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Abstract. In the context of an idealized model describing an atom coupled to black-body radiation
at a sufficiently high positive temperature, we show that the atom will end up being ionized in the
limit of large times. Mathematically, this is translated into the statement that the coupled system
does not have any time-translation invariant state of positive (asymptotic) temperature, and that the
expectation value of an arbitrary finite-dimensional projection in an arbitrary initial state of positive
(asymptotic) temperature tends to zero, as time tends to infinity. These results are formulated within
the general framework of W∗-dynamical systems, and the proofs are based on Mourre’s theory of
positive commutators and a new virial theorem. Results on the so-called standard form of a von
Neumann algebra play an important role in our analysis.
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1. Introduction

In this paper, we study an idealized model describing an atom or molecule con-
sisting of static nuclei and electrons coupled to black-body radiation. Our aim is
to show that when the quantized radiation field is in a thermal state corresponding
to a sufficiently high positive temperature, and under suitable conditions on the
interaction Hamiltonian, including infrared and ultraviolet cutoffs and a small value
of the coupling constant, the atom or molecule will always be ionized in the limit
of very large times. This process is called thermal ionization.

Thus, a very dilute gas of atoms or molecules in intergalactic space and sub-
ject to the 3K thermal background radiation of the universe will eventually be
transformed into a very dilute plasma of nuclei and electrons.

If the temperature of the black-body radiation is small, as compared to a typical
atomic ionization energy, then an atom initially prepared in an excited bound state
will start to emit light and relax towards its ground-state. After a time much longer
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than its relaxation time, it will be stripped of its electrons in very unlikely events
where an atomic electron is hit by a high-energy photon from the thermal back-
ground radiation. The life time of the groundstate of an isolated atom interacting
with black body radiation at inverse temperature β, before it is ionized, is expected
to be exponentially large in β. A precise description of the temporal evolution of
such an atom is difficult to come by; but the claim that it will eventually be ionized,
is highly plausible. To most physicists, this result must look obvious. Unfortunately
a complete proof of it is likely to be very involved. The main purpose of this paper is
to present some partial results, thermal ionization at sufficiently high temperatures
for simplified models, supporting this picture.

If the temperature of electromagnetic radiation is strictly zero then an atom
initially prepared in a bound state of maximal energy well below its ionization
threshold can be shown to always relax to a groundstate by emitting photons; (for
a proof of this statement in some slightly idealized models see [FGS]). This result
and our complementary result on thermal ionization provide some qualitative un-
derstanding of two fundamental irreversible processes in atomic physics: relaxation
to a ground state, and ionization by thermal radiation.

Next, we describe the physical system analyzed in this paper somewhat more
precisely; (for further details see Section 2.1). It is composed of a subsystem with
finitely many degrees of freedom, the ‘atom’ (or ‘molecule’), and a subsystem with
infinitely many degrees of freedom, the ‘radiation field.’ The space of pure state
vectors of the atom is a separable Hilbert space, Hp; (where the subscript p stands
for ‘particle’). Mixed states of the atom are described by density matrices, ρ, where
ρ is a nonnegative, trace-class operator on Hp of unit trace. The expectation value
of a bounded operator A on Hp in the state ρ is given by

ωp
ρ (A) := tr ρA. (1)

Before the ‘atom’ or particle system is coupled to the radiation field the time
evolution of a bounded operator A on Hp in the Heisenberg picture is given by

α
p
t (A) := eitHpAe−itHp, (2)

where Hp is the particle Hamiltonian, which is a selfadjoint operator on Hp whose
spectrum is bounded from below by a constant E > −∞.

To be specific, we may think of Hp as being the Hilbert space

Hp = C
n ⊕ L2(R3, d3x), (3)

and the Hamiltonian Hp as the operator

Hp = diag(E0 = E,E1, . . . , En−1) �Cn ⊕(−�) �L2(R3,d3x), (4)

describing a one-electron atom (with a static nucleus) with n boundstates of ener-
gies E0, E1, . . . , En−1 < 0 and scattering states of arbitrary energies k2 ∈ [0,∞)

spanning the subspace L2(R3, d3x) of Hp. Thus, the point spectrum of Hp is given
by the eigenvalues {E0, E1, . . . , En−1} and the continuous spectrum of Hp covers
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[0,∞), has constant (infinite) multiplicity and is absolutely continuous. Just in
order to keep things simple, we shall usually assume that n = 1.

The bounded operators on a Hilbert space H form a von Neumann algebra
denoted by B(H). A convenient algebra of operators encoding the kinematics of
the ‘atom’ or particle system is the algebra Ap := B(Hp).

The ‘radiation field’ is described by a free, massless, scalar Bose field ϕ on
physical space R

3, a ‘phonon field.’ For purposes of physics, it would be prefer-
able to replace ϕ by the free electromagnetic field. In our entire analysis, this
replacement can be made without any difficulties – at the price of slightly more
complicated notation. A convenient algebra of operators to encode the kinematics
of the radiation field is a C∗-algebra Af which can be viewed as a time-averaged
version of the algebra of Weyl operators generated by ϕ and its conjugate mo-
mentum field π . The time evolution of operators in Af , in the Heisenberg picture,
before the field is coupled to the particle system, is given by the free-field time
evolution α

f
t , which is a one-parameter group of ∗automorphisms of Af .

A one-parameter group {αt |t ∈ R} defined on a C∗-algebra A is a ∗auto-
morphism group of A iff

αt(A) ∈ A, (αt(A))∗ = αt (A
∗), for all A ∈ A,

αt(A)αt (B) = αt (AB), for all A,B ∈ A, (5)
αt=0(A) = A, αt(αs(A)) = αt+s(A), for all A ∈ A, t, s ∈ R.

Since we work on a time-averaged Weyl algebra, the free field time evolution is
norm continuous, i.e., t �→ α

f
t (A) is a continuous map from R to Af . General

states of the radiation field can be described as states on the algebra Af , i.e., as
positive, linear functionals, ω, on Af normalized such that ω(1) = 1.

A convenient algebra of operators to encode the kinematics of the system com-
posed of the ‘atom’ and the ‘radiation field’ is the C∗-algebra, A, given by

A = Ap ⊗ Af . (6)

The time evolution of operators in A, before the two subsystems are coupled to
each other, is given by

αt,0 := α
p
t ⊗ α

f
t . (7)

A regularized interaction coupling the two subsystems can be introduced by
choosing a bounded, selfadjoint operator V (ε) ∈ A, where the superscript (ε) indi-
cates that a regularization has been imposed on an interaction term, V , in such a
way that ‖V (ε)‖ = O(1/ε). We define the regularized, interacting time evolution
of the coupled system as a ∗automorphism group {α(ε)

t,λ | t ∈ R} of the algebra A

given by the norm-convergent Schwinger–Dyson series

α
(ε)
t,λ(A) = αt,0(A) +

∞∑
n=1

(iλ)n

∫ t

0
dt1 · · ·

· · ·
∫ tn−1

0
dtn[αtn,0(V

(ε)), [αtn−1,0(V
(ε)), . . . ,

[αt1,0(V
(ε)), αt,0(A)] · · ·]], (8)
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for an arbitrary operator A ∈ A. In Equation (8), λ is a coupling constant, and the
interaction term V is chosen in accordance with conventional models describing
electrons coupled to the quantized radiation field.

We are interested in analyzing the time evolution of the coupled system in
some states ω of physical interest, i.e., in understanding the time-dependence of
expectation values

ω(α
(ε)
t,λ(A)), A ∈ A, (9)

in the limit where the regularization is removed, i.e., ε → 0, and for large times t .
The states ω of interest are states ‘close to’ (technically speaking, normal with
respect to) a reference state of the form

ωρ,β := ωp
ρ ⊗ ω

f

β , (10)

where ωp
ρ is given by a density matrix ρ on Hp, see Equation (1), and ω

f

β is the
thermal equilibrium state of the radiation field at temperature T = (kBβ)−1, where
kB is Boltzmann’s constant. Technically, ω

f

β is defined as the unique (α
f
t , β)-KMS

state on the algebra Af ; it is invariant under (or ‘stationary’ for) the free-field time
evolution α

f
t . If the density matrix ρ describes an arbitrary statistical mixture of

bound states of Hp, but ρ vanishes on the subspace L2(R3, d3x) of Hp, then ωρ,β

is stationary for the free time evolution αt,0 defined in Equation (7). However, it
is not an equilibrium (KMS) state for αt,0. In fact, because Hp has continuous
spectrum, there are no equilibrium (KMS) states on A for the time evolution αt,0.

