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SPEED DETERMINACY OF TRAVELING WAVES TO A
STREAM-POPULATION MODEL WITH ALLEE EFFECT\ast 

ZHE HUANG\dagger AND CHUNHUA OU\ddagger 

Abstract. In this paper, we investigate the speed determinacy (or selection mechanism) of
traveling waves to a reaction-advection-diffusion stream-population model. We concentrate on how
the spreading speed (the minimal wave speed) is impacted by the Allee effect in the model. Linear
and nonlinear selection mechanisms for the minimal speed (or the spreading speed) are first defined,
and the determinacy is further established by way of the upper and lower solutions method. It is
found that the nonlinear determinacy is realized if there exists a lower solution with a faster decay.
The results obtained are novel, and numerical simulations are carried out to illustrate our discovery.
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Allee effect
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1. Introduction. The study of the biological population of species in streams,
rivers, and estuaries has been attracting considerable attention recently (see, e.g.,
[9, 11, 12, 13, 14]). As in these investigations of stream ecology, the so-called drift
paradox is an interesting phenomenon, according to which the species at any fixed
location will not become extinct, even though there exists a downstream drift that
washes away the species. Perhaps the first reasonable explanation was the theory of
the colonization cycle proposed by M\"uller [11, 12]. Afterward, different from M\"uller's
idea, Speirs and Gurney [14] further formulated a constant-coefficient scalar partial
differential equation to describe the situation. Their model demonstrated a simplified
one-dimensional representation of a species residing in a stream, a river, or an estuary
subject to advection (stream drift flow) and diffusion (random movement), with

(1.1)
\partial u

\partial t
= g(u)u - \alpha 

\partial u

\partial x
+ d

\partial 2u

\partial x2
.

Here, u(x, t) is the density of the species, g(u) is the per capita growth rate of the
population, \alpha is the advection speed (i.e., the speed of the flow), and d is the diffusion
coefficient. They concentrated on the role of diffusion, variable river flow direction,
and the swimming of organisms in the persistence of the species.

Later, Pachepsky et al. [13] extended (1.1) to a coupled system, investigating the
persistence of benthic aquatic organisms. They assumed the total population to be
divided into two interacting compartments: individuals (called ``benthos"") residing
in the benthic zone (the bottom of the stream) and individuals drifting in the flow.
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TRAVELING WAVES TO A STREAM-POPULATION MODEL 1821

Their nondimensional system is given by

(1.2)

\Biggl\{ 
\partial u
\partial t =  - \sigma u+ \mu v  - \alpha \partial u

\partial x + d\partial 2u
\partial x2 ,

\partial v
\partial t = +\sigma u - \mu v + (1 - v)v,

where the newly introduced coefficient \mu is the per capita rate at which individuals in
the benthic population enter the drift; \sigma is the per capita rate at which the species re-
turns to the benthic population from drifting, e.g., the number of the species that settle
down to the benthic zone to give birth or find food. This separation has significant
implications for the population persistence (for full details, please see [9, 13]). Except
for the persistence or the critical domain size, for such a model, academics were also
interested in the propagation speed. Since the system includes advection, it can distin-
guish the propagation speed with two cases: downstream (same direction of advection)
and upstream (opposite direction of advection). Clearly the downstream propagation
speed increases with the advection, whereas the upstream speed decreases. However,
from the mathematical point of view, the analysis for an upstream-facing traveling
wave solution will be similar to that of the downstream's; thus we will only consider
a downstream-facing traveling wave solution that demonstrates a situation where a
species invades an uninhabited downstream terrain. The main model in this paper is
extended from (1.2) with the reaction term possibly having the Allee effect and the
residing individuals having a weak diffusive behavior:

(1.3)

\Biggl\{ 
\partial u
\partial t =  - \sigma u+ \mu v  - \alpha \partial u

\partial x + d\partial 2u
\partial x2 ,

\partial v
\partial t = +\sigma u - \mu v + f(v) + \epsilon \partial 

2v
\partial x2 ,

where \epsilon is a small nonnegative number due to the fact that the population living in the
benthic zone barely move horizontally; the reaction term f(v) is a smooth function
(say, with second-order derivative) satisfying f(0) = f(1) = 0, f \prime (0) > 0 > f \prime (1),
and f(v) > 0 for v \in (0, 1); d, \sigma , \alpha , \mu are positive constants with similar biological
meanings to those in the model (1.2). The spatially homogeneous solutions to (1.3)
are e0 = (0, 0) and e1 = (\mu \sigma , 1). Moreover, one can easily find that e0 is unstable and
e1 is stable for the corresponding spatially homogeneous system.

To investigate the propagation phenomena, we change the model with the wave
moving coordinates so as to introduce the following wave profile:

(1.4) u(x, t) = U(\xi ), v(x, t) = V (\xi ), \xi = x - ct,

where c \geq 0 is the unknown wave speed. Now, for a downstream-facing wave, the
system for the wave profile is

(1.5)

\Biggl\{ 
 - cU \prime =  - \sigma U + \mu V  - \alpha U \prime + dU \prime \prime ,

 - cV \prime = +\sigma U  - \mu V + f(V ) + \epsilon V \prime \prime ,

subject to

(1.6) (U, V )( - \infty ) =

\biggl( 
\mu 

\sigma 
, 1

\biggr) 
, (U, V )(+\infty ) = (0, 0).

A typical example for f(V ) is V (1 - V )(1+\rho V ), which has an Allee factor \rho (see [15]),
compared to the conventional logistic growth.

By Theorems 4.1 and 4.2 in [7], it is known that there exists a critical number
cmin defined as
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1822 ZHE HUANG AND CHUNHUA OU

cmin := inf\{ c| c \in \BbbR such that (1.5)--(1.6) has a nonnegative solution\} ,

so that the system (1.5)--(1.6) has a nonnegative solution if and only if c \geq cmin.
Biologically and significantly, this speed is also equal to the asymptotic spreading
speed that indicates the velocity of biological invasion. Usually, the exact value of
this speed is difficult to determine, even for the simple Fisher--KPP scalar model with
the Allee effect. What we are able to do is to find the speed for the linearized system
around zero and use it to estimate the spreading speed. For instance, for our model,
by linearizing the system (1.5) near zero, we can obtain the linear speed c0 whose
details will be shown in the next section, and by which it can be seen that cmin \geq c0,
a fact that is believed to be true for all cooperative systems. Whether they are equal
becomes a challenging problem, and this results in the following definition of linear
or nonlinear determinacy, classifying the speed selection.

Definition 1.1. If cmin = c0, we say the minimal speed of the system (1.5)--(1.6)
is linearly selected; otherwise, if cmin > c0, we say the minimal speed is nonlinearly
selected.

Currently, there are a few references that work on the speed determinacy to
scalar reaction-diffusion equations or the diffusive Lotka--Volterra competition model
(see [1, 2, 8, 16]). As we notice that the variation principle in [8] does not work here, we
will investigate the speed selection by the upper and lower solutions technique to the
wave profile system coupled with the comparison principle to the partial differential
equations (1.3). Our construction of the upper or lower solution is different from the
classical upper (or lower) solution of [4] that is an exponential function (a solution
to the linear system) capped by the positive constant solution, and it usually gives
the mechanism of the linear speed determinacy, with a further requirement that the
nonlinear model is bounded by its linearized system. Our new upper solution comes
directly from the solution of a nonlinear system. It can effectively approximate the
real wavefront, and thus it provides better or superior conditions for the linear speed
selection. Furthermore, by analyzing the nature of the pushed wavefront (wavefront
with cmin > c0), we will construct a lower solution with a fast decay rate to establish
the nonlinear selection mechanism. The spreading speed is shown to be an increasing
function of the Allee factor. Numerical simulations are carried out to obtain the linear
speed and to indicate the linear and nonlinear speed determinacy.

The remaining part of this paper is organized as follows. In section 2, we will
study the wave profile behavior locally near the equilibrium e0. In section 3, we will
present our main results for the speed selection mechanism. In section 4, we will apply
our results to a cubic reaction term to obtain further results by choosing subtle forms
of upper and lower solutions. In the last section, we append the idea of the upper
and lower solutions method.

2. Linearization at \bfite \bfzero = (0, 0). In this section, we focus on the local analysis
near e0, i.e., (U, V ) = (0, 0). To begin with, we linearize system (1.5) near e0 to derive
the following system:

(2.1)

\Biggl\{ 
 - cU \prime = dU \prime \prime  - \alpha U \prime  - \sigma U + \mu V,

 - cV \prime = \epsilon V \prime \prime + \sigma U  - \mu V + f \prime (0)V.

This can be regarded as a fourth-order linear differential system with constant coef-
ficients. Let (U, V ) = (A1, A2)e

 - \lambda \xi with \lambda > 0 and A1, A2 being constants. We then
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TRAVELING WAVES TO A STREAM-POPULATION MODEL 1823

obtain the following eigenvalue problem:

(2.2)

\Biggl\{ 
c\lambda A1 = d\lambda 2A1 + \alpha \lambda A1  - \sigma A1 + \mu A2,

c\lambda A2 = \epsilon \lambda 2A2 + \sigma A1  - \mu A2 + f \prime (0)A2.

