 0.

Then, byDefinition 2.1, when ε is sufficiently small, (U,V) is a lower solution of (9). Hence
the proof is complete. �
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It is easily observed that the upper bound of a1 is decreasing in m. Thus when m = 2,
the parameter a1 has a maximum range. We have

Corollary 3.2: The bistable wave speed of (4) is positive if a2 > 2, 1 < a1 < 5
3 and

d(a1 − 1)
2a2

< r <
d(a1 − 1)

4
,

or
d(a1 − 1)
4(a2 − 1)

< r <
d(a1 − 1)

2a2
.

The combination of Corollary 3.2 and (N2) explicitly shows that the competitive
coefficients of two species greatly affect the outcome of their competition.

Theorem 3.3: Fix system parameters a1, a2, d and r and let them satisfy

2r + 4d(a1 − 1)
ra2

< 3 − a1. (20)

Then the bistable wave speed is positive.

Proof: We first define a pair of functions (U,V)(z) by

U = k
1 + e−μ1(c)z

, V = 1 −
(
1 − U

k

)2

with c = ε, 0 < ε � 1, k ∈ (0, 1) to be determined and k ≥ U(z). By a simple computa-
tion, it follows that

U ′ = μ1(c)U
(
1 − U

k

)
, U ′′ = μ2

1(c)U
(
1 − U

k

)(
1 − 2U

k

)

and

V ′ = 2μ1(c)
U
k

(
1 − U

k

)2
, V ′′ = 2μ2

1(c)
U
k

(
1 − U

k

)2 (
1 − 3U

k

)
.

Substituting these expressions in the left-hand sides of the two equations of (9) and using
μ1(ε) = (ε +

√
ε2 + 4(a1 − 1))/2 → √

a1 − 1 as ε → 0+, when ε → 0, we have

U ′′ − cU ′ + U(1 − a1 − U + a1V)

= U
(
1 − U

k

)(
μ2
1(c)− cμ1(c)+ 1 − a1 − 2μ2

1(c)
U
k

+ a1V − (
1 + a1−1

k
)
U

1 − U
k

)

= 1
k
U2
(
1 − U

k

)⎡⎣−2μ2
1(c)+ a1V − (

1 + a1−1
k
)
U(

1 − U
k

)
U
k

⎤
⎦

→ 1
k
U2
(
1 − U

k

)(
−2(a1 − 1)+ (a1 + (1 − k)k

k − U
)

)

≥ 1
k
U2
(
1 − U

k

)
(3 − a1 − k) (21)
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and

dV ′′ − cV ′ + r(1 − V)(a2U − V)

= U
k

(
1 − U

k

)2 [
2dμ2

1(c)
(
1 − 3U

k

)
− 2cμ1(c)+ r

(
a2k − 2 + U

k

)]

≥ U
k

(
1 − U

k

)2 [−4dμ2
1(c)− 2cμ1(c)+ r(a2k − 2)

]

→ U
k

(
1 − U

k

)2
ra2

[
k − 4d(a1 − 1)+ 2r

ra2

]
. (22)

Next we give a different range of allowed values of k for two cases. If 1 < a1 ≤ 2, then k is
taken as

2r + 4d(a1 − 1)
ra2

< k < 1.

When a1 > 2, we choose k satisfying

2r + 4d(a1 − 1)
ra2

< k < 3 − a1.

By this, when ε is sufficiently small, from (21) and (22), it follows that

U ′′ − cU ′ + U(1 − a1 − U + a1V) ≥ 0,

dV ′′ − cV ′ + r(1 − V)(a2U − V) ≥ 0.

Hence, by Definition 2.1, (U,V)(z) is a lower solution of (9). Then Lemma 2.3 implies that
the result is true. �

In the following, we give conditions for the existence of negative wave speed, under
which the bistable travelling wave will propagate to the right. This implies that the species
ϕ will win competition.