Given the algebra A and a reference state ωρ,β on A, as in Equation (10),
the GNS construction associates with the pair (A, ωρ,β) a Hilbert space H , a
∗representation πβ of A on H , and a vector �ρ ∈ H , cyclic for the algebra πβ(A),
such that

ωρ,β(A) = 〈�ρ, πβ(A)�ρ〉, (11)

for all A ∈ A. The closure of the algebra πβ(A) in the weak operator topology is a
von Neumann algebra of bounded operators on H which we denote by Mβ . This
algebra depends on β, but is independent of the choice of the density matrix ρ. The
states ω on A of interest to us are given by vectors ψ ∈ H in such a way that

ω(A) = 〈ψ,πβ(A)ψ〉, A ∈ A. (12)

We shall see that there exists a selfadjoint operator L
(ε)
λ on H generating the

time evolution of the coupled system, in the sense that

πβ(α
(ε)
t,λ(A)) = eitL

(ε)
λ πβ(A)e−itL

(ε)
λ , (13)

for A ∈ A; L
(ε)
λ is called the (regularized) Liouvillian. Clearly,

σ
(ε)
t,λ (K) := eitL

(ε)
λ Ke−itL

(ε)
λ , K ∈ Mβ, (14)
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defines a ∗automorphism group of time translations on Mβ . For an interesting class
of models, we shall show that

s-lim
ε→0

eitL
(ε)
λ =: eitLλ (15)

exists, for all t , and defines a unitary one-parameter group on H . It then follows
from (14) and (15) that

σt,λ(K) := eitLλKe−itLλ (16)

defines a one-parameter group of ∗automorphisms on the von Neumann alge-
bra Mβ . The pair (Mβ, σt,λ) defines a so-called W ∗-dynamical system. If the cou-
pling constant λ vanishes then a state ωρ,β = ωp

ρ ⊗ ω
f

β , where the density matrix ρ

vanishes on the subspace L2(R3, d3x) ⊂ Hp corresponding to the continuous
spectrum of Hp and commutes with Hp, is an invariant state for σt,0, in the sense
that

ωρ,β(σt,0(K)) := 〈�ρ, σt,0(K)�ρ〉 = ωρ,β(K), (17)

for all K ∈ Mβ .
The main result proven in this paper can be described as follows: For an interest-

ing class of interactions, V , for an arbitrary inverse temperature 0 < β < ∞, and
for all real coupling constants λ with 0 < |λ| < λ0(β), where λ0(β) depends on the
choice of V , and on β as λ0(β) ∼ eβE0 , where E0 < 0 is the ground state energy
of the particle system, there do not exist any states ω on Mβ close, in the sense of
Equation (12), to a reference state ωρ,β , as in Equation (10), which are invariant
under the time evolution σt,λ on Mβ , (in the sense that ω(σt,λ(K)) = ω(K), for
K ∈ Mβ ).

In other words, we show that, under the hypotheses described above, there are
no time-translation invariant states of the coupled system of asymptotic temper-
ature T = (kBβ)−1 > 0. It will turn out that this result is a consequence of
the following one: For a certain canonical definition of the Liouvillian Lλ of the
coupled system, and under the hypotheses sketched above, Lλ does not have any
eigenvectors ψ ∈ H , in particular, ker Lλ = {0}. This result will be proven with
the help of Mourre’s theory of positive commutators applied to Lλ and a new virial
theorem.

As a corollary of our results it follows that, for an arbitrary vector ψ ∈ H and
an arbitrary compact operator K on H ,

〈ψ, eitLλKe−itLλψ〉 −→ 0, (18)

as time t → ∞, (at least in the sense of ergodic means). This means that the
survival probability of an arbitrary bound state of the atom coupled to the quantized
radiation field in a thermal equilibrium state at positive temperature tends to zero,
as time t → ∞. Heuristically, this can be understood by using Fermi’s Golden
Rule.



244 JÜRG FRÖHLICH AND MARCO MERKLI

One may wonder how the quantum-mechanical motion of an electron looks like,
after it has been knocked off the atom by a high-energy boson, i.e., after thermal
ionization. We cannot give an answer to this question in this paper, because we are
not able to analyze appropriately realistic models yet. But it is natural to expect
that this motion will be diffusive, furnishing an example of ‘quantum Brownian
motion.’ Progress on this question would be highly desirable.

Organization of the paper. In Section 2, we define the model, and state our main
result on thermal ionization, Theorem 2.4, which follows from spectral properties
of the Liouvillian proven in our key technical theorem, Theorem 2.3. In Section 3,
we state two general virial theorems, Theorems 3.2 and 3.3, we present a result on
regularity of eigenfunctions of Liouvillians, Theorem 3.4, and explain some basic
ideas of the positive commutator method. The proof of Theorem 2.3 (spectrum of
Liouvillian) is given in Section 4. It consists of two main parts: verification that the
virial theorems are applicable in the particular situation encountered in the analysis
of our models (Subsection 4.2), and proof of a lower bound on a commutator of the
Liouvillian with a suitable conjugate operator (Subsections 4.3, 4.4). In Section 5,
we establish some technical results on the invariance of operator domains and on
certain commutator expansions that are needed in the proofs of the virial theorems
and of the theorem on regularity of eigenfunctions. Proofs of the latter results are
presented in Section 6. In Section 7, we describe some results on unitary groups
generated by vector fields which are needed in the definition of our ‘conjugate op-
erator’ Aa

p in the positive commutator method. The last section, Section 8, contains
proofs of several propositions used in earlier sections of the paper.

2. Definition of Models and Main Results on Thermal Ionization

In Section 2.1, we introduce our model and use it to define a W ∗-dynamical system
(Mβ, σt,λ). Our main results on thermal ionization are described in Section 2.2.

2.1. DEFINITION OF THE MODEL

Starting with the algebra A and a (regularized) dynamics α
(ε)
t,λ on it, we intro-

duce a reference state ωρ0,β , and consider the induced (regularized) dynamics σ
(ε)
t,λ

on πβ(A), where (H , πβ,�ρ0) denotes the GNS representation corresponding to
(A, ωρ0,β). We show that, as ε → 0, σ

(ε)
t,λ tends to a ∗automorphism group, σt,λ, of

the von Neumann algebra Mβ , defined as the weak closure of πβ(A) in B(H). We
determine the generator, Lλ, of the unitary group, eitLλ , on H implementing σt,λ;
Lλ is called a Liouvillian. The relation between eigenvalues of Lλ and invariant
normal states on Mβ will be explained later in this section (see Theorem 2.2). We
will sometimes write simply L instead of Lλ, for λ 
= 0.
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2.1.1. The Algebra Af

We introduce a C∗-algebra suitable for the description of the dynamics of the free
field, and, as we explain below, for the description of the interacting dynamics.

Let W = W(L2
0) be the Weyl CCR algebra over

L2
0 := L2(R3, d3k) ∩ L2(R3, |k|−1 d3k),

i.e., the C∗-algebra generated by the Weyl operators, W(f ), for f ∈ L2
0, satisfying

W(−f ) = W(f )∗, W(f )W(g) = e−iIm〈f,g〉/2W(f + g).

Here 〈·, ·〉 denotes the inner product of L2
0. The latter relation implies the CCR

W(f )W(g) = e−iIm〈f,g〉W(g)W(f ). (19)

The expectation functional for the KMS state of an infinitely extended free Bose
field in thermal equilibrium at inverse temperature β is given by

g �−→ ω
f

β (W(g)) = exp

{
−1

4

∫
R3

(
1 + 2

eβ|k| − 1

)
|g(k)|2 d3k

}
,

which motivates the choice of the space L2
0 (as opposed to g ∈ L2(R3)).

The free field dynamics on W is given by the ∗automorphism group

αW
t (W(f )) = W(ei|k|t f ). (20)

It is well known that for f 
= 0, t �→ αW
t (W(f )) is not a continuous map from R

to W, but t �→ ω(αW
t (W(f ))) is continuous for a large (weak∗ dense) class of

states ω on W. An interacting dynamics is commonly defined using a Dyson series
expansion, hence we should be able to give a sense to time integrals over αW

t (a),
for a ∈ W. Because of the lack of norm-continuity of the free dynamics, such an
integral cannot be interpreted in norm sense, but only in a weak hence representa-
tion dependent way. In order to give a representation independent definition of the
(coupled) dynamics, we modify the algebra in such a way that the free dynamics
becomes norm-continuous. The idea is to introduce a time-averaged Weyl algebra,
generated by elements given by

a(h) =
∫

R

ds h(s)αW
s (a), (21)

for functions h in a certain class, and a ∈ W (if h is sharply localized at zero, the
integral approximates a ∈ W). The free dynamics is then given by

α
f
t (a(h)) =

∫
R

ds h(s)αW
s (αW

t (a)) =
∫

R

ds h(s − t)αW
s (a).

We now construct a C∗-algebra whose elements, when represented on a Hilbert
space, are given by (21), where the integral is understood in a weak sense.
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Let P be the free algebra generated by elements

{a(h) | a ∈ W, ĥ ∈ C∞
0 (R)},

where ˆ denotes the Fourier transform. Taking the functions h to be analytic (i.e.,
having a Fourier transform in C∞

0 ) allows us to construct KMS states w.r.t. the free
dynamics, as we explain below. We equip the algebra P with the star operation
defined by (a(h))∗ = (a∗)(h̄), and introduce the seminorm

p(a(h)) = sup
π∈Rep W

∥∥∥∥ ∫
R

dt h(t)π(αW
t (a))

∥∥∥∥, (22)

where the supremum extends over all representations of W. The integral on the
r.h.s. of (22) is understood in the weak sense (t �→ π(αW

t (a)) is weakly mea-
surable for any π ∈ Rep W), and the norm is the one of operators acting on the
representation Hilbert space. It is not difficult to verify that

N = {a ∈ P | p(a) = 0}
is a two-sided ∗ideal in P. We can therefore build the quotient ∗algebra P/N

consisting of equivalence classes [a] = {a + n | a ∈ P, n ∈ N}, on which p

defines a norm

‖[a]‖ = p(a), [a] ∈ P/N,

having the C∗ property

‖[a]∗[a]‖ = ‖[a]‖2.

The C∗-algebra Af of the field is defined to be the closure of the quotient in this
norm,

Af = P/N
‖·‖

.