For simplicity of notation, we denote it in a matrix form:

(2.3) c\lambda A =

\biggl( 
d\lambda 2 + \alpha \lambda  - \sigma \mu 

\sigma \epsilon \lambda 2  - \mu + f \prime (0)

\biggr) 
A,

where A = (A1 A2)
T . To solve the above eigenvalue problem, we first consider the

eigenvalue problem of the right-side operator:

(2.4) k(\lambda )A = B(\lambda )A,

where k(\lambda ) denotes the principal eigenvalue and

(2.5) B(\lambda ) =

\biggl( 
B1(\lambda ) \mu 
\sigma B2(\lambda )

\biggr) 
, B1(\lambda ) = d\lambda 2+\alpha \lambda  - \sigma , B2(\lambda ) = \epsilon \lambda 2 - \mu + f \prime (0).

Clearly, to obtain a nonzero solution of (2.4), we require

k2  - (B1 +B2)k +B1B2  - \sigma \mu = 0.

Thus, we obtain

k\pm =
(B1 +B2)\pm 

\sqrt{} 
(B1 +B2)2  - 4(B1B2  - \sigma \mu )

2
.

Notice that the determinant \Delta = (B1+B2)
2 - 4(B1B2 - \sigma \mu ) = (B1 - B2)

2+4\sigma \mu > 0.
This means that k - < k+, and they both are real. Substituting B1 and B2 into it,
the exact formula of k+ is given by
(2.6)

k+ =
(d+ \epsilon )\lambda 2 + \alpha \lambda  - \sigma  - \mu + f \prime (0) +

\sqrt{} 
[(d+ \epsilon )\lambda 2 + \alpha \lambda  - \sigma + \mu  - f \prime (0)]2 + 4\sigma \mu 

2
.

Furthermore, since all the parameters are positive, from the above formula, we have
the following result.

Proposition 2.1. k+ > 0 for all \lambda \in (0,+\infty ).

The principal eigenvalue of the cooperative matrix B(\lambda ) is

(2.7) k(\lambda ) = k+(\lambda ),

where k+ is defined in (2.6). Moreover, due to the term d\lambda 2, it follows that k is convex
with respect to \lambda (see, e.g., [3]).

From (2.3), we want to find c such that c\lambda = k(\lambda ) has a solution \lambda \in (0,+\infty ). It
is not hard to find the following property of the function k(\lambda ).

Lemma 2.2. k(\lambda ) defined in (2.7) is a real, continuous, and convex function with
respect to \lambda \in \BbbR . If we define

(2.8) c0 = inf
\lambda \in (0,+\infty )

k(\lambda )

\lambda 
\in \BbbR +,
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1824 ZHE HUANG AND CHUNHUA OU
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Fig. 1. (Color online.) The function
k(\lambda )
\lambda 

. This figure is obtained in the parameter set d = 3,

\alpha = 1, \mu = 1, \sigma = 3, \epsilon = 0.1, and f \prime (0) = 1. The black curve denotes the function
k(\lambda )
\lambda 

, and the
blue line is the value of c0 = 1.99456.

which is called the linear speed, then the equation c\lambda = k(\lambda ) has
(1) no solution if c < c0;
(2) exactly one solution \lambda 0(c0) if c = c0;
(3) two solutions \lambda 1(c) and \lambda 2(c) with \lambda 1(c) < \lambda 2(c) if c > c0.

Here, we manifest this lemma with a particular example; see Figure 1. Letting
d = 3, \epsilon = 0.1, \alpha = 1, \mu = 1, \sigma = 3, and f \prime (0) = 1, we obtain that c0 = 1.99456

and \lambda 0 = 0.6906. In the figure, the black curve denotes k(\lambda )
\lambda . As we can see from the

figure, there is no intersection when c < c0 (see the yellow line); there is exactly one
intersection when c = c0 (see the blue line); there are two intersections when c > c0
(see the red line).

Moreover, based on the above lemma, we can give the exact exponential behavior
of the waves (U, V )(\xi ) as \xi \rightarrow +\infty in the following lemma.

Lemma 2.3. Under the definition of c0 in Lemma 2.2, for any c > c0, the wave
profile (if it exists) has the following asymptotic behavior:
(2.9)\biggl( 

U
V

\biggr) 
\sim C1

\biggl( 
 - \mu 

B1(\lambda 1(c)) - c\lambda 1(c)

1

\biggr) 
e - \lambda 1(c)\xi + C2

\biggl( 
 - \mu 

B1(\lambda 2(c)) - c\lambda 2(c)

1

\biggr) 
e - \lambda 2(c)\xi 

with C1 > 0, or C1 = 0, C2 > 0. Here B1 is as defined in (2.5).

Proof. For any given c > c0, the traveling wave satisfies (U, V ) \rightarrow (0, 0) as \xi \rightarrow \infty .
Therefore, as \xi \rightarrow \infty , we have f(V ) \sim f \prime (0)V , and the positive wave solution (U, V )
of (1.5) (or the leading term of (U, V )) should satisfy (2.1). Since k(\lambda ) = k+ is
the principal eigenvalue of B(\lambda ), we can derive that the corresponding eigenvector
A = (A1 A2)

T is positive. Indeed, by Taylor's expansion, we obtain eB(\lambda )A = ek(\lambda )A
and A is also the eigenvector of the operator eB(\lambda ) with the principal eigenvalue ek(\lambda ).
A theorem of Frobenius states that any nonzero irreducible matrix with nonnegative
entries has a unique positive principal eigenvalue, with a corresponding principal
eigenvector A with strictly positive coordinates. Therefore, via the characteristic
equation of the linear system, the decaying solution of (2.1) can be obtained as the
right side of (2.9) after normalizing A2 = 1. Here we do not intake k - since its
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d

2.4

2.6
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3.4

c
0

c
0

Fig. 2. (Color online.) The relation between the linear speed c0 and d. This figure is obtained
when \alpha = 3, \mu = 1, \sigma = 2, \epsilon = 0.1, f \prime (0) = 1, and d varies from 1 to 4. The blue curve denotes the
linear speed corresponding to each d, while the black line is the value of \alpha .

associated eigenvector is nonpositive. In other words, the positive wave profile satisfies\biggl( 
U
V

\biggr) 
\sim C1

\biggl( 
 - \mu 

B1(\lambda 1) - c\lambda 1

1

\biggr) 
e - \lambda 1\xi + C2

\biggl( 
 - \mu 

B1(\lambda 2) - c\lambda 2

1

\biggr) 
e - \lambda 2\xi ,

with C1 > 0, or C1 = 0, C2 > 0. This completes the proof.

Remark 2.4. According to Lemma 2.3 and the eigenvalue problem (2.3), when
c > c0, the asymptotic behavior of the wave can also be given by\biggl( 

U
V

\biggr) 
\sim C1

\biggl( 
 - B2(\lambda 1(c)) - c\lambda 1(c)

\sigma 
1

\biggr) 
e - \lambda 1(c)\xi + C2

\biggl( 
 - B2(\lambda 2(c)) - c\lambda 2(c)

\sigma 
1

\biggr) 
e - \lambda 2(c)\xi ,

which is equivalent to (2.9).

Remark 2.5. Lemma 2.2 implies cmin \geq c0. It is impossible to expect a nonnega-
tive wavefront for \xi near infinity when c < c0 since \lambda has a nontrivial imaginary part,
and (0, 0) becomes a spiral point. When c > c0, \lambda 1(c) is decreasing in c and \lambda 2(c) is
increasing in c.

From the formula of c0 (see (2.8)), it is clear to see that c0 is increasing in d. By
numerical simulations, we show their relation in Figure 2. It is interesting to observe
that c0 may even be less than \alpha (the drift speed of the stream) when d is small enough,
in which the species is fighting with the drift flow to stay via the choice of residing at
the bottom.

Remark 2.6. Moreover, if we normalize by setting A2 = 1, then the eigenvalue
problem (2.2) can be rewritten as\Biggl\{ 

d\lambda 2A1  - (c - \alpha )\lambda A1 = \sigma A1  - \mu ,

\epsilon \lambda 2  - c\lambda + f \prime (0) =  - (\sigma A1  - \mu ).