Theorem 3.4: The bistable wave speed is negative provided that for fixed system parameters
a1, a2, d and r, there exists a constant m = (n − 1)/n with integer n ≥ 2 such that

1 < a2 < 5/3, a1 > 1 + 2
m
, (23)

and either
2d(a1 − 1)
2 − a2

m2 < r < 6d(a1 − 1)m2, (24)

or

6d(a1 − 1)m2 < r <
4d(a1 − 1)
a2 − 1

m2. (25)
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Proof: By the assumption, we havem ∈ [ 12 , 1). Define a pair of functions (U,V) by

U ′ = μ1(c)U(1 − Um
),

U(−∞) = 0, U(∞) = 1
(26)

and

V = 1 − (1 − Um
)2 (27)

with c = −ε, 0 < ε ≤ 1. It is easy to check that

U ′′ = μ2
1(c)U(1 − Um

)(1 − (1 + m)Um
),

and

V ′ = 2mμ1(c)U
m
(1 − Um

)2, V ′′ = 2m2μ2
1(c)U

m
(1 − Um

)2(1 − 3Um
).

Substituting these expressions into the left-hand sides of the two equations in system (9),
likewise, by the fact that μ1(−ε) = (−ε +

√
ε2 + 4(a1 − 1))/2 → √

a1 − 1 as ε → 0+,
when ε → 0, for the second equation, we get

dV ′′ − cV ′ + r(1 − V)(a2U − V)

= Um
(1 − Um

)2
[
2dm2μ2

1(c)(1 − 3Um
)− 2cmμ1(c)+ ra2U

1−m + rUm − 2r
]

≤ Um
(1 − Um

)2
[
2dm2μ2

1(c)− 2r + ra2U
1−m + [r − 6dm2μ2

1(c)]U
m
]

→ Um
(1 − Um

)2
[
2d(a1 − 1)m2 − 2r + ra2U

1−m + [r − 6d(a1 − 1)m2]Um
]
.

When ε is sufficiently small, conditions (23), (24) and the fact that 0 ≤ U ≤ 1 lead to

dV ′′ − cV ′ + r(1 − V)(a2U − V)

≤ Um
(1 − Um

)2[2d(a1 − 1)m2 − r(2 − a2)] ≤ 0,

or from conditions (23), (25) and the fact that 0 ≤ U ≤ 1, it follows that

dV ′′ − cV ′ + r(1 − V)(a2U − V)

≤ Um
(1 − Um

)2
[
2d(a1 − 1)m2 − 2r + ra2 + [r − 6d(a1 − 1)m2]

]
≤ Um

(1 − Um
)2
[−4d(a1 − 1)m2 + r(a2 − 1)]

] ≤ 0.

For the first equation, we need to use the equality

1 − U(n−1)/n = (1 − U1/n)
(
U(n−2)/n + U(n−3)/n + · · · + U1/n + 1

)
(28)
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and condition (23). Then it follows that

U ′′ − cU ′ + U(1 − a1 − U + a1V)

= U(1 − Um
)

[
μ2
1(c)(1 − (1 + m)Um

)− cμ1(c)+ 1 − U − a1(1 − Um
)2

1 − Um

]

= U(1 − Um
)

[
μ2
1(c)− cμ1(c)+ 1 − a1 − (1 + m)μ2

1(c)U
m + a1U

m + Um − U
1 − Um

]

= U1+m
(1 − Um

)

[
−μ2

1(c)(1 + m)+ a1 + 1 − U1−m

1 − Um

]

= U1+m
(1 − Um

)

[
−μ2

1(c)(1 + m)+ a1 + 1
U(n−2)/n + U(n−3)/n + · · · + U1/n + 1

]

→ U1+m
(1 − Um

)[−(a1 − 1)(1 + m)+ a1 + 1] ≤ 0.

Then, by Definition 2.1, when ε is sufficiently small, (U,V) is an upper solution of (9).
Thus, the desired result follows from Lemma 2.2. �

The proof of Theorem 3.4 is not applicable for the case wherem = 1. However, bymak-
ing only minor modifications to the analytical technique, we can derive the result below.
The proof is omitted here.

Theorem 3.5: Assume that

1 < a2 < 5/3, a1 > 2 (29)

and either
2d(a1 − 1)
2 − a2

< r < 6d(a1 − 1), (30)

or

6d(a1 − 1) < r <
4d(a1 − 1)
a2 − 1

. (31)

Then the bistable wave speed is negative.