Notice that every πW ∈ Rep W induces a representation πf ∈ Rep Af according
to πf (a(h)) = ∫

dt h(t)πW(αW
t (a)). The algebra Af can be viewed as a time-

averaged version of the Weyl algebra. The advantage of Af over W is that the free
field dynamics on Af , defined by

α
f
t (a(h)) = a(ht), ht(x) = h(x − t), (23)

is a norm-continous ∗automorphism group, i.e., ‖αf
t (a) − a‖ → 0, as t → 0, for

any a ∈ Af .
There is a one-to-one correspondence between (β, αW

t )-KMS states ωW
β on W

and (β, α
f
t )-KMS states ω

f

β on Af , given by the relation

ω
f

β (a1(f1) · · · an(fn))

=
∫

dt1 · · · dtnf1(t1) · · · fn(tn)ω
W
β (αW

t1
(a1) · · · αW

tn
(an)).
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If (H , π
β

W
,�) is the GNS representation of (W, ωW

β ) then the one of (Af , ω
f

β ) is

given by (H , π
β

f ,�), where

π
β

f (a1(f1) · · · an(fn))

=
∫

dt1 · · · dtnf1(t1) · · · fn(tn)π
β

W
(αW

t1
(a0) · · · αW

tn
(an)). (24)

It follows that any unitary group implementing the free dynamics relative to π
β

W

implements it in the representation π
β

f , and conversely.

2.1.2. The Algebra A and the Regularized Dynamics α
(ε)
t,λ

The C∗-algebra A describing the ‘observables’ of the combined system is the tensor
product algebra

A = Ap ⊗ Af . (25)

Here Ap = B(Hp) is the C∗-algebra of all bounded operators on the particle
Hilbert space

Hp = C ⊕ L2(R+, de;H) ≡ C ⊕
∫ ⊕

R+
He de, (26)

where de is the Lebesgue measure on R+, H is a (separable) Hilbert space, and the
r.h.s. is the constant fibre direct integral with He

∼= H, e ∈ R+. An element in Hp

is given by ψ = {ψ(e)}e∈{E}∪R+ , where ψ(E) ∈ C, and ψ(e) ∈ H, e ∈ R+. Hp is
a Hilbert space with inner product

〈ψ,φ〉 = ψ(E)φ(E) +
∫

R+
〈ψ(e), φ(e)〉H de.

Let α
p
t denote the ∗automorphism group on Ap given by

α
p
t (A) = eitHpAe−itHp,

where Hp is a selfadjoint operator on Hp, which is diagonalized by the direct
integral decomposition of Hp:

Hp = E ⊕
∫ ⊕

R+
e de, for some E < 0. (27)

The domain of definition of Hp is given by

D(Hp) = C ⊕
{
ψ ∈

∫ ⊕

R+
He de

∣∣∣∣ ∫
R+

e2‖ψ(e)‖2
H de < ∞

}
. (28)

The dense set C∞
0 (R+;H) ≡ C∞

0 consists of all elements ψ ∈ Hp s.t. the
support, supp(ψ � R+), is a compact set in the open half-axis (0,∞), and s.t. ψ is
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infinitely many times continuously differentiable as an H-valued function. Clearly,
C∞

0 ⊂ D(Hp), and since eitHp leaves C∞
0 invariant, it follows that C∞

0 is a core
for Hp. It is sometimes practical to identify C ∼= Cϕ0, and we say that ϕ0 is the
eigenfunction of Hp corresponding to the eigenvalue E.

EXAMPLE. This model is inspired by considering a block-diagonal Hamil-
tonian Hp on the Hilbert space C ⊕ L2(R3, d3x), with Hp � C = E < 0,
Hp � L2(R3, d3x) = −�. Passing to a diagonal representation of the Laplacian
(Fourier transform), we have the following identifications, using polar coordinates:

Hp = C ⊕ L2(R3, d3k)

= C ⊕ L2(R+ × S2, |k|2 d|k| × d�)

= C ⊕ L2(R+, |k|2 d|k|;L2(S2, d�))

= C ⊕ L2(R+, dµ;H),

where we set H = L2(S2, d�), and make the change of variables |k|2 = e, so that
dµ(e) = µ(e) de, with µ(e) = (1/2)

√
e. To arrive at the form (26), (27) of Hp,

Hp, we use the unitary map U : L2(R+, dµ;H) → L2(R+, de;H), given by

ψ �−→ Uψ = √
µψ.

If Hp is the operator of multiplication by e on L2(R+, dµ;H), then its transform,
UHpU−1, is the operator of multiplication by e on L2(R+, de;H).

We define the noninteracting time-translation ∗automorphism group of A (the
free dynamics) by

αt,0 := α
p
t ⊗ α

f
t .

Given ε 
= 0, set

V (ε) :=
∑

α

Gα ⊗ 1

2iε
{(W(εgα))(hε) − (W(εgα))(hε)

∗} ∈ A, (29)

where the sum is over finitely many indices α, with Gα = G∗
α ∈ B(Hp), gα ∈ L2

0,
for all α, and where hε is an approximation of the Dirac distribution localized at
zero. To be specific, we can take hε(t) = (1/ε)e−t2/ε2

. For any value of the real
coupling constant λ, the norm-convergent Dyson series

αt,0(A)+
+

∑
n�1

(iλ)n

∫ t

0
dt1 · · ·

∫ tn−1

0
dtn[αtn,0(V

(ε)), [· · · [αt1,0(V
(ε)), αt,0(A)] · · ·]]

=: α
(ε)
t,λ(A), (30)

where A ∈ A, defines a ∗automorphism group of A. The multiple integral in (30)
is understood in the product topology coming from the strong topology of B(Hp)

and the norm topology of Af .
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One should view α
(ε)
t,λ as a regularized dynamics, in the sense that it has a limit,

as ε → 0, in suitably chosen representations of A; (this is shown below).
The functions gα ∈ L2

0 are called form factors. Using spherical coordinates
in R

3, we often write gα = gα(ω,�), where (ω,�) ∈ R+ × S2.
In accordance with the direct integral decomposition of Hp, the operators Gα

are determined by integral kernels. For ψ = {ψ(e)} ∈ Hp, we set

(Gαψ)(e) =


Gα(E,E)ψ(E) +

∫
R+

Gα(E, e′)ψ(e′) de′, if e = E,

Gα(e,E)ψ(E) +
∫

R+
Gα(e, e

′)ψ(e′) de′, if e ∈ R+.

(31)

The families of bounded operators Gα(e, e
′): He′ → He, with HE = C, have the

following symmetry properties (guaranteeing that Gα is selfadjoint):

Gα(E,E)∈ R,

Gα(E, e)∗ = Gα(e,E), ∀e ∈ R+,

Gα(e, e
′)∗ = Gα(e

′, e), ∀e, e′ ∈ R+.

Here, ∗ indicates taking the adjoint of an operator in B(H, C) or B(H).

Remarks. (1) The map Gα(E, e): He → C is identified (Riesz) with an element
�α(e) ∈ He, so that Gα(E, e)ψ(e) = 〈�α(e), ψ(e)〉He

. Then Gα(E, e)∗: C → He

is given by Gα(E, e)∗z = z�α(e), for all z ∈ C. Consequently, the above symmetry
condition implies that Gα(e,E)z = z�α(e).

(2) Assuming the strong derivatives w.r.t. the two arguments (e, e′) ∈ R
2+ of

Gα(·, ·) exist, we have that ∂1,2Gα(e, e
′) are operators H → H. Similarly, one

introduces higher derivatives. We assume that all derivatives occuring are bounded
operators on H. For Gα(·, ·) ∈ Cn(R+ × R+,B(H)), it is easily verified that the
above symmetry conditions imply that

(∂
n1
1 ∂

n2
2 Gα(e, e

′))∗ = ∂
n2
1 ∂

n1
2 Gα(e

′, e), (32)

for any n1,2 � 0, n1 + n2 � n, where ∗ is the adjoint on B(H). Similar statements
hold for Gα(E, e),Gα(e,E).

The interaction is required to satisfy the following three conditions:

(A1) Infrared and ultraviolet behaviour of the form factors: for any fixed � ∈ S2,
gα(·, �) ∈ C4(R+), and there are two constants 0 < k1, k2 < ∞, s.t. if
ω < k1, then

|∂j
ωgα(ω,�)| < k2ω

p−j , for some p > 2, (33)

uniformly in α, j = 0, . . . , 4 and � ∈ S2. Similarly, there are two constants
0 < K1,K2 < ∞, s.t. if ω > K1, then

|∂j
ωgα(ω,�)| < K2ω

−q−j , for some q > 7
2 . (34)
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(A2) The map (e, e′) �→ Gα(e, e
′) is C3(R+ × R+,B(H)), and we have∫

R+
de‖e−m1∂

m2
1 Gα(e,E)‖2

H < ∞, (35)∫
R+

de

∫
R+

de′‖e−m1(e′)−m′
1∂

m2
1 ∂

m′
2

2 Gα(e, e
′)‖2

B(H) < ∞, (36)

for all integers m1,2,m
′
1,2 � 0, s.t. m1+m′

1+m2+m′
2 = 0, 1, 2, 3. Moreover,∫

R+
de

∫
R+

de′‖eGα(e, e′)‖2
B(H) < ∞. (37)

(A3) The Fermi Golden Rule condition. Define a family of bounded operators
on Hp by

F(ω,�) =
∑

α

gα(ω,�)Gα. (38)

There is an ε0 > 0, s.t. for 0 < ε < ε0, we have that∫ ∞

−E

dω

∫
S2

d�
ω2

eβω − 1
p0F(ω,�)

p̄0ε

(Hp − E − ω)2 + ε2
F(ω,�)∗p0

� γp0, (39)

for some strictly positive constant γ > 0. Here p0 is the orthogonal projec-
tion onto the eigenspace C of Hp (see (26), (27)), and p̄0 = 1 − p0 is the
projection onto L2(R+, de;H).

Remarks. (1) Since E < 0 we have that γ ∼ eβE decays exponentially in β,
for large β.