When c = c0, we have

(2.10) A1(c0) =  - \mu 

B1(\lambda 0) - c0\lambda 0
,

where \lambda 0 is as given in Lemma 2.2(2).
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1826 ZHE HUANG AND CHUNHUA OU

3. The speed selection mechanism. In this section, we want to study the
speed selection mechanism of the system (1.5). The method used is the upper and
lower solutions technique (please see Appendix A for details). Notice that the first
equation in (1.5) is always a linear equation in U ; thus by the variation of parameters,
we can solve U in terms of V as

(3.1) U(\xi ) =
\mu 

d(\tau 2  - \tau 1)

\biggl\{ \int \xi 

 - \infty 
e\tau 1(\xi  - s)V (s)ds+

\int \infty 

\xi 

e\tau 2(\xi  - s)V (s)ds

\biggr\} 
:= H(V ),

where \tau 1, \tau 2 satisfy

d\tau 2 + (c - \alpha )\tau  - \sigma = 0,

with

(3.2) \tau 1 =
 - (c - \alpha ) - 

\sqrt{} 
(c - \alpha )2 + 4\sigma d

2d
< 0 < \tau 2 =

 - (c - \alpha ) +
\sqrt{} 

(c - \alpha )2 + 4\sigma d

2d
.

For any c > c0, by Lemmas 2.2 and 2.3, it is easy to verify that

H(e - \lambda i(c)\xi ) = A1,i(c)e
 - \lambda i(c)\xi and H(1) =

\mu 

\sigma 
, i = 1, 2,

where

A1,i(c) =
 - \mu 

B1(\lambda i(c)) - c\lambda i(c)
.

Clearly, for any given continuous function V (\xi ) satisfying V ( - \infty ) = 1 and V (+\infty ) =
0, by (3.1), we have the existence of U subject to U( - \infty ) = \mu 

\sigma and U(+\infty ) = 0.
For simplicity of notation, we denote

L1(U, V ) := dU \prime \prime + (c - \alpha )U \prime  - \sigma U + \mu V,

L2(U, V ) := \epsilon V \prime \prime + cV \prime + \sigma U  - \mu V + f(V ).

By the U 's formula, (1.5) reduces to a nonlocal equation

(3.3)

\Biggl\{ 
\epsilon V \prime \prime + cV \prime + \sigma U  - \mu V + f(V ) = 0,

V ( - \infty ) = 1, V (+\infty ) = 0,

where U = H(V ) is the integral given in (3.1).
From now on, we will focus on constructing a pair of suitable upper and lower

solutions to the above V -equation (see Theorem 6.4).
For any c = c0 + \varepsilon 1, by Lemma 2.2, there exist 0 < \lambda 1(c) < \lambda 2(c). Inspired by

Lemma 2.3, we proceed to construct upper or lower solutions with suitable decaying
behaviors. Let

(3.4) \=V (\xi ) =
\=kv

[1 + (\=kve\lambda 1(c)\xi )m]
1
m

, m \geq 1, \=kv \geq 1.

It is easy to see that this \=V function has the asymptotic behaviors \=V \sim e - \lambda 1(c)\xi as
\xi \rightarrow +\infty and \=V \rightarrow \=kv as \xi \rightarrow  - \infty . Then, through a simple computation, its first and
second derivatives are found as follows:

\=V \prime =  - \lambda 1(c) \=V
\bigl( 
1 - \=V m

1

\bigr) 
and \=V \prime \prime = \lambda 2

1(c) \=V
\bigl( 
1 - \=V m

1

\bigr) \bigl( 
1 - (m+ 1) \=V m

1

\bigr) 
,
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TRAVELING WAVES TO A STREAM-POPULATION MODEL 1827

where \=V1 =
\=V
\=kv
. Substituting all of the above formulas into the left-hand side of (3.3),

we obtain

L2( \=U, \=V ) = \=V 2(1 - \=V m
1 )

\biggl\{ 
 - (m+ 1)\epsilon \lambda 2

1(c)
1
\=kv

\=V m - 1
1 +

\sigma [H( \=V )
\=V

 - A1(1 - \=V m
1 )] - \mu \=V m

1

\=V (1 - \=V m
1 )

+

f( \=V )
\=V

 - f \prime (0)(1 - \=V m
1 )

\=V (1 - \=V m
1 )

\biggr\} 
=: \=V 2(1 - \=V m

1 ) \cdot J\lambda 1(m, \=kv).

In view of the definition of an upper solution (see Definition A.1 and Lemma A.2 for
details) and \lambda 1 \rightarrow \lambda 0 as \varepsilon \rightarrow 0, we can easily derive that the continuous function \=V
given by (3.4) is an upper solution to (3.3) if

(3.5) J\lambda 0
(m, \=kv) < 0,

with m and \=kv suitably chosen. Now, we summarize the above discussion into the
following lemma.

Lemma 3.1. If the inequality (3.5) holds, then the continuous function \=V given
by (3.4) is an upper solution to (3.3) (i.e., L2( \=U, \=V ) \leq 0).

To apply Theorem A.4 on (3.3), we need to construct a lower solution to (1.5)
when c = c0 + \varepsilon 1. To this end, we define a continuous function V as

(3.6) V =

\Biggl\{ 
e - \lambda 1(c)\xi (1 - Me - \varepsilon 2\xi ), \xi > \xi 0,

0, \xi \leq \xi 0,

where 0 < \varepsilon 2 \ll 1, M is a positive number to be determined, and \xi 0 = logM
\varepsilon 2

.

Lemma 3.2. When c = c0 + \varepsilon 1, there exist 0 < \varepsilon 2 \ll 1 and M \gg 1 such that the
pair of continuous functions (U, V )(z), where V is defined in (3.6) and U = H(V ) is
defined by (3.1), is a lower solution to the system (1.5)--(1.6).

Proof. To prove the chosen function satisfying the definition of a lower solution,
we need to show that for all \xi \in \BbbR ,

dU \prime \prime + (c - \alpha )U \prime  - \sigma U + \mu V \geq 0,

\epsilon V \prime \prime + cV \prime + \sigma U  - \mu V + f(V ) \geq 0.

Notice that the first inequality is always true for all \xi \in \BbbR , and the second one holds
for \xi \leq \xi 0. As for \xi > \xi 0, by direct substitution, we have

\epsilon V \prime \prime + cV \prime + \sigma U  - \mu V + f(V )

= e - \lambda 1(c)\xi [\epsilon \lambda 2
1(c) - c\lambda 1(c) + \sigma A1  - \mu + f \prime (0)] - Me - (\lambda 1(c)+\varepsilon 2)\xi [\epsilon (\lambda 1(c) + \varepsilon 2)

2

 - c(\lambda 1(c) + \varepsilon 2) - \mu + f \prime (0)] - \sigma MH(e - (\lambda 1(c)+\varepsilon 2)\xi ) + [f(V ) - f \prime (0)V ]

>  - Me - (\lambda 1(c)+\varepsilon 2)\xi [\epsilon (\lambda 1(c) + \varepsilon 2)
2  - c(\lambda 1(c) + \varepsilon 2) + \sigma A1  - \mu + f \prime (0)] + [f(V ) - f \prime (0)V ].

The last inequality is guaranteed by H(e - (\lambda 1(c)+\varepsilon 2)\xi ) < A1e
 - (\lambda 1(c)+\varepsilon 2)\xi , which can be

derived by direct computation. For the last line, it is easy to see that the first term is
always positive when \varepsilon 2 is sufficiently small. By choosing M to be sufficiently large,
we can have \xi 0 > 0 and V \ll 1 so that [f(V ) - f \prime (0)V ] \sim O(e - 2\lambda 1(c)\xi ); thus the first
term dominates the second one. Hence, the proof is complete.
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1828 ZHE HUANG AND CHUNHUA OU

The condition V \prime (\xi  - 0 ) \leq V \prime (\xi +0 ) can be easily verified, and, by translation if
necessary, we can have U(\xi ) \leq \=U(\xi ) and V (\xi ) \leq \=V (\xi ) for \xi \in ( - \infty ,+\infty ). Then
we conclude that ( \=U, \=V )(\xi ) and (U, V )(\xi ) are a pair of upper and lower solutions,
respectively. By Theorem A.4, we obtain the following linear selection result.

Theorem 3.3 (Linear selection). When (3.5) is satisfied, the minimal speed of
the system (1.5)--(1.6) is linearly selected (i.e., cmin = c0).

We then turn to study the nonlinear selection through the upper and lower solu-
tions method. The key observation is that, when a lower solution has an asymptotic
behavior e - \lambda 2\xi (i.e., the faster decay rate) as \xi \rightarrow +\infty , the nonlinear selection will
be realized. We give the following theorem as a justification.

Theorem 3.4. For a given c1 > c0, assume that there exists a pair of nonnegative
functions (U, V )(\xi ) with \xi = x  - c1t, as a pair of lower solutions to the partial
differential system

(3.7)

\Biggl\{ 
ut = duxx  - \alpha ux  - \sigma u+ \mu v,

vt = \epsilon vxx + \sigma u - \mu v + f(v).

We further suppose that V (\xi ) is monotone, satisfies

lim sup
\xi \rightarrow  - \infty 

V (\xi ) < 1,

and has the asymptotic behavior Ce - \lambda 2\xi as \xi \rightarrow +\infty for some positive constant C.
Then there exists no traveling solution to (1.5)--(1.6) for c \in [c0, c1).

Proof. We prove here by contradiction. Assume that there exists a monotone
traveling wave solution (U, V )(\xi ), \xi = x  - ct, with c \in [c0, c1), subject to the initial
conditions

u(x, 0) = U(x) and v(x, 0) = V (x).