If a pair of functions (U,V) is still defined as (26)-(27), but m = 1/n with n ≥ 2 being
an integer, we can derive the condition for negative wave speed as follows:

Theorem 3.6: The bistable wave speed is negative if there is a constant m = 1/n with n ≥ 2
being an integer such that

1 < a2 < 5, a1 > 1 + 1
m2 (32)

and either

d(a1 − 1)m2 < r <
6d(a1 − 1)
(a2 + 1)

m2, (33)

or
6d(a1 − 1)
(a2 + 1)

m2 < r <
4d(a1 − 1)
(a2 − 1)

m2. (34)
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Proof: Substituting the expression of (U,V) in (26)-(27) into the left of the first equation
of (9), noticing the fact that U1−m ≤ Um, and using the same analysis as in Theorem 3.4
for μ1(c), when ε → 0, we have

dV ′′ − cV ′ + r(1 − V)(a2U − V)

= Um
(1 − Um

)2
[
2dm2μ2

1(c)(1 − 3Um
)− 2cmμ1(c)+ r(a2U

1−m + Um − 2)
]

≤ Um
(1 − Um

)2
[
2dm2μ2

1(c)− 2r + [r(a2 + 1)− 6dm2μ2
1(c)]U

m
]

→ Um
(1 − Um

)2
[
2d(a1 − 1)m2 − 2r + [r(a2 + 1)− 6d(a1 − 1)m2]Um

]
.

Now whether (32) and (33) or (32) and (34) hold, we have

dV ′′ − cV ′ + r(1 − V)(a2U − V)

→ Um
(1 − Um

)2
[
2d(a1 − 1)m2 − 2r + [r(a2 + 1)− 6d(a1 − 1)m2]Um

]
≤ 0.

From the second equation, it follows that

U ′′ − cU ′ + U(1 − a1 − U + a1V)

= U1+m
(1 − Um

)

[
−(m + 1)μ2

1(c)+ a1 + 1 − U1−m

1 − Um

]

≤ U1+m
(1 − Um

)

[
−(m + 1)μ2

1(c)+ a1 + 1
m

− 1
]

→ U1+m
(1 − Um

)

[
−(m + 1)(a1 − 1)+ a1 + 1

m
− 1

]
≤ 0.

Here (28) and (32) are used. Thus, when ε is sufficiently small, Definition 2.1 and
Lemma 2.2 yield the desired result. �

4. Conclusion and discussion

In this work, we obtain two conditions for positive wave speed (see Theorems 3.1 and 3.3)
and three conditions for negative wave speed (see Theorems 3.4–3.6). Compared to that in
the references [12,17], these results are different and give more biological implications for
the determinacy of the speed sign.

Positive (or negative) wave speed indicates that the travelling wave solution propagates
to the left (or right), which means that the stable state (1, 0) (or (0, 1)) is more competitive
than the other one (0, 1) (or (1, 0)). Thus, only φ (or ϕ) will survive in the competition.
From our theorems including the free parameter m, it is obvious to see that a2 > a1 in
Theorem 3.1 and a2 < a1 in Theorems 3.4 and 3.6, which theoretically demonstrates the
critical importance of competitiveness. However, for each of these theorems, there does not
exist an optimal value ofm such that the value domains of both a1 and r (other parameters
are fixed) can cover those for all other choices of m, which also implies that there is no
best choice for the upper solution or the lower solution.
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We now compare our results to those in Lemma 1.1. Due to the fact that (P2) is invalid
for 3/2 ≤ a1 < 3, it is evident that Theorem 3.3 is a supplement of (P2). Since (P1) is
equivalent to

1 ≤ a1 <
4(a2 − 1)
3a2 − 2

, a2 > 2,

d(a1 − 1)
a2 − 1

< r <
d

a2 − 1

(
1 − a1a2

2(a2 − 1)

)
,

(35)

obviously, Corollary 3.2 improves and supplements (P1). It is also easy to check that
Theorems 3.4–3.6 improve and supplement (N1) and (N2).

Finally, it should be mentioned that, based on the obtained results, we could use the
identity (6) to get more explicit conditions, which can be also derived by way of the decay
rate μ4 around β to construct upper or lower solutions of (9).
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