(2) Recalling that Gα(E, e) is identified with �α(e) ∈ He, see Remark (1) after
(31) above, we can rewrite the l.h.s. of (39) as∫

(−E,∞)×S2
dω d�

∫
R+

de
ω2

eβω − 1

ε

(e − E − ω)2 + ε2
×

×
∑
α,α′

ḡα(ω,�)〈�α(e), �α′(e)〉Hgα′(ω,�),

and this expression has the limit∫
(−E,∞)×S2

dω d�
ω2

eβω − 1

∑
α,α′

ḡα(ω,�)〈�α(E +ω), �α′(E + ω)〉Hgα′(ω,�),

as ε → 0, because �α(e) is continuous in e. Consequently, (39) is satisfied if this
integral is strictly positive.
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2.1.3. The Reference State ωρ0,β

Let ρ0 be a strictly positive density matrix on Hp, i.e., ρ0 > 0, tr ρ0 = 1, and
denote by ωp

ρ0
the state on Ap given by A �→ tr ρ0A. Let ω

f

β be the (α
f
t , β)-KMS

state on Af and define the reference state

ωρ0,β = ωp
ρ0

⊗ ω
f

β .

The GNS representation (H , πβ,�ρ0) corresponding to (A, ωρ0,β) is explicitly
known. It has first been described in [AW]; (we follow [JP] in its presentation).
The representation Hilbert space is

H = Hp ⊗ Hp ⊗ F , (40)

where F is a shorthand for the Fock space

F = F ((L2(R × S2, du × d�))), (41)

du being the Lebesgue measure on R, and d� the uniform measure on S2. F (X)

denotes the bosonic Fock space over a (normed vector) space X:

F (X) := C ⊕
⊕
n�1

(SX⊗n), (42)

where S is the projection onto the symmetric subspace of the tensor product. We
adopt standard notation, e.g., � is the vacuum vector, [ψ]n is the n-particle com-
ponent of ψ ∈ F (X), d�(A) is the second quantization of the operator A on X,
N = d�(1) is the number operator.

The representation map πβ : A → B(H) is the product

πβ = πp ⊗ π
β

f ,

where the ∗homomorphism πp: Ap → B(Hp ⊗ Hp) is given by

πp(A) = A ⊗ 1p.

The representation map π
β

f : Af → B(F ) is determined by the representation

map of the Weyl algebra, π
β

W
: W → B(F ), according to (24). To describe π

β

W
,

we point out that L2(R+ × S2) ⊕ L2(R+ × S2) is isometrically isomorphic to
L2(R × S2) via the map

(f, g) �→ h, h(u,�) =
{

uf (u,�), u > 0,

ug(−u,�), u < 0.
(43)

The representation map π
β

W
is given by

π
β

W
= πFock ◦ Tβ,
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where the Bogoliubov transformation Tβ: W(L2
0) → W(L2(R × S2)) acts as

W(f ) �→ W(τβf ), with τβ : L2(R+ × S2) → L2(R × S2) given by

(τβf )(u,�) =
√

u

1 − e−βu

{ √
uf (u,�), u > 0,

−√−uf̄ (−u,�), u < 0.
(44)

Remarks. (1) It is easily verified that Im〈τβf, τβg〉L2(R×S2) = Im〈f, g〉L2(R+×S2),
for all f, g ∈ L2

0, so the CCR (19) are preserved under the map τβ .
(2) In the limit β → ∞, the r.h.s. of (44) tends to

uf (u,�), u > 0,

0, u < 0,

which is identified via (43) with f ∈ L2
0. Thus, Tβ reduces to the identity (an

imbedding), π
β

W
becomes the Fock representation of W(L2

0), as β → ∞, and we
recover the zero temperature situation.

It is useful to introduce the following notation. For f ∈ L2(R × S2), we define
unitary operators, Ŵ (f ), on the Hilbert space (40), by

Ŵ (f ) = eiϕ(f ), f ∈ L2(R × S2),

where ϕ(f ) is the selfadjoint operator on F given by

ϕ(f ) = a∗(f ) + a(f )√
2

, (45)

and a∗(f ), a(f ) are the creation- and annihilation-operators on F , smeared out
with f . One easily verifies that

π
β

W
(W(f )) = Ŵ(τβf ).

The cyclic GNS vector is given by

�ρ0 = �ρ0
p ⊗ �,

where � is the vacuum in F , and

�ρ0
p =

∑
n�0

knϕn ⊗ Cpϕn ∈ Hp ⊗ Hp. (46)

Here, {k2
n}∞

n=0 is the spectrum of ρ0, {ϕn} is an orthogonal basis of eigenvectors
of ρ0, and Cp is an antilinear involution on Hp. The origin of Cp lies in the
identification of l2(Hp) (Hilbert–Schmidt operators on Hp) with Hp ⊗ Hp, via
|ϕ〉〈ψ | �→ ϕ ⊗ Cpψ . We fix a convenient choice for Cp: it is the antilinear invo-
lution on Hp that has the effect of taking complex conjugates of components of
vectors, in the basis in which the Hamiltonian Hp is diagonal, i.e.,

(Cpψ)(e) =
{

ψ(e) ∈ C, e = E,

ψ(e) ∈ H, e ∈ [0,∞).
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By ψ(e) ∈ H for e ∈ [0,∞), we understand the element in H obtained by complex
conjugation of the components of ψ(e) ∈ H, in an arbitrary, but fixed, orthonormal
basis of H. This Cp is also called the time reversal operator, and we have

CpHpCp = Hp.

2.1.4. The W ∗-dynamical System (Mβ, σt,λ)

Let Mβ be the von Neumann algebra obtained by taking the weak closure (or
equivalently, the double commutant) of πβ(A) in B(H):

Mβ = B(Hp) ⊗ 1p ⊗ π
β

f (Af )′′ ⊂ B(H).

Since ρ0 is strictly positive, �ρ0
p is cyclic and separating for the von Neumann

algebra πp(Ap)′′ = B(Hp)⊗1p. Similarly, � is cyclic and separating for π
β

f (Af )′′,
since it is the GNS vector of a KMS state (see, e.g., [BRII]). Consequently, �ρ0 is
cyclic and separating for Mβ . Let J be the modular conjugation operator associated
to (Mβ,�ρ0). It is given by

J = Jp ⊗ Jf , (47)

where, for ϕ,ψ ∈ Hp,

Jp(ϕ ⊗ Cpψ) = ψ ⊗ Cpϕ,

and, for ψ = {[ψ]n}n�0 ∈ F ,

[Jf ψ]n(u1, . . . , un) = [ψ]n(−u1, . . . ,−un), for n � 1,

[Jf ψ]0 = [Jf ψ]0 ∈ C.

Clearly, J�ρ0 = �ρ0 , and one verifies that

Jpπp(A)Jp = 1p ⊗ CpACp, (48)

Jf π
β

W
(W(f ))Jf = Ŵ (−e−βu/2τβ(f )) = Ŵ(e−βu/2τβ(f ))∗, (49)

for f ∈ L2
0. More generally, for f ∈ L2(R × S2), Jf Ŵ (f )Jf = Ŵ (f (−u,�)).

We now construct a unitary implementation of α
(ε)
t,λ w.r.t. πβ . Recall that πβ =

πp ⊗π
β

f , where πp: B(H) → B(Hp ⊗Hp) is continuous w.r.t. the strong topolo-

gies and π
β

f : Af → B(F ) is continuous w.r.t. the norm topologies (because it is
a ∗ homomorphism). We thus have, for A ∈ A,

πβ(α
(ε)
t,λ(A))

= πβ(αt,0(A)) +
∑
n�1

(iλ)n

∫ t

0
dt1 · · ·

∫ tn−1

0
dtn[πβ(αtn,0(V

(ε))), [· · ·

· · · [πβ(αt1,0(V
(ε))), πβ(αt,0(A))] · · ·]]. (50)
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Because

πp(α
p
t (A))= eitHpAe−itHp ⊗ 1p

= eit (Hp⊗1p−1p⊗Hp)πp(A)e−it (Hp⊗1p−1p⊗Hp),

and

π
β

W
(αW

t (W(f )))= π
β

W
(W(eiωt f )) = Ŵ (eiut τβ(f ))

= eit d�(u)Ŵ (τβ(f ))e−it d�(u)

= eit d�(u)π
β

W
(W(f ))e−it d�(u),

so that

π
β

f (α
f
t (a)) = eit d�(u)π

β

f (a)e−it d�(u), a ∈ Af ,

we find that

σt,0(πβ(A)) := πβ(αt,0(A)) = eitL0πβ(A)e−itL0,

for all A ∈ A, where L0 is the selfadjoint operator on H , given by

L0 = Hp ⊗ 1p − 1p ⊗ Hp + d�(u), (51)

commonly called the (noninteracting, standard) Liouvillian. One easily verifies that

J eitL0 = eitL0J. (52)

Remark. There are other selfadjoint operators generating unitary implementa-
tions of σt,0 on H . Indeed, we may add to L0 any selfadjoint operator L′

0 affiliated
with the commutant M′

β ; then L0 + L′
0 still generates a unitary implementation

of σt,0 on H . However, the additional condition (52) fixes L0 uniquely, and the
generator of this unitary group is called the standard Liouvillian for σt,0. This
terminology has been used before in [DJP]. The importance of considering the
standard Liouvillian (as opposed to other generators of the dynamics) lies in the
fact that its spectrum is related to the dynamical properties of the system; see
Theorem 2.2.

Notice that σt,0 is a group of ∗automorphisms of πβ(A), in particular,
eitL0πβ(A)e−itL0 = πβ(A), ∀t ∈ R. From Tomita–Takesaki theory, we know that
JMβJ = M′

β (the commutant), and since

σt,0(Jπβ(V
(ε))J ) = Jσt,0(πβ(V (ε)))J = Jπβ(αt,0(V

(ε)))J ∈ M
′
β,

we can write the multicommutator in (50) as

[σtn,0(πβ(V (ε)) − Jπβ(V (ε))J ), [· · ·
· · · [σt1,0(πβ(V (ε)) − Jπβ(V (ε))J ), σt,0(πβ(A))] · · ·]].
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It follows that the r.h.s. of (50) defines a ∗automorphism group of πβ(A), σ
(ε)
t,λ ,

which is implemented unitarily by

σ
(ε)
t,λ (πβ(A)) = πβ(α

(ε)
t,λ(A)) = eitL

(ε)
λ πβ(A)e−itL

(ε)
λ ,

with

L
(ε)
λ = L0 + λπβ(V (ε)) − λJπβ(V

(ε))J.