We should note that if c = c0, then we have traveling wave solutions for all c > c0 by
Theorems 4.1 and 4.2 in [7]. Thus we can always assume that c \in (c0, c1).

Moreover, (U, V ) satisfies (1.5), and their decaying behavior near +\infty can be
easily analyzed (see, e.g., section 2). By the monotonicity of \lambda 1(c) and \lambda 2(c) in terms
of c, we can always assume (by shifting if necessary) that (U, V )(x) \leq (U, V )(x) for
all x \in \BbbR . Since (U, V )(x - c1t) is a lower solution to the system (3.7) with the initial
data (U, V )(x), by comparison, we obtain

(3.8) U(x - c1t) \leq U(x - ct) and V (x - c1t) \leq V (x - ct)

for all (x, t) \in \BbbR \times \BbbR +. Now, if we fix \xi = x  - c1t, then V (\xi ) > 0 is fixed. On the
other hand, from V (x - ct), it is clear that

V (x - ct) = V (\xi + (c1  - c)t) \rightarrow V (+\infty ) = 0 as t \rightarrow +\infty .

By (3.8), we thus get V (\xi ) \leq 0. This is a contradiction. Therefore, there is no
traveling wave solution for c \in [c0, c1). This completes the proof.

Remark 3.5. Due to the above theorem, for the nonlinear selection, we only need
to find a lower solution that has an asymptotic behavior e - \lambda 2(c)\xi as \xi \rightarrow +\infty for some
c > c0.
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TRAVELING WAVES TO A STREAM-POPULATION MODEL 1829

Now, suppose V 2 has the following form:

(3.9) V 2(\xi ) =
kv

[1 + (kve\lambda 2(c)\xi )m]
1
m

, m \geq 1, 0 < kv < 1.

Clearly, this function connects kv to 0 and has the asymptotic behavior e - \lambda 2\xi as
\xi \rightarrow +\infty . By substituting the above formula into the left-hand side of (3.3), we
obtain

L2(U2, V 2) = V 2
2(1 - V m

1 )

\biggl\{ 
 - (m+ 1)\epsilon \lambda 2

2(c)
1

kv
V m - 1

1

+
\sigma [H(V 2)

V 2
 - A1(1 - V m

1 )] - \mu V m
1

V 2(1 - V m
1 )

+

f(V 2)
V 2

 - f \prime (0)(1 - V m
1 )

V 2(1 - V m
1 )

\biggr\} 
=: V 2

2(1 - V m
1 ) \cdot J\lambda 2

(m, kv),

where V 1 = V 2

kv
. For suitably chosen m and kv, it follows that V 1 is a lower solution

to (3.3) (i.e., L2(U1, V 1) \geq 0) if

(3.10) J\lambda 2
(m, kv) > 0.

Then, by Theorem 3.4, the following result holds.

Theorem 3.6 (Nonlinear selection). If the inequality ( 3.10) holds for some m and
kv, then the minimal speed of traveling waves to the system (1.5)--(1.6) is nonlinearly
selected.

4. Applications. In this section, we will apply the linear and nonlinear selection
theorems proved in the previous section to the model with a cubic nonlinear reaction
term, i.e., f(v) = v(1  - v)(1 + \rho v) with \rho being a nonnegative constant. This cubic
reaction term can be viewed as the classical logistic growth with a weak Allee effect
(see [15]) and can be applied to model a lot of biological phenomena. We want to
investigate how the Allee effect impacts the spreading speed. In current references
such as [6, 18], they require that f(v) is sublinear in the sense that f(v) \leq f \prime (0)v,
and thus a linear selection result is obtained. Following this, we immediately obtain
that the minimal wave speed is linearly selected when \rho \leq 1. Now, with our methods,
conclusions on the speed selection can be considerably extended. To proceed, we start
with the system of the wave profile

(4.1)

\left\{     
dU \prime \prime + (c - \alpha )U \prime  - \sigma U + \mu V = 0,

\epsilon V \prime \prime + cV \prime + \sigma U  - \mu V + (1 - V )(1 + \rho V )V = 0,

(U, V )( - \infty ) =
\bigl( 
\mu 
\sigma , 1

\bigr) 
, (U, V )(+\infty ) = (0, 0).

With the values of d, \epsilon , \mu , \sigma , \alpha , and f \prime (0) being fixed, we first show the existence
of a threshold \=\rho so that, when \rho increases to cross over this critical value, the speed
selection changes from linear to nonlinear. To see this, we will prove the following
lemma.

Lemma 4.1. If the minimal wave speed of (4.1) is linearly selected when \rho = \rho l
for some \rho l, then it is linearly selected for all \rho < \rho l.

Proof. From the assumption that \rho = \rho l, we have (Ul, Vl) as a pair of solutions,
which are decreasing with respect to \xi \in \BbbR , with c = c0 + \varepsilon 1 to (4.1) for any small
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Fig. 3. (Color online.) The functions U, V and U
V
. These figures are obtained in the parameter

set d = 3, \alpha = 1, \mu = 1, \sigma = 3, \epsilon = 0.1, and f \prime (0) = 1.

\varepsilon 1 > 0. Thus, they satisfy\Biggl\{ 
dU \prime \prime 

l + (c - \alpha )U \prime 
l  - \sigma Ul + \mu Vl = 0,

\epsilon V \prime \prime 
l + cV \prime 

l + \sigma Ul  - \mu Vl + (1 - Vl)(1 + \rho lVl)Vl = 0.

Then, by substituting (Ul, Vl) into (4.1) with \rho < \rho l, we see that the first equation is
always zero and the second one becomes

\epsilon V \prime \prime 
l + cV \prime 

l + \sigma Ul  - \mu Vl + (1 - Vl)(1 + \rho Vl)Vl

= (1 - Vl)V
2
l (\rho  - \rho l) < 0.

This means that (Ul, Vl) is an upper solution to (4.1) for \rho < \rho l. Then, by taking
the lower solution defined in Lemma 3.2, we conclude that the minimal wave speed is
linearly selected for all \rho < \rho l. This completes the proof.

From the above lemma, we can define the threshold value of \rho as

\rho := sup\{ \rho | the linear speed selection is realized for (4.1)\} .

Although we obtained the existence of the threshold \=\rho , its exact value is hard to
derive. In practice, we want to give an estimate of it. Moreover, the exact formula of
U in terms of V (see (3.1)) is too complicated to determine the conditions in the speed
selection, so we will establish some novel upper (lower) solutions to the U -equation
simultaneously, i.e., L1( \=U, \=V ) \leq 0 (L1(U, V ) \geq 0), instead of using the formula H(V ).

To carry on, we numerically compute the value of U
V = H(V )

V , where V is as
defined in (3.4) with m = 2, \=kv = 1, and c = c0. An example is shown in Figure 3.
These figures are depicted when d = 3, \epsilon = 0.1, \alpha = 1, \mu = 1, and \sigma = 3. With the
parameter set, we find that A1 = 0.44325, c0 = 1.9945625, and \lambda 0 = 0.6906. The left
panel shows the functions of V and U = H(V ). The right panel shows the value of
U
V . As we can see, U

V \rightarrow \mu 
\sigma as \xi \rightarrow +\infty , U

V \rightarrow A1 as \xi \rightarrow  - \infty , and the curve looks
like a vertical parabola. When m = 1, similar phenomena can happen. Inspired by
this observation, we will construct innovative approximate formulas of U in terms of
V , which are much simpler than the abstract one U = H(V ). The details are shown
as follows.

Motivated by this observation, we first give results on the speed selection by
using the trial function U = V \cdot 

\bigl( 
A1 + bV + aV 2

\bigr) 
with b = \mu 

\sigma  - A1  - a and a \in \BbbR + to
be determined. We give the following notation to state our theorems more fluently.
Denote

hc0(a) := a2 \bigl\{ 33d2\lambda 4
0 + 6d\lambda 3

0(c0  - \alpha ) + 9\lambda 2
0(c0  - \alpha )2 + 48d\lambda 2

0\sigma 
\bigr\} 
+ a

\biggl\{ 
12d2\lambda 4

0
\mu 

\sigma 
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TRAVELING WAVES TO A STREAM-POPULATION MODEL 1831

 - 108d2\lambda 4
0A1(c0) - 60d\lambda 3

0

\Bigl( \mu 
\sigma 
 - A1(c0)

\Bigr) 
(c0  - \alpha )

\biggr\} 
+ 36d2\lambda 4

0

\Bigl( \mu 
\sigma 
 - A1(c0)

\Bigr) 2

,(4.2)

and
(4.3)\left\{     

a3(c0, \lambda 0) =
2d\lambda 0(\mu 

\sigma  - A1(c0))
5d\lambda 0 - (c0 - \alpha ) , a4(c0, \lambda 0) =

d\lambda 2
0(

4\mu 
\sigma  - 6A1(c0)) - 2\lambda 0(c0 - \alpha )(\mu 

\sigma  - A1(c0))
4d\lambda 2

0 - 2\lambda 0(c0 - \alpha ) - \sigma 
,

a5(c0, \lambda 0) =
2[d\lambda 2

0
\mu 
\sigma +\lambda 0(c0 - \alpha )(\mu 

\sigma  - A1(c0))]
[ - d\lambda 2

0 - \lambda 0(c0 - \alpha )+\sigma ]
.

Notice that hc0(a) is a quadratic polynomial and hc0(0) = 36d2\lambda 4
0

\bigl( 
\mu 
\sigma  - A1(c0)

\bigr) 2
> 0;

thus, if hc0(a) = 0 has solutions a1(c0, \lambda 0) and a2(c0, \lambda 0), then they must satisfy that
0 < a1(c0, \lambda 0) \leq a2(c0, \lambda 0) or a1(c0, \lambda 0) \leq a2(c0, \lambda 0) < 0. Due to the requirement
a > 0, we only consider the former case. Furthermore, define the sets

(4.4)

\left\{               

S1(c0, \lambda 0) := \{ a : a \leq a1(c0, \lambda 0) or a \geq a2(c0, \lambda 0)\} 
and S\prime 

1(c0, \lambda 0) := \{ a : a1(c0, \lambda 0) < a < a2(c0, \lambda 0)\} ,
S2(c0, \lambda 0) := \{ a : a < a3(c0, \lambda 0)\} and S\prime 

2(c0, \lambda 0) := \{ a : a > a3(c0, \lambda 0)\} ,
S3(c0, \lambda 0) := \{ a : a \leq a4(c0, \lambda 0)\} and S\prime 

3(c0, \lambda 0) := \{ a : a \geq a4(c0, \lambda 0)\} ,
S4(c0, \lambda 0) := \{ a : a \leq a5(c0, \lambda 0)\} and S\prime 

4(c0, \lambda 0) := \{ a : a \geq a5(c0, \lambda 0)\} .

To proceed, we summarize the above notation into an assumption as follows.
(H1) Let c0, \lambda 0, A1(c0), and hc0(a) be as defined in (2.8), Lemma 2.2, (2.10),

and (4.2), respectively. Assume that hc0(a) = 0 has two nonnegative solutions 0 \leq 
a1(c0, \lambda 0) < a2(c0, \lambda 0), and then define ai (i = 1, . . . , 5) and Sj , S

\prime 
j (j = 1, . . . , 4) as

shown in (4.3) and (4.4), respectively.

Theorem 4.2. Let the assumption (H1) hold. Define

\=M(c0, \lambda 0) := \=M1 \cup \=M2 \cup \=M3 \cup \=M4 \cap \{ a : a > 0\} ,

where\Biggl\{ 
\=M1 := (S2(c0, \lambda 0) \cap S3(c0, \lambda 0)) \cup S\prime 

1(c0, \lambda 0), \=M2 := (S2(c0, \lambda 0) \cap S\prime 
3(c0, \lambda 0)) \cup S\prime 

1(c0, \lambda 0),
\=M3 := (S\prime 

2(c0, \lambda 0) \cap S3(c0, \lambda 0)) \cup S\prime 
1(c0, \lambda 0), \=M4 := (S\prime 

2(c0, \lambda 0) \cap S\prime 
3(c0, \lambda 0)) \cup S\prime 

1(c0, \lambda 0).

Then the linear selection is realized if there exists a positive constant a \in \=M and

(4.5) \rho \leq \sigma \=a+ 2\epsilon \lambda 2
0, where \=a = sup \=M.

Proof. When c = c0 + \varepsilon 1, let \=V be as defined in (3.4) with m = 1 and \=kv = 1
(which implies \=V1 = \=V ). Define

(4.6) \=U = \=V \cdot [A1(c) + b \=V + a \=V 2], a > 0,

where b = \mu 
\sigma  - A1(c) - a and a is to be determined. Here, we emphasize that such a

\=U function satisfies
\=U
\=V
\rightarrow \mu 

\sigma as \xi \rightarrow  - \infty and
\=U
\=V
\rightarrow A1(c) as \xi \rightarrow +\infty . In the following

context, we denote \lambda 1 = \lambda 1(c) and A1 = A1(c) for short unless otherwise specified.
Then, through tedious computations, we obtain the first and second derivatives of \=U
as follows:

\=U \prime =  - \lambda 1
\=V (1 - \=V )(A1 + 2b \=V + 3a \=V 2),
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1832 ZHE HUANG AND CHUNHUA OU

and

\=U \prime \prime = \lambda 2
1
\=V (1 - \=V )[A1 + (4b - 2A1) \=V + (9a - 6b) \=V 2  - 12a \=V 3].

By substituting \=U , \=U \prime , and \=U \prime \prime into L1, we obtain

(4.7) L1( \=U, \=V ) = \=V 2(1 - \=V )G1( \=V ),

where

G1( \=V ) =  - 12d\lambda 2
1a \=V

2 + \=V \cdot [d\lambda 2
1(9a - 6b) - 3\lambda 1a(c - \alpha )] + d\lambda 2

1(4b - 2A1) - 2\lambda 1(c - \alpha )b+ \sigma a

=  - 12d\lambda 2
1a \=V

2 + 3\lambda 1
\=V
\Bigl[ 
(5d\lambda 1  - (c - \alpha ))a - 2d\lambda 1(

\mu 

\sigma 
 - A1)

\Bigr] 
+a

\bigl[ 
 - 4d\lambda 2

1 + 2\lambda 1(c - \alpha ) + \sigma 
\bigr] 
+ d\lambda 2

1

\biggl( 
4\mu 

\sigma 
 - 6A1

\biggr) 
 - 2\lambda 1(c - \alpha )

\Bigl( \mu 
\sigma 
 - A1

\Bigr) 
.

It is clear that \=G1( \=V ) is a parabolic function, which opens down, in \=V . Through a
direct computation, its determinant can be found as

\Delta = a2
\bigl\{ 
33d2\lambda 4

1 + 6d\lambda 3
1(c - \alpha ) + 9\lambda 2

1(c - \alpha )2 + 48d\lambda 2
1\sigma 

\bigr\} 
+ a

\biggl\{ 
12d2\lambda 4

1

\mu 

\sigma 

 - 108d2\lambda 4
1A1  - 60d\lambda 3

1

\Bigl( \mu 
\sigma 
 - A1

\Bigr) 
(c - \alpha )

\biggr\} 
+ 36d2\lambda 4

1

\Bigl( \mu 
\sigma 
 - A1

\Bigr) 2

,

which is hc(a) by replacing c0 and \lambda 0 with c and \lambda 1 in hc0(a). When \varepsilon 1 is small enough
and, by assumption, the equation hc(a) = 0 has two roots 0 \leq a1(c, \lambda 1) \leq a2(c, \lambda 1),
then there are two cases to discuss.

When a1(c, \lambda 1) < a < a2(c, \lambda 1) (i.e., a \in S\prime 
1(c, \lambda 1)), it follows that hc(a) \leq 0.

In other words, \Delta < 0, which implies that G1( \=V ) = 0 has no solution. Therefore,
L1( \=U, \=V ) \leq 0 if a \in S1(c, \lambda 1).

When 0 \leq a \leq a1(c, \lambda 1) or a \geq a2(c, \lambda 1) (i.e., a \in S1(c, \lambda 1)), we immediately
obtain that \Delta \geq 0. Thus, under this condition, G1( \=V ) = 0 must have solutions.
Furthermore, if the symmetric axis of G1( \=V ) is less than zero and G1(0) \leq 0, then
L1( \=U, \=V ) \leq 0. The first condition means

(5d\lambda 1  - (c - \alpha ))a - 2d\lambda 1

\biggl( 
\mu 

\sigma 
 - A1

\biggr) 
< 0.

The second condition (G1(0) \leq 0) shows that

a
\bigl[ 
 - 4d\lambda 2

1 + 2\lambda 1(c - \alpha ) + \sigma 
\bigr] 
+ d\lambda 2

1

\biggl( 
4\mu 

\sigma 
 - 6A1

\biggr) 
 - 2\lambda 1(c - \alpha )

\Bigl( \mu 
\sigma 
 - A1

\Bigr) 
\leq 0.

When 5d\lambda 1  - (c - \alpha ) > 0 and 4d\lambda 2
1  - 2\lambda 1(c - \alpha ) - \sigma > 0, then

(4.8) a < a3(c, \lambda 1) and a \geq a4(c, \lambda 1).