It is not difficult to see (using Theorem 3.1) that the regularized Liouvillian L
(ε)
λ is

essentially selfadjoint on

D = C∞
0 ⊗ C∞

0 ⊗ (F (C∞
0 (R × S2)) ∩ F0) ⊂ H ,

where F0 is the finite-particle subspace. Moreover, we have that J eitL
(ε)
λ = eitL

(ε)
λ J .

We now explain how to remove the regularization (ε → 0), obtaining a weak∗
continuous ∗automorphism group σt,λ of the von Neumann algebra Mβ . We recall
that a ∗automorphism group τt on a von Neumann algebra M is called weak∗
continuous iff t �→ ω(τt(A)) is continuous, for all A ∈ M and for all normal
states ω on M. From

πβ(V (ε)) =
∑

α

Gα ⊗ 1p ⊗ 1

2iε

∫
R

dt hε(t){Ŵ (eiut ετβ(gα))−

− Ŵ (eiut ετβ(gα))
∗}

Jπβ(V (ε))J =
∑

α

1p ⊗ CpGαCp ⊗ 1

2iε

∫
R

dt hε(t){Ŵ (eiut εe−βu/2τβ(gα))−

− Ŵ (eiut εe−βu/2τβ(gα))
∗},

where we recall that hε(t) = (1/ε)e−t2/ε2
approximates the Dirac delta distribution

concentrated at zero, one verifies that, in the strong sense on D ,

lim
ε→0

πβ(V (ε)) =
∑

α

Gα ⊗ 1p ⊗ ϕ(τβ(gα)),

lim
ε→0

Jπβ(V (ε))J =
∑

α

1p ⊗ CpGαCp ⊗ ϕ(e−βu/2τβ(gα)),

where the operator ϕ(f ) has been defined in (45). The symmetric operator Lλ,
defined on D by

Lλ = L0 + λI, (53)

with

I =
∑

α

Gα ⊗ 1p ⊗ ϕ(τβ(gα)) − 1p ⊗ CpGαCp ⊗ ϕ(e−βu/2τβ(gα)), (54)
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is essentially selfadjoint on D , for any real value of λ; (this will be shown to be a
consequence of Theorem 3.1). Using Theorem 5.1 on invariance of domains, the
Duhamel formula gives

eitL
(ε)
λ = eitLλ − iλ

∫ t

0
eisLλ(I − πβ(V (ε)) + Jπβ(V (ε))J )e−i(s−t )L

(ε)
λ

as operators defined on D , from which it follows that eitL
(ε)
λ → eitLλ , as ε → 0, in

the strong sense on H . Consequently, for A ∈ πβ(A), we have σ
(ε)
t,λ (A) → σt,λ(A),

in the σ -weak topology of B(H). Notice that for A ∈ πβ(A), we have σt,λ(A) ∈
Mβ , because σt,λ(A) = w-limε→0 σ

(ε)
t,λ (A), σ

(ε)
t,λ (A) ∈ πβ(A) ⊂ Mβ , and Mβ

is weakly closed. Clearly, σt,λ is a σ -weakly continuous ∗automorphism group of
B(H). If A ∈ Mβ , there is a net {Aα} ⊂ πβ(A), s.t. Aα → A, in the weak operator
topology. Thus, since σt,λ is weakly continuous, we conclude that

σt,λ(A) = w-lim
α

σt,λ(Aα) ∈ Mβ .

We summarize these considerations in a proposition.

PROPOSITION 2.1. (Mβ, σt,λ) is a W ∗-dynamical system, i.e. σt,λ is a weak∗
continuous group of ∗automorphisms of the von Neumann algebra Mβ . Moreover,
σt,λ is unitarily implemented by eitLλ , where Lλ is given in (53), (54), and

J eitLλ = eitLλJ, for all t ∈ R.

2.1.5. Kernel of Lλ and Normal Invariant States

Let P be the natural cone associated with (Mβ,�ρ0), i.e., P is the norm closure
of the set

{AJA�ρ0 | A ∈ Mβ} ⊂ H .

The data (Mβ,H , J,P ) is called the standard form of the von Neumann alge-
bra Mβ . We have constructed J and P explicitly, starting from the cyclic and
separating vector �ρ0 . There is, however, a general theory of standard forms of von
Neumann algebras; see [BRI, II, Ara, Con] for the case of σ -finite von Neumann
algebras (as in our case), or [Haa] for the general case. Among the properties of
standard forms, we mention here only the following:

(P) For every normal state ω on Mβ , there exists a unique ξ ∈ P , s.t. ω(A) =
〈ξ,Aξ 〉,∀A ∈ Mβ .

Recall that a state ω on Mβ ⊂ B(H) is called normal iff it is σ -weakly continuous,
or, equivalently, iff it is given by a density matrix ρ ∈ l1(H), as ω(A) = tr ρA,
for all A ∈ Mβ . The uniqueness of the representing vector in the natural cone,
according to (P), allows us to establish the following connection between the kernel
of Lλ and the normal invariant states (see also, e.g., [DJP]).
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THEOREM 2.2. If Lλ does not have a zero eigenvalue, i.e., if ker Lλ = {0}, then
there does not exist any σt,λ-invariant normal state on Mβ .

Proof. We show below that, for all t ∈ R,

eitLλP = P . (55)

If ω is a normal state on Mβ , invariant under σt,λ, i.e., such that ω ◦ σt,λ = ω, for
all t ∈ R, then, for a unique ξ ∈ P ,

ω(A) = 〈ξ,Aξ 〉 = ω(σt,λ(A)) = 〈e−itLλξ, Ae−itLλξ 〉.
Since (55) holds, and due to the uniqueness of the vector in P representing a given
state, we conclude that eitLλξ = ξ , for all t ∈ R, i.e. Lλ has a zero eigenvalue with
eigenvector ξ .

We now show (55). Notice that (55) is equivalent to eitLλP ⊆ P . Since P is
a closed set, it is enough to show that for all A ∈ Mβ , eitLλAJA�ρ0 ∈ P . Since
eitLλJ = J eitLλ, eitLλAe−itLλ ∈ Mβ , for all A ∈ Mβ , and BJBJP ⊂ P , for all
B ∈ Mβ , we only need to prove that

eitLλ�ρ0 ∈ P . (56)

The Trotter product formula gives

eitLλ�ρ0 = lim
n→∞(ei t

n
λIei t

n
L0)n�ρ0,

and, since P is closed, (56) holds provided the general term under the limit is
in P , for all n � 1. We show that eisL0P = P and eisλIP = P , for all s ∈ R.
Remarking that

eisL0�ρ0 = (eisHp ⊗ e−isHp ⊗ eis d�(u))�ρ0 = (eisHp ⊗ 1p)J (eisHp ⊗ 1p)�ρ0,

where we use that Jp(eisHp ⊗ 1p)Jp = 1p ⊗ CpeisHpCp = 1p ⊗ e−isHp , recalling
that eisL0 implements σt,0, and arguing as above, we see that eitL0P = P .

The Trotter product formula gives

exp

{
is

N∑
α=1

Gα ⊗ 1p ⊗ ϕ(τβ(gα)) − JGα ⊗ 1p ⊗ ϕ(τβ(gα))J

}
ξ

= lim
n1→∞

{(
ei s

n1
G1 ⊗ 1p ⊗ Ŵ

(
s

n1
τβ(gα)

))
×

× J

(
ei s

n1
G1 ⊗ 1p ⊗ Ŵ

(
s

n1
τβ(gα)

))
J ×

× exp

[
i

s

n1

N∑
α=2

(Gα ⊗ 1p ⊗ ϕ(τβ(gα))−

− JGα ⊗ 1p ⊗ ϕ(τβ(gα))J )

]}n1

ξ,
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for all ξ ∈ P , and we may apply Trotter’s formula repeatedly to conclude that,
since AJAJP ⊂ P , for A ∈ Mβ , and P is closed, we have that eisλIP = P , for
all s ∈ R. �

Remark. The proof of Theorem 2.2 uses property (P), which is satisfied in our
case, because �ρ0 is cyclic and separating for Mβ . This, in turn, is true because
ρ0 has been chosen to be strictly positive. One may start with any reference state
of the form ωp

ρ ⊗ ω
f

β , where ρ is any density matrix on Hp; it may be of finite
rank. The resulting von Neumann algebra (obtained as the weak closure of A

when represented on the GNS Hilbert space corresponding to (A, ωp
ρ ⊗ ω

f

β )) is
∗isomorphic to Mβ . This is the reason we have not added to Mβ an index for the
density matrix ρ0. More specifically, the GNS representation of (A, ωp

ρ ⊗ ω
f

β ) is
given by (H1, π1,�1), where

H1 = Hp ⊗ Kρ ⊆ Hp ⊗ Hp,

π1(A ⊗ (W(f ))(h)) = A ⊗ 1p ⊗
∫

R

dt h(t)Ŵ (eiut τβ(f )),

�1 = �ρ
p ⊗ �.

Here, Kρ is the closure of Ran ρ, �ρ
p is given as in Equation (46). Consequently,

π1(A)′′ = B(Hp) ⊗ 1p �Kρ
⊗ π

β

f (Af )′′ ∼= Mβ .

In particular, π1(A)′′ and Mβ have the same set of normal states. Thus, our par-
ticular choice for the reference state is immaterial when examining properties of
normal states. One may express this in the following way: (Mβ,H , J,P ) is a
standard form for all the von Neumann algebras obtained from any reference state
(A, ωp

ρ ⊗ ω
f

β ).