Thus, when a \in S1(c, \lambda 1) \cap S2(c, \lambda 1) \cap S\prime 
3(c, \lambda 1), we have L1 \leq 0. Summarizing the

above discussion, we obtain that if

a \in (S1(c, \lambda 1) \cap S2(c, \lambda 1) \cap S\prime 
3(c, \lambda 1)) \cup S\prime 

1(c, \lambda 1)

= (S2(c, \lambda 1) \cap S\prime 
3(c, \lambda 1)) \cup S\prime 

1(c, \lambda 1) = \=M1(c, \lambda 1),
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TRAVELING WAVES TO A STREAM-POPULATION MODEL 1833

then L1( \=U, \=V ) \leq 0. It is clear that, depending on the signs of 5d\lambda 1  - (c  - \alpha ) and
4d\lambda 2

1  - 2\lambda 1(c  - \alpha )  - \sigma , we will obtain sets \=M2(c, \lambda 1), \=M3(c, \lambda 1), and \=M4(c, \lambda 1). In
summary, if a \in \=M(c, \lambda 1), then L1( \=U, \=V ) \leq 0.

By inserting the \=U -formula into L2, we have

L2( \=U, \=V ) = \=V 2(1 - \=V )( - 2\epsilon \lambda 2
1  - \sigma a+ \rho ).

Now, it is clear that, if \rho \leq \sigma \=a1 + 2\epsilon \lambda 2
1 with \=a1 = sup \=M(c, \lambda 1), then L2 \leq 0. Thus,

( \=U, \=V ) is a pair of upper solutions when a \in \=M(c, \lambda 1) and \rho < \sigma \=a + 2\epsilon \lambda 2
1 hold.

Combining a pair of lower solutions from Lemma 3.2 and using Theorem A.4, we
obtain the existence of (U, V )(\xi ) when c = c0 + \varepsilon 1, which implies the linear selection
of (4.1). Then, a limiting argument can show that the linear selection is realized when
a \in \=M(c0, \lambda 0) and \rho \leq 2\epsilon \lambda 2

0 + \sigma \=a. This completes the proof.

Remark 4.3. If hc0(a) = 0 has no solution when a > 0, then the above theorem
still holds by replacing S\prime 

1 = \phi where \phi is the empty set.

Since the minimal wave speed is always linearly selected when \rho \leq 1, the following
corollary is immediately implied.

Corollary 4.4. Let (H1) be true. The minimal wave speed is linearly selected if
a \in \=M(c0, \lambda 0) and

(4.9) \rho \leq max\{ \sigma \=a+ 2\epsilon \lambda 2
0, 1\} .

For the nonlinear selection, we first give the following theorem.

Theorem 4.5. Let the assumption (H1) hold and

M(c0, \lambda 0) := (M1 \cup M2 \cup M3 \cup M4) \cap \{ a : a > 0\} ,

where\Biggl\{ 
M1 := S1(c0, \lambda 0) \cap S3(c0, \lambda 0) \cap S4(c0, \lambda 0), M2 := S1(c0, \lambda 0) \cap S\prime 

3(c0, \lambda 0) \cap S4(c0, \lambda 0),

M3 := S1(c0, \lambda 0) \cap S3(c0, \lambda 0) \cap S\prime 
4(c0, \lambda 0), M4 := S1(c0, \lambda 0) \cap S\prime 

3(c0, \lambda 0) \cap S\prime 
4(c0, \lambda 0).

Then the nonlinear selection is realized if there exists a \in M and

(4.10) \rho > \sigma a+ 2\epsilon \lambda 2
0, where a = infM > 0.

Proof. When c = c0 + \varepsilon 2, let V be defined in (3.9) with m = 1 and kv = 1, and

U = V [A1(c) + bV + aV 2], a > 0,

with b = \mu 
\sigma  - A1(c)  - a and a to be determined. For simplicity, we will denote

\lambda 2 = \lambda 2(c) and A1 = A1(c) unless otherwise specified. With the help of calculations
done in Theorem 4.2, we can relatively easily derive the following formulas for L1:

(4.11) L1(U, V ) = V 2(1 - V )G2(V ),

where

G2(V ) =  - 12d\lambda 2
2aV

2 + 3\lambda 2V
\Bigl[ 
(5d\lambda 2  - (c - \alpha ))a - 2d\lambda 2

\Bigl( \mu 
\sigma 
 - A1

\Bigr) \Bigr] 
+a

\bigl[ 
 - 4d\lambda 2

2 + 2\lambda 2(c - \alpha ) + \sigma 
\bigr] 
+ d\lambda 2

2

\biggl( 
4\mu 

\sigma 
 - 6A1

\biggr) 
 - 2\lambda 2(c - \alpha )

\Bigl( \mu 
\sigma 
 - A1

\Bigr) 
.
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1834 ZHE HUANG AND CHUNHUA OU

Notice that G2(V ) is a parabolic function in V . Through a similar analysis on its
determinant done in Theorem 4.2, we obtain that G2(V ) = 0 has solutions when
a \in S1(c, \lambda 2). Under this condition, the inequalities G2(0) \geq 0 and G2(1) \geq 0 ensure
L1 \geq 0. That means

G2(0) = a
\bigl[ 
 - 4d\lambda 2

2 + 2\lambda 2(c - \alpha ) + \sigma 
\bigr] 
+ d\lambda 2

2

\biggl( 
4\mu 

\sigma 
 - 6A1

\biggr) 
 - 2\lambda 2(c - \alpha )

\Bigl( \mu 
\sigma 
 - A1

\Bigr) 
\geq 0

and

G2(1) = a
\bigl[ 
 - d\lambda 2

2  - \lambda 2(c - \alpha ) + \sigma 
\bigr] 
 - 2

\Bigl[ 
d\lambda 2

2

\mu 

\sigma 
+ \lambda 2(c - \alpha )

\Bigl( \mu 
\sigma 
 - A1

\Bigr) \Bigr] 
\geq 0.

Depending on the sign of  - 4d\lambda 2
2 +2\lambda 2(c - \alpha ) + \sigma and  - d\lambda 2

2  - \lambda 2(c - \alpha ) + \sigma , we have
four cases. Since the analyses on those four cases are similar, we only present the case
when  - 4d\lambda 2

2 +2\lambda 2(c - \alpha )+\sigma > 0 and  - d\lambda 2
2  - \lambda 2(c - \alpha )+\sigma > 0 in detail. Under this

condition,

a \geq 
d\lambda 2

2

\bigl( 
4\mu 
\sigma  - 6A1

\bigr) 
 - 2\lambda 2(c - \alpha )

\bigl( 
\mu 
\sigma  - A1

\bigr) 
4d\lambda 2

2  - 2\lambda 2(c - \alpha ) - \sigma 
and a \geq 

2
\bigl[ 
d\lambda 2

2
\mu 
\sigma + \lambda 2(c - \alpha )

\bigl( 
\mu 
\sigma  - A1

\bigr) \bigr] 
 - d\lambda 2

2  - \lambda 2(c - \alpha ) + \sigma 
.

That means if a \in S\prime 
3(c, \lambda 2)\cap S\prime 

4(c, \lambda 2)\cap S1(c, \lambda 2), then L1(U, V ) \geq 0. In other words,
when a \in M3(c, \lambda 2), we have L1(U, V ) \geq 0.

For the V -equation, we obtain

L2(U, V ) = V 2(1 - V )J\lambda 2(V ) = V 2(1 - V )( - 2\epsilon \lambda 2
2  - \sigma a+ \rho ).

It is easy to see that if the strict inequality (4.10) holds, then \rho > \sigma a + 2\epsilon \lambda 2
2 with

a = infM , which means L2(U, V ) > 0. Therefore, we have found a pair of lower
solutions with the faster decay rate. If we take kv = 1 - \eta for sufficiently small \eta , by
continuity, the above derivation is still true. By Theorem 3.4, the nonlinear selection
is realized.

Since the ratio U
V has a parabolic behavior as shown in the right panel in Figure

3, we can give another approach to find conditions for the nonlinear selection.

Theorem 4.6. Let \kappa = A1(c0)
\mu 
\sigma +A1(c0)

. Suppose that

(4.12)\left\{         
2\lambda 0(c0  - \alpha )A1(c0) + \mu  - 6d\lambda 2

0A1(c0) > 0,

\sigma A1(c0) + 2\mu + 2\lambda 0(c0  - \alpha )A1(c0) > 0,

 - 6d\lambda 2
0A

2
1(c0) + 2A1(c0)

\bigl( 
\mu 
\sigma +A1(c0)

\bigr) 
(2d\lambda 2

0  - \lambda 0(c0  - \alpha )) + \sigma 
\bigl( 
\mu 
\sigma +A1(c0)

\bigr) 2
> 0,

 - 2d\lambda 2
0  - 2\lambda 0(c0  - \alpha ) + \sigma > 0.

Then the minimal wave speed of system (4.1) is nonlinearly selected if

(4.13) \rho > 2\epsilon \lambda 2
0 +

\mu \kappa 

1 - \kappa 
,

where A1(c0) and \lambda 0 are as defined in (2.10) and Lemma 2.2, respectively.

Proof. When c = c0 + \varepsilon 3 with \varepsilon 3 > 0 being small, let V be as defined in (3.9)
with m = 1 and kv = 1. Define

U = V \cdot max
\xi \in \BbbR 

\Bigl\{ 
A1(c)(1 - V ),

\mu 

\sigma 
V
\Bigr\} 
=

\Biggl\{ 
A1(c)(1 - V )V , \xi \geq \xi 2,
\mu 

\sigma kv
V 2, \xi < \xi 2,
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TRAVELING WAVES TO A STREAM-POPULATION MODEL 1835

where \xi 2 \in \BbbR such that V (\xi 2) = A1(c)

A1(c)+
\mu 
\sigma 

. Thus, by substituting them into L1 and

L2, we obtain

L1(U, V ) =

\left\{           
V 2

\biggl\{ 
 - 6d\lambda 2

2A1V 2 + V
\bigl[ 
12d\lambda 2

2A1  - 2\lambda 2(c - \alpha )A1

\bigr] 
+ 2\lambda 2(c - \alpha )A1 + \mu  - 6d\lambda 2

2A1

\biggr\} 
,

V \in [0, V (\xi 2)],

\mu 
\sigma 
V (1 - V )

\biggl\{ 
 - 6d\lambda 2

2V
2 + V

\bigl[ 
4d\lambda 2

2  - 2\lambda 2(c - \alpha )
\bigr] 
+ \sigma 

\biggr\} 
, V \in (V (\xi 2), 1],

and

L2(U, V ) =

\left\{       
V 2(1 - V )

\biggl\{ 
 - 2\epsilon \lambda 2

2 +
 - \mu 
1 - V + \rho 

\biggr\} 
, V \in [0, V (\xi 2)],

\mu 
\sigma V

2(1 - V )

\biggl\{ 
 - 2\epsilon \lambda 2

2 +
 - \sigma A1

V + \rho 

\biggr\} 
, V \in (V (\xi 2), 1].

For the L1 part, let G3(V ) :=  - 6d\lambda 2
2A1V

2 + V
\bigl[ 
12d\lambda 2

2A1  - 2\lambda 2(c - \alpha )A1

\bigr] 
+ 2\lambda 2(c - 

\alpha )A1 + \mu  - 6d\lambda 2
2A1, which is a quadratic function in V . The first inequality in (4.12)

implies that G3(0) \geq 0, and

G3(V (\xi 2)) =
\mu 2

\bigl( 
 - 6d\lambda 2

2A1 + 2\lambda 2(c - \alpha )A1 + \mu 
\bigr) 
+ \mu \sigma A1 (2\lambda 2(c - \alpha )A1 + \sigma A1 + 2\mu )

(\mu + \sigma A1)2
\geq 0

provided by the first and second inequalities. Therefore, G3(V ) \geq 0 for V \in [0, V (\xi 2)].
Then, denote G4(V ) :=  - 6d\lambda 2

2V
2 +V

\bigl[ 
4d\lambda 2

2  - 2\lambda 2(c - \alpha )
\bigr] 
+\sigma , which is convex down

in V . Thus, it suffices to find the values of G4(V (\xi 2)) and G4(1). Through a direct
computation and the third and fourth inequalities in (4.12), we obtain that G4(1) =
 - 2d\lambda 2

2  - 2\lambda 2(c - \alpha ) + \sigma \geq 0 and

G4(V (\xi 2)) =
 - 6d\lambda 2

2A
2
1\bigl( 

\mu 
\sigma +A1

\bigr) 2 +
A1

\bigl[ 
4d\lambda 2

2  - 2\lambda 2(c - \alpha )
\bigr] \bigl( 

\mu 
\sigma +A1

\bigr) + \sigma \geq 0.

As for the L2 part, it is not difficult to verify that L2(U, V ) \geq 0 if \rho \geq 2\epsilon \lambda 2
2 +

\mu 
1 - V (\xi 2)

when \xi \geq \xi 2, and \rho \geq 2\epsilon \lambda 2
2+

\sigma A1

V (\xi 2)
when \xi < \xi 2. Notice that \sigma A1

V (\xi 2)
= \mu 

1 - V (\xi 2)
.

When \varepsilon 3 is small enough, (4.13) implies that if \rho \geq 2\epsilon \lambda 2
2+

\mu 
1 - V (\xi 2)

, then L2(U, V ) \geq 0

for \xi \in \BbbR . Thus, the nonlinear selection result follows.

Remark 4.7. In this application, we only present conditions for the speed selection
when m = 1. In fact, if m = 2 (the derivation is much more complicated), we can
obtain the following result.

Theorem 4.8. Let
(4.14)

Fc0 (a) := a2
\bigl[ 
469d2\lambda 4

0 + 135d\lambda 3
0(c0  - \alpha )

\bigr] 
 - a

\Bigl[ 
128d2\lambda 4

0

\mu 

\sigma 
+ 7d2\lambda 4

0A1(c0)
\Bigr] 
+ 64d2\lambda 4

0

\Bigl( \mu 

\sigma 
 - A1(c0)

\Bigr) 2
,

and Fc0(a) = 0 has two roots 0 < am(c0) < aM (c0) with A1(c0) and \lambda 0 being defined
in (2.10) and Lemma 2.2, respectively. Assume that

(4.15) 4d\lambda 2
0  - 2\lambda 0(c0  - \alpha ) - \sigma > 0.

Then the system (4.1) is linearly selected if

(4.16) \rho \leq 1 + \sigma A1(c0) - \mu + \sigma aM (c0).

We omit the proof, since it is similar to the previous one. Later, we will demon-
strate a numerical example (the first one) in which the result in the choice of m = 2
may be better than that in the choice of m = 1 when 4d\lambda 2

0  - 2\lambda 0(c0  - \alpha ) - \sigma > 0.
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Fig. 4. (Color online.) The relation between the spreading speed and \rho . (a) This figure is
depicted when d = 3, \epsilon = 0.1, \sigma = 3, \mu = 1, and \alpha = 1. Here, c0 = 1.9945625. (b) This figure is
depicted when d = 2, \epsilon = 0.2, \mu = 3, \sigma = 1, and \alpha = 2. Here, c0 = 2.7458.

To complete this section, we provide two numerical examples to manifest our
theoretical results. In the first example, we choose the parameter set as d = 3, \epsilon = 0.1,
\mu = 1, \sigma = 3, and \alpha = 1. In this set, we find that c0 = 1.9946, \lambda 0 = 0.6906, and
A1 = 0.4433. Then, by a simple computation, we obtain that 4d\lambda 2

0 - 2\lambda 0(c0 - \alpha ) - \sigma =
1.3495 > 0, 5d\lambda 0  - (c0  - \alpha ) = 9.36444 > 0, a3 =  - 0.0486, and a4 =  - 1.2942.
Through Theorem 4.2 and its corollary, the linear selection result is only valid if
\rho \leq 1, but Theorem 4.8 can show an improvement. We find that Fc0(a) = 0 has two
solutions am = 0.0231 and aM = 0.0626. Thus, by Theorem 4.8, the system under
this parameter set is linearly selected when \rho \leq 1.5175. To find numerical speeds cnum
corresponding to different values of \rho , we use the MATLAB software to compute the
solution of (1.3), where the initial conditions are

(4.17) u(x, 0) =
\mu 
\sigma 

1 + e10x
and v(x, 0) =

1

1 + e10x

such that they are steep enough to be close to the step functions. By [6, 18], the
spreading speed of solutions with such initial data will evolve to cmin, so our nu-
merically computed cnum, obtained from the level set of the solution, would give
an approximation to the minimal wave speed. The values of numerically computed
speed are shown in Figure 4(a). As we can see, the critical value for \rho is \=\rho \simeq 2.2.
Furthermore, this result illustrates our theoretical results.

In the second example, we fix d = 2, \epsilon = 0.2, \mu = 3, \sigma = 1, and \alpha = 2. Under this
choice of parameters, we can find that c0 = 2.7458, \lambda 0 = 0.3947, and A1 = 3.0526.
Through a direct computation, it follows that 4d\lambda 2

0  - 2\lambda 0(c0  - \alpha )  - \sigma =  - 0.3424,
5d\lambda 0 - (c0 - \alpha ) = 3.2012,  - d\lambda 2

0 - \lambda 0(c0 - \alpha )+\sigma = 0.3941, a3 =  - 0.0259, a4 = 5.6567,
and a5 = 4.6653. Moreover, hc0 = 0 has two solutions a1 = 0.0003 and a2 = 1.4477.
Thus, (4.1) is linearly selected if a \in [a1, a2] and \rho \leq \sigma a2 + 2\epsilon \lambda 2

0 = 1.51 by Theorem
4.2. As for the nonlinear selection, by Theorem 4.5, we obtain that the nonlinear
selection is realized if a \geq a4 = 5.6567 and \rho > 5.7190. By applying the same method
in the first example, the numerical speeds (spreading speeds) are obtained and shown
in Figure 4(b). As we can see in the figure, \=\rho \simeq 1.6, which confirms our theoretical
result.