2.2. RESULT ON THERMAL IONIZATION

Our main result in this paper is that the W ∗-dynamical system (Mβ, σt,λ) intro-
duced above does not have any normal invariant states.

THEOREM 2.3. Assume conditions (A1)–(A3) hold. For any inverse temperature
0 < β < ∞ there is a constant, λ0(β) > 0, proportional to γ given in (39), such
that the following holds. If 0 < |λ| < λ0 then the Liouvillian Lλ given in (53)
and (54) does not have any eigenvalues.

Remark. Since γ decays exponentially in β, for large β, Theorem 2.3 is a
high temperature result (β has to be small for reasonable values of the coupling
constant λ). From physics it is clear that thermal ionization takes place for arbitrary
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positive temperatures (but not at zero temperature, where the coupled system has a
ground state).

Combining Theorems 2.3 and 2.2 yields our main result about thermal ioniza-
tion.

THEOREM 2.4 (Thermal ionization). Under the assumptions of Theorem 2.3,
there do not exist any normal σt,λ-invariant states on Mβ .

Remark. For λ = 0, the state ω0, determined by the vector �0
p⊗�, where �0

p =
ϕ0 ⊗ϕ0 ∈ Hp ⊗Hp, and ϕ0 is the eigenvector of Hp, is a normal σt,0-invariant state
on Mβ . As we have explained in the introduction, the physical interpretation of
Theorem 2.4 is that a single atom coupled to black-body radiation at a sufficiently
high positive temperature will always end up being ionized.

The proof of Theorem 2.3 is based on a novel virial theorem.

3. Virial Theorems and the Positive Commutator Method

3.1. TWO ABSTRACT VIRIAL THEOREMS

Let H be a Hilbert space, D ⊂ H a core for a selfadjoint operator Y � 1, and X a
symmetric operator on D . We say the triple (X, Y,D) satisfies the GJN (Glimm–
Jaffe–Nelson) condition, or that (X, Y,D) is a GJN-triple, if there is a constant
k < ∞, s.t. for all ψ ∈ D :

‖Xψ‖ � k‖Yψ‖, (57)

±i{〈Xψ, Yψ〉 − 〈Yψ,Xψ〉} � k〈ψ, Yψ〉. (58)

Notice that if (X1, Y,D) and (X2, Y,D) are GJN triples, then so is (X1+X2, Y,D).
Since Y � 1, inequality (57) is equivalent to

‖Xψ‖ � k1‖Yψ‖ + k2‖ψ‖,
for some k1, k2 < ∞.

THEOREM 3.1 (GJN commutator theorem). If (X, Y,D) satisfies the GJN condi-
tion, then X determines a selfadjoint operator (again denoted by X), s.t. D(X) ⊃
D(Y ). Moreover, X is essentially selfadjoint on any core for Y , and (57) is valid
for all ψ ∈ D(Y ).

Based on the GJN commutator theorem, we next describe the setting for a
general virial theorem. Suppose one is given a selfadjoint operator � � 1 with
core D ⊂ H , and operators L, A, N, D, Cn, n = 0, 1, 2, 3, all symmetric on D ,
and satisfying

〈ϕ,Dψ〉 = i{〈Lϕ,Nψ〉 − 〈Nϕ,Lψ〉}, (59)

C0 = L,

〈ϕ,Cnψ〉 = i{〈Cn−1ϕ,Aψ〉 − 〈Aϕ,Cn−1ψ〉}, n = 1, 2, 3, (60)
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where ϕ,ψ ∈ D . We assume that

• (X,�,D) satisfies the GJN condition, for X = L, N, D, Cn. Consequently,
all these operators determine selfadjoint operators, which we denote by the same
letters.

• A is selfadjoint, D ⊂ D(A), and eitA leaves D(�) invariant.

Remarks. (1) From the invariance condition eitAD(�) ⊂ D(�), it follows that
for some 0 � k, k′ < ∞, and all ψ ∈ D(�),

‖�eitAψ‖ � kek′|t |‖�ψ‖. (61)

A proof of this can be found in [ABG], Propositions 3.2.2 and 3.2.5.
(2) Condition (57) is phrased equivalently as ‘X � kY , in the sense of Kato

on D .’
(3) One can show that if (A,�,D) satisfies conditions (57), (58), then the

above assumption on A holds; see Theorem 5.1.

THEOREM 3.2 (1st virial theorem). Assume that, in addition to (59), (60), we
have, in the sense of Kato on D ,

D � kN1/2, (62)

eitAC1e−itA � kek′|t |Np, some 0 � p < ∞, (63)

eitAC3e−itA � kek′|t |N1/2, (64)

for some 0 � k, k′ < ∞, and all t ∈ R. Let ψ be an eigenvector of L. Then there
is a one-parameter family {ψα} ⊂ D(L) ∩ D(C1), s.t. ψα → ψ , α → 0, and

lim
α→0

〈ψα,C1ψα〉 = 0. (65)

Remarks. (1) A sufficient condition for (63) to hold (with k′ = 0) is that N

and eitA commute, for all t ∈ R, in the strong sense on D , and C1 � kNp. This
condition will always be satisfied in our applications. A similar remark applies
to (64).

(2) In a heuristic way, we understand C1 as the commutator i[L,A] =
i(LA − AL), and (65) as 〈ψ, i[L,A]ψ〉 = 0, which is a standard way of stating
the virial theorem, see, e.g., [ABG] and [GG] for a comparison (and correction) of
virial theorems encountered in the literature.

The result of the virial theorem is still valid if we add to the operator A a suitably
small perturbation A0:

THEOREM 3.3 (2nd virial theorem). Suppose that we are in the situation of
Theorem 3.2 and that A0 is a bounded operator on H s.t. Ran A0 ⊂ D(L) ∩
Ran P(N � n0), for some n0 < ∞. Then i[L,A0] = i(LA0 −A0L) is well defined
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in the strong sense on D(L), and we have, for the same family of approximating
eigenvectors as in Theorem 3.2:

lim
α→0

〈ψα, (C1 + i[L,A0])ψα〉 = 0. (66)

In conjunction with a positive commutator estimate, the virial theorem implies
a certain regularity of eigenfunctions.

THEOREM 3.4 (Regularity of eigenfunctions). Suppose C is a symmetric opera-
tor on a domain D(C) s.t., in the sense of quadratic forms on D(C), we have that
C � P − B, where P � 0 is a selfadjoint operator, and B is a bounded (every-
where defined) operator. Let ψα be a family of vectors in D(C), with ψα → ψ , as
α → 0, and s.t.

lim
α→0

〈ψα,Cψα〉 = 0. (67)

Then 〈ψ,Bψ〉 � 0, ψ ∈ D(P 1/2), and

‖P 1/2ψ‖ � 〈ψ,Bψ〉1/2. (68)

Remark. Theorem 3.4 can be viewed as a consequence of an abstract Fatou
lemma, see [ABG], Proposition 2.1.1. We give a different, very short proof of (68)
at the end of Section 6.

3.2. THE POSITIVE COMMUTATOR METHOD

This method gives a conceptually very easy proof of absence of point spectrum.
The subtlety of the method lies in the technical details, since one deals with un-
bounded operators.

Suppose we are in the setting of the virial theorems described in Section 3.1,
and that the operator C1 (or C1 + i[L,A0]) is strictly positive, i.e.

C1 � γ, (69)

for some γ > 0. Inequality (69) and the virial theorem immediately show that
L cannot have any eigenvalues. Indeed, assuming ψ is an eigenfunction of L, we
reach the contradiction

0 = lim
α→0

〈ψα,C1ψα〉 � γ lim
α→0

〈ψα,ψα〉 = γ ‖ψ‖2 > 0.

Although the global PC estimate (69) holds in our situation, often one manages to
prove merely a localized version. Suppose g ∈ C∞(J ) is a smooth function with
support in an interval J ⊆ R, g � J1 = 1, for some J1 ⊂ J , s.t. g(L) leaves the
form domain of C1 invariant. The same reasoning as above shows that if

g(L)C1g(L) � γg2(L),
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for some γ > 0, then L has no eigenvalues in the interval J1. The use of PC
estimates for spectral analysis of Schrödinger operators has originated with Mourre
[Mou], and had recent applications in [Ski, BFSS, DJ, Mer].

4. Proof of Theorem 2.3

4.1. STRATEGY OF THE PROOF

As in [JP, Mer], the starting point in the construction of a positive commutator is
the adjoint operator Af = d�(i∂u), the second quantized generator of translation
in the radial variable of the glued Fock space F , see (41). We formally have

i[L0, Af ] = d�(1f ) = N � 0.

The kernel of this form is the infinite-dimensional space Hp ⊗ Hp ⊗ Ran P�.
Following [Mer], one is led to try to add a suitable operator A0 to Af , where A0 de-
pends on the interaction λI , and is designed in such a way that i[L0 +λI,Af +A0]
is strictly positive (has trivial kernel). This method is applicable if the (imaginary
part) of the so-called level shift operator is strictly positive, or equivalently, if
(39) is satisfied, but where the finite-dimensional projection p0 is replaced by the
infinite-dimensional projection 1p. Such a positivity condition does not hold for
reasonable operators Gα and functions gα .

In order to be able to carry out our program, we add to Af a term Ap ⊗ 1p −
1p⊗Ap that reduces the kernel of the commutator. A prime candidate for Ap would
be the operator i∂e acting on Hp (we write simply i∂e instead of 0 ⊕ i∂e, c.f. (26)),
since then

i[L0, Ap ⊗ 1p − 1p ⊗ Ap + Af ] = P+(Hp) ⊗ 1p + 1p ⊗ P+(Hp) + N,

where P+(Hp) = ∫ ⊕
R+ de is the projection onto L2(R+, de;H). The above form has

now a one-dimensional kernel, Ran p0 ⊗ p0 ⊗ P�. By adding a suitable operator
A0, as described above, one can obtain a lower bound on the commutator (and in
particular, reduce its kernel to {0}), provided (39) is satisfied.