Remark 4.9. Finally, we would like to emphasize that the model here is com-
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TRAVELING WAVES TO A STREAM-POPULATION MODEL 1837

pletely different from the diffusive Lotka--Volterra competition system in [1, 2], where
two species compete for the same resource. Here, we study a significant model de-
scribing a species in two different compartments or stages. The Allee effect appears
in this model, while we cannot see this in [1, 2]. We focus here on how the spread-
ing speed is impacted by the Allee strength. Furthermore, in [1, 2], the linearized
system at (0, 0) is decoupled so that the linear speed is given by a simple formula
c0 = 2

\surd 
1 - a1. For the construction of upper or lower solutions to the system, we

can take V = kU for different values of k, or we can assume that V admits different
decay behavior than U . For the stream population model in this paper, the linear
system at (0, 0) is irreducible and the linear speed is determined by an order-4 poly-
nomial. No explicit formula c0 can be obtained. To determine the spreading speed
(the minimal speed), our numerical simulation indicates that the graph of U/V looks
like a vertical parabola. This provides us insight to construct novel solution pairs
with U/V = aV 2 + bV + c.

5. Conclusion. In this paper, we investigated the speed selection mechanism
(linear and nonlinear) via the upper and lower solutions method for traveling waves
to a reaction-advection-diffusion model (1.3).

For this stream-population model, we focus on how the spreading speed is im-
pacted by the Allee effect. Here, the so-called asymptotic spreading speed (which
represents a critical value of biological invasion) coincides with the minimal speed
cmin of the traveling waves. However, its value is usually difficult to determine. We
consider the case when the system is modeled with a weak Allee effect [15], i.e., with
a growth function as f(v) = v(1  - v)(1 + \rho v). For such a growth function, when
\rho > 1 (i.e., f(v) > f \prime (0)v when v \in [0, 1]), the per capita growth rate (f(v)/v) of
this species attains its maximum at an intermediate population size. The strength of
the Allee effect increases in the parameter \rho . When \rho = 0, it reduces to the classical
logistic growth. We are successful in establishing the relation between the spreading
speed and the Allee effect. We also have proved that there exists a threshold value
(a critical number) \=\rho to divide the speed selection. Specifically, our theoretical and
numerical results show that the spreading speed is an increasing function of \rho . Given
values of \mu , \sigma , \alpha , \epsilon , and d (through experiments), we can compute the linear speed
c0 and further estimate the threshold value \=\rho with analytic formulas.

In the novel construction of upper and lower solutions for the speed selection,
we should emphasize that the parabolic formula for U

V in terms of V is entirely new
and totally different from the formula given in [1, 2] (where they only assumed a
linear relation, i.e., U

V = k, and this idea does not work here). By this technique,
we successfully establish explicit conditions for both the linear and the nonlinear
selections: see Theorems 4.2 (m = 1) and 4.8 (m = 2) for the linear selection and
Theorems 4.5--4.6 for the nonlinear selection.

We should also mention that all the coefficients of our main model are constant,
but this is not essential in our method and idea. It can be interestingly extended to a
more general case, such as where all the coefficients are time-periodic functions, and
even with periodic habitats. Efforts on these aspects are currently in progress and
will be presented in future publications.

Appendix A. In this appendix, we will show the upper and lower solutions
method in detail. This method is originated in [5, 17] and used to prove the existence of
monotone traveling wave solutions to partial differential equations. In the meantime,
we can also apply it to derive the linear speed selection.
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1838 ZHE HUANG AND CHUNHUA OU

Let \=M1 be a sufficiently large positive number so that

F (U, V ) = \sigma U  - \mu V + f(V ) +MV

is monotone in V . Then the wave equations in (1.5) are equivalent to

(A.1)

\Biggl\{ 
dU \prime \prime + (c - \alpha )U \prime  - \sigma U =  - \mu V,

\epsilon V \prime \prime + cV \prime  - MV =  - F (U, V ).

For the first equation, we have already solved it by (3.1). For the second equation,
when \epsilon > 0, the integral form is given by

V (\xi ) =
1

\epsilon (\gamma 2  - \gamma 1)

\Biggl\{ \int \xi 

 - \infty 
e\gamma 1(\xi  - s)F (U(s), V (s))ds+

\int +\infty 

\xi 

e\gamma 2(\xi  - s)F (U(s), V (s))ds

\Biggr\} 
=: T2(U, V ),(A.2)

where

(A.3) \gamma 1 =
c - 

\surd 
c2 + 4\epsilon M

2\epsilon 
< 0 < \gamma 2 =

c+
\surd 
c2 + 4\epsilon M

2\epsilon 
.

When \epsilon = 0,

(A.4) V (\xi ) =
1

c

\int +\infty 

\xi 

e
M
c (\xi  - s)F (U(s), V (s))ds =: T2(U, V ).

Thus, the system (A.1) in an integral form reads

(A.5)

\Biggl\{ 
U(\xi ) = H(V ) = T1(U, V ),

V (\xi ) = T2(U, V ),

where H(V ) is defined by (3.1) and T2(U, V ) is defined by (A.2) when \epsilon > 0 or (A.4)
when \epsilon = 0. Then, with the integral form, we can define an upper (or a lower)
solution.

Definition A.1. A pair of continuous functions (U, V )(\xi ) is an upper (a lower)
solution to the integral system (A.5) if\Biggl\{ 

U(\xi ) \geq (\leq )T1(U, V )(\xi ),

V (\xi ) \geq (\leq )T2(U, V )(\xi ).

Since the above integral forms are not practical in finding upper or lower solutions,
we then give inequalities in terms of differential equations themselves that imply
Definition A.1 in the following lemma.

Lemma A.2. A pair of continuous functions (U, V )(\xi ) which is differentiable on
\BbbR except at finite numbers of points \xi i, i = 1, . . . , n, and satisfies\Biggl\{ 

dU \prime \prime + (c - \alpha )U \prime  - \sigma U + \mu V \leq 0,

\epsilon V \prime \prime + cV \prime + \sigma U  - \mu V + f(V )V \leq 0

for \xi \not = \xi i and (U \prime , V \prime )(\xi  - i ) \geq (U \prime , V \prime )(\xi +i ) for all \xi i is an upper solution to the integral
system (A.5). A lower solution can be defined by reversing all the inequalities.
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Proof. We give a proof for the upper solution, while a similar argument can be
applied for the lower solution. From the above inequalities, we have

T1(U, V )(\xi ) =
\mu 

d(\tau 2  - \tau 1)

\Biggl\{ \int \xi 

 - \infty 
e\tau 1(\xi  - s)V (s)ds+

\int \infty 

\xi 

e\tau 2(\xi  - s)V (s)ds

\Biggr\} 
(A.6)

\leq  - \mu 

d(\tau 2  - \tau 1)

\biggl\{ \int \xi 

 - \infty 
e\tau 1(\xi  - s)(dU \prime \prime + (c - \alpha )U \prime  - \sigma U)(s)ds

+

\int \infty 

\xi 

e\tau 2(\xi  - s)(dU \prime \prime + (c - \alpha )U \prime  - \sigma U)(s)ds

\biggr\} 
.

By a similar calculation to that of [10, proof of Lemma 2.5], we can show that

T1(U, V )(\xi ) \leq U(\xi ).

The same result holds for T2(U, V )(\xi ) \leq V (\xi ). This implies that (U, V )(\xi ) is an upper
solution to the system (A.5). The proof for the lower solution is the same and so is
omitted.

To move on to the upper and lower solutions method, we first assume the following
hypothesis.

Hypothesis A.3. For a given c > c0, assume there exist a monotone non-
increasing upper solution (U, V )(\xi ) and a nonzero lower solution (U, V )(\xi ) to the
system (A.5) with the following properties:
(1) (U, V )(\xi ) \leq (U, V )(\xi ) for all \xi \in \BbbR ;
(2) (U, V )(+\infty ) = (0, 0) and (U, V )( - \infty ) = (k1, k2);
(3) (U, V )(+\infty ) = (0, 0) and (U, V )( - \infty ) = (k1, k2) for (0, 0) \leq (k1, k2) \leq (\mu \sigma , 1)

and (k1, k2) \geq (\mu \sigma , 1) so that no other equilibrium solution to (1.5) exists in the set

\{ (U, V )| (0, 0) \leq (U, V ) \leq (k1, k2)\} .
Then, under the conditions of the above hypothesis, we can define an iteration

scheme as

(A.7)

\left\{     
(U0, V0) = (U, V ),

Un+1 = T1(Un, Vn), n = 0, 1, 2, . . . ,

Un+1 = T1(Un, Vn), n = 0, 1, 2, . . . .

At last, by the results in [5, 17], we can arrive at the following theorem, which
shows that the existence of an upper solution and a lower solution indicates the
existence of the actual solution.

Theorem A.4. If Hypothesis A.3 is true, then the iteration scheme (A.7) con-
verges to a pair of nonincreasing functions (U, V )(\xi ), which is a solution to the system
(1.5) with (U, V )(+\infty ) = (0, 0) and (U, V )( - \infty ) = (\mu \sigma , 1). Moreover, (U, V )(\xi ) \leq 
(U, V )(\xi ) \leq (U, V )(\xi ) for all \xi \in \BbbR .
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