However, the operator Ap chosen above has the inconvenience of not being
selfadjoint, while our virial theorems require selfadjointness. We introduce a fam-
ily of selfadjoint operators Aa

p, a > 0, that approximate i∂e in a certain sense
(a → 0). The idea of approximating a nonselfadjoint A by a selfadjoint sequence
was also used in [Ski]. We now define Aa and then explain, in the remainder of this
subsection, how to prove Theorem 2.3.

We define Aa
p as the generator of a unitary group on L2(R+, de;H), which is

induced by a flow on R+. For the proof of the following proposition, and more
information on unitary groups induced by flows, we refer to Section 7.

PROPOSITION 4.1. Let ξ : R+ → R+ be a bounded, smooth vector field, s.t.
ξ(0) = 0, ξ(e) → 1, as e → ∞, and ‖(1 + e)ξ ′‖∞ < ∞. Then ξ generates a
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global flow, and this flow induces a continuous unitary group on L2(R+, de;H).
The generator Ap of this group is essentially selfadjoint on C∞

0 , and it acts on C∞
0

as

Ap = i( 1
2ξ ′(e) + ξ(e)∂e), (70)

where ξ ′(e) and ξ(e) are multiplication operators. Given a > 0, ξa(e) = ξ(e/a) is
a vector field on R+, and lima→0 ξa = 1, pointwise (except at zero). The generator
Aa

p of the unitary group induced by ξa is given on its core, C∞
0 , by

Aa
p = i

(
1

2

1

a
ξ ′

(
e

a

)
+ ξ

(
e

a

)
∂e

)
. (71)

We define the selfadjoint operator

Aa = Aa
p ⊗ 1p ⊗ 1f − 1p ⊗ Aa

p ⊗ 1f + Af , (72)

and calculate the commutator Ca
1 of iL with Aa (in the sense given in (60), see also

Subsection 4.2):

Ca
1 =

∫ ⊕

R+
ξa(e) de ⊗ 1p + 1p ⊗

∫ ⊕

R+
ξa(e) de + N + λIa

1 , (73)

where I a
1 is N1/2-bounded. In Section 4.3, we show that Ca

1 + i[L,A0] � Ma ,
where Ma is a bounded operator. We will see that s-lima→0+ Ma = M (see Propo-
sition 4.6), where M is a bounded, strictly positive operator (see Proposition 4.8).
Since Ma, M are bounded, we obtain from the virial theorem

0 = lim
α→0

〈ψα, (Ca
1 + i[L,A0])ψα〉 � 〈ψ, (Ma − M)ψ〉 + 〈ψ,Mψ〉, (74)

for any eigenfunction ψ of L. Taking a → 0+ and using strict positivity of M (for
small, but nonzero λ, see Proposition 4.8), gives a contradiction, and this will prove
Theorem 2.3.

4.2. CONCRETE SETTING FOR THE VIRIAL THEOREMS

The Hilbert space is the GNS representation space (40), and we set

D = C∞
0 ⊗ C∞

0 ⊗ Df , (75)

where

Df = F (C∞
0 (R × S2)) ∩ F0,

and F0 denotes the finite-particle subspace of Fock space. The operator � is given
by

� = �p ⊗ 1p + 1p ⊗ �p + �f , (76)

�p =
∫ ⊕

R+
e de + 1p = HpP+(Hp) + 1p, (77)

�f = d�(u2 + 1) + 1f . (78)
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In (77), we have introduced P+(Hp), the projection onto the spectral interval R+
of Hp. It is clear that � is essentially selfadjoint on D , and � � 1. The operator
L is the interacting Liouvillian (53), and

N = d�(1) (79)

is the particle number operator in F ≡ F (L2(R × S2)). Clearly, X = L, N are
symmetric operators on D , and the symmetric operator D on D (see (59)) is given
by

D = iλ√
2

∑
α

{Gα ⊗ 1p ⊗ (−a∗(τβ(gα)) + a(τβ(gα)))−

− 1p ⊗ CpGαCp ⊗ (−a∗(e−βu/2τβ(gα)) + a(e−βu/2τβ(gα)))}. (80)

The operator A is given by Aa defined in (72). Notice that Aa
p leaves C∞

0 invariant,
Af leaves Df invariant, so Aa maps D into D(L). Furthermore, it is easy to see
that L maps D into D(Aa), hence the commutator of L with Aa is well defined in
the strong sense on D . The same is true for the multiple commutators of L with
Aa . Setting ξ ′

a(e) = ξ ′(e/a), ξ ′′
a (e) = ξ ′′(e/a), we obtain

Ca
1 =

∫ ⊕

R+
ξa(e) de ⊗ 1p + 1p ⊗

∫ ⊕

R+
ξa(e) de + N + λIa

1 , (81)

Ca
2 = 1

a

∫ ⊕

R+
ξ ′
a(e)ξa(e) de ⊗ 1p − 1p ⊗ 1

a

∫ ⊕

R+
ξ ′
a(e)ξa(e) de + λIa

2 , (82)

Ca
3 = 1

a2

∫ ⊕

R+
(ξ ′′

a (e)ξa(e)
2 + ξ ′

a(e)
2ξa(e)) de ⊗ 1p +

+ 1p ⊗ 1

a2

∫ ⊕

R+
(ξ ′′

a (e)ξa(e)
2 + ξ ′

a(e)
2ξa(e)) de + λIa

3 , (83)

where

I a
n = in

n∑
j=0

(
n

k

) ∑
α

{ad(j)

Aa
p
(Gα) ⊗ 1p ⊗ ad(n−j)

Af
(ϕ(τβ(gα)))+

+ (−1)j1p ⊗ ad(j)

Aa
p
(CpGαCp) ⊗ ad(n−j)

Af
(ϕ(eβu/2τβ(gα)))}, (84)

for n = 1, 2, 3.
We define the bounded selfadjoint operator A0 on H by

A0 = iθλ(�IR2
ε� − �R2

ε I�), (85)

with

R2
ε = (L2

0 + ε2)−1. (86)
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Here, θ and ε are positive parameters, and � is the projection onto the zero eigen-
space of L0:

� = P0 ⊗ P�, (87)

P0 = p0 ⊗ p0, (88)

� = 1 − �, (89)

where p0 is the projection in B(Hp) projecting onto the eigenspace corresponding
to the eigenvalue E of Hp, i.e. p0ψ = ψ(E) ∈ C, and P� is the projection in
B(F ) projecting onto C�. We also introduce the notation

Rε = �Rε.

Notice that the operator A0 satisfies the conditions given in Theorem 3.3 with
n0 = 1. Moreover, [L,A0] = LA0 − A0L extends to a bounded operator on the
entire Hilbert space, and

‖[L,A0]‖ � k

(
θλ

ε
+ θλ2

ε2

)
. (90)

This choice for the operator A0 was initially introduced in [BFSS] for the
spectral analysis of Pauli–Fierz Hamiltonians (zero temperature systems), and was
adopted in [Mer] to show return to equilibrium (positive temperature systems). The

key feature of A0 is that i�[L,A0]� = 2θλ2�IR
2
ε I� is a nonnegative operator.

Assuming the Fermi Golden Rule condition (39), it is a strictly positive operator,
as shows

PROPOSITION 4.2. Assume condition (A3). For 0 < ε < ε0, we have

�IR
2
ε I� � γ

ε
�. (91)

The proof is given in Section 8.
We are now ready to verify that the virial theorems are applicable.

PROPOSITION 4.3. The unitary group eitAa
leaves D(�) invariant (a > 0,

t ∈ R), and, for ψ ∈ D(�),

‖�eitAa

ψ‖ � kek′|t |/a‖�ψ‖, (92)

where k, k′ < ∞ are independent of a.

The proof is given in Section 8.
Next, we verify the GJN conditions, and the bounds (62), (64), (63). The fol-

lowing result is useful.
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PROPOSITION 4.4. Under conditions (35), (36), the multiple commutators of Gα

with Aa
p are well defined in the strong sense on C∞

0 , and, for any ψ ∈ C∞
0 , we have

that

‖ad(n)
Aa

p
(Gα)ψ‖ � k‖ψ‖, (93)

for n = 1, 2, 3, and uniformly in a > 0.

The proofs of this and the next proposition are given in Section 8.

PROPOSITION 4.5. The virial theorems, Theorems 3.2 and 3.3, apply in the con-
crete situation described above, with the following identifications: the domain D
of Section 3.1 is given in (75), the operators L, N, D, �, A0 appearing in
Theorems 3.2, 3.3 are chosen in (53), (79), (80), (76), (85), and the operator A

is given by Aa in (72).

4.3. A LOWER BOUND ON Ca
1 + i[L, A0] UNIFORM IN a

In order to estimate Ca
1 + i[L,A0] from below, we start with the following obser-

vation: in the sense of forms on D ,

±λIa
1 � 1

10
NP � + kλ2, (94)

for some k independent of a > 0. This estimate follows in a standard way from
the explicit expression for I a

1 , Equation (84), and the bound in (93). We conclude
from (94), (81) that

Ca
1 + i[L,A0] � Ma, (95)

where

Ma =
∫ ⊕

R+
ξa(e) de ⊗ 1p + 1p ⊗

∫ ⊕

R+
ξa(e) de +

+ 9

10
P � − kλ2 + i[L,A0]. (96)

The constant k on the r.h.s. is independent of a. Recalling that ξa → 1 a.e., we are
led to define the bounded limiting operator

M = P+(Hp) ⊗ 1p + 1p ⊗ P+(Hp) + 9

10
P � − kλ2 + i[L,A0], (97)

where k is the same constant as in (96). Using dominated convergence, one readily
verifies that

∫ ⊕
R+ ξa(e) de → P+(Hp), in the strong sense on Hp.

PROPOSITION 4.6. lima→0+ Ma = M, strongly on H .
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Our next task is to show that M is strictly positive.

4.4. THE FESHBACH METHOD AND STRICT POSITIVITY OF M

Recall that � = P0 ⊗ P� is the rank-one projection onto the zero eigenspace
of L0, see (87). We apply the Feshbach method to analyze the operator M, with the
decomposition

H = Ran � ⊕ Ran �.

First, we note that

�M� � P 0 ⊗ P�(P+(Hp) ⊗ 1p + 1p ⊗ P+(Hp) − kλ2)+
+ ( 9

10 − kλ2)P � + i�[L,A0]�. (98)

Recalling the definitions of P0 and A0, (88) and (85), one easily sees that

P 0(P+(Hp) ⊗ 1p + 1p ⊗ P+(Hp)) � P 0,

i�[L,A0]� = −θλ2(�I�IR
2
ε + R

2
ε I�I�),

in particular, ‖i�[L,A0]�‖ � kθλ2/ε2. Together with (98), this shows that there
is a constant λ1 > 0 (independent of λ, θ, ε and of β � β0, for any β0 > 0 fixed),
s.t.

M := �M� � Ran � > 1
2�, (99)

provided

|λ|, θλ2

ε2
< λ1. (100)

It follows from Equation (99) that the resolvent set of M , ρ(M), contains the
interval (−∞, 1/2), and for m < 1/2:

‖(M − m�)−1‖ < ( 1
2 − m)−1. (101)

For m ∈ ρ(M), we define the Feshbach map F�,m applied to M by

F�,m(M) = �(M − M�(M − m�)−1�M)�. (102)

The operator F�,m(M) acts on the space Ran �. In our specific case, Ran � ∼= C,
hence F�,m(M) is a number. (If Ran � had dimension n, then F�,m(M) would
be represented by an n × n matrix.) The following crucial property is called the
isospectrality of the Feshbach map (see, e.g., [BFS, DJ]):

m ∈ ρ(M) ∩ σ (M) ⇐⇒ m ∈ ρ(M) ∩ σ (F�,m(M)), (103)

where σ (·) denotes the spectrum. Hence by examining the spectrum of the operator
F�,m(M), one obtains information about the spectrum of M. The idea is, of course,
that it is easier to examine the former operator, since it acts on a smaller space.
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PROPOSITION 4.7. Assume condition (A3) and let 0 < ε < ε0. Then

F�,m(M) � 2
θλ2

ε
γ

(
1 − kθ

(
1 + |λ|

ε

)2

− k
ε

γ θ

)
�, (104)

uniformly in m < 1/4.
Proof. Recall the structure of F�,m(M), given in (102). We show that

−�M�(M − m�)−1�M� is small, as compared to �M�, and that the latter
is strictly positive. Estimate (101) gives

−�M�(M − m�)−1�M� � −4�M�M�, (105)

for m < 1/4. An easy calculation shows that

�M� = �i[L,A0]� = θλ�LR
2
ε I� = θλ�(L0R

2
ε I + λIR

2
ε I )�,

and using that ‖L0Rε‖ � 1, ‖Rε‖ � 1/ε, we obtain the bound

‖�M�ψ‖ �
(

θ |λ| + k
θλ2

ε

)
‖RεI�ψ‖, (106)

for any ψ ∈ H , where we have used that Ran R
2
ε I� ⊂ Ran P(N � 1), and

‖IP (N � 1)‖ � k. Combining (106) with (105) yields

−�M�(M − m�)−1�M� � −kθ2λ2(1 + |λ|/ε)2�IR
2
ε I�.

Furthermore, we have that

�M� = �i[L,A0]� − kλ2� = 2θλ2�IR
2
ε I� − kλ2�.

These observations and the definition of the Feshbach map, (102), show that

F�,m(M) � 2θλ2

(
1 − kθ

(
1 + |λ|

ε

)2)
�IR

2
ε I� − kλ2�,

which, by Proposition 4.2, yields (104). �
Estimate (104) tells us that there is a λ2 > 0 s.t.

F�,m(M) � θλ2

ε
γ �, (107)

provided conditions (100) hold, and

θ

(
1 + |λ|

ε

)2

+ ε

γ θ
< λ2, 0 < ε < ε0. (108)

Notice that all these estimates are independent of m < 1/4. Using the isospec-
trality property of the Feshbach map, (103), we conclude that if the bounds (100)
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and (108) are imposed on the parameters, and if m < 1/4 and m ∈ σ (M), then
m > θλ2

ε
γ . Consequently,

M � min

{
1

4
,
θλ2

ε
γ

}
= θλ2

ε
γ .

Fix a θ < λ2/4 and an ε < min{ε0, γ θλ2}. Then, defining

λ0 = min

{
λ1,

ε
√

λ1√
θ

, ε

}
,

(100) and (108) are satisfied for |λ| < λ0.

PROPOSITION 4.8. There is a choice of the parameters θ and ε, and of λ0 > 0
(depending on θ, ε, β) s.t. if |λ| < λ0 then

M >
θλ2

ε
γ . (109)

We have λ0 � kγ for some k independent of β � β0 (for any β0 > 0 fixed), i.e.,
λ0 ∼ eβE is exponentially small in β, as β → ∞ (see Remark (1) after (39)).

Proposition 4.8 completes the proof of Theorem 2.3, according to the argument
given in (74).

5. Some Functional Analysis

The following two theorems are useful in our analysis. Their proofs can be found
in [Frö].

THEOREM 5.1 (Invariance of domain, [Frö]). Suppose (X, Y,D) satisfies the
GJN condition, (57), (58). Then the unitary group, eitX, generated by the
selfadjoint operator X leaves D(Y ) invariant, and

‖Y eitXψ‖ � ek|t |‖Yψ‖, (110)

for some k � 0, and all ψ ∈ D(Y ).

THEOREM 5.2 (Commutator expansion, [Frö]). Suppose D is a core for the
selfadjoint operator Y � 1. Let X, Z, ad(n)

X (Z) be symmetric operators on D ,
where

ad(0)
X (Z) = Z,

〈ψ, ad(n)
X (Z)ψ〉 = i{〈ad(n−1)

X (Z)ψ,Xψ〉 − 〈Xψ, ad(n−1)
X (Z)ψ〉},
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for all ψ ∈ D , n = 1, . . . ,M. We suppose that the triples (ad(n)
X (Z), Y,D), n =

0, 1, . . . ,M, satisfy the GJN condition (57), (58), and that X is selfadjoint, with
D ⊂ D(X), eitX leaves D(Y ) invariant, and (110) holds. Then

eitXZe−itX = Z −
M−1∑
n=1

tn

n!ad(n)
X (Z)−

−
∫ t

0
dt1 · · ·

∫ tM−1

0
dtMeitMXad(M)

X (Z)e−itMX, (111)

as operators on D(Y ).

Remark. This theorem is proved in [Frö], under the assumption that (X, Y,D)

satisfies (57), (58). However, [Frö]’s proof only requires the properties of the group
eitX indicated in our Theorem 5.2.

An easy, but useful result follows from (110).

PROPOSITION 5.3. Suppose that the unitary group eitX leaves D(Y ) invariant,
for some operator Y , and that estimate (110) holds. For a function χ on R with
Fourier transform χ̂ ∈ L1(R), we define χ(X) = ∫

R
χ̂(s)eisX ds. If χ̂ has compact

support, then χ(X) leaves D(Y ) invariant, and, for ψ ∈ D(Y ),

‖Yχ(X)ψ‖ � ekR‖χ̂‖L1(R)‖Yψ‖, (112)

for any R s.t. suppχ̂ ⊂ [−R,R].
The proof is obvious. Proposition 5.4 states a similar result, but for a function

whose Fourier transform is not necessarily of compact support.

PROPOSITION 5.4. Suppose (X, Y,D) satisfies the GJN condition, and so do
the triples (ad(n)

X (Y ), Y,D), for n = 1, . . . ,M, and for some M � 1. Moreover,
assume that, in the sense of Kato on D(Y ), ±ad(M)

X (Y ) � kX, for some k � 0. For
χ ∈ C∞

0 (R), a smooth function with compact support, define χ(X) = ∫
χ̂(s)eisX ,

where χ̂ is the Fourier transform of χ . Then χ(X) leaves D(Y ) invariant.
Proof. For R > 0, set χR(X) = ∫ R

−R
χ̂(s)eisX , then χR(X) → χ(X) in operator

norm, as R → ∞. From the invariance of domain theorem, we see that χR(X)

leaves D(Y ) invariant. Let ψ ∈ D(Y ), then using the commutator expansion
theorem above, we have

YχR(X)ψ = χR(X)Yψ +
∫ R

−R

χ̂(s)eisX(e−isXY eisX − Y )ψ

= χR(X)Yψ −
∫ R

−R

χ̂(s)eisX

(
M−1∑
n=1

(−s)n

n! ad(n)
X (Y )+

+ (−1)M

∫ s

0
ds1 · · ·

∫ sM−1

0
dsMe−isMXad(M)

X (Y )eisMX

)
ψ. (113)
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The integrand of the s-integration in (113) is bounded in norm by

k(|s|M + 1)(‖Yψ‖ + ‖Xψ‖) � k(|s|M + 1)‖Yψ‖,
where we have used that ‖ad(M)

X (Y )eisMXψ‖ � ‖XeisMXψ‖ � ‖Xψ‖. Since χ̂ is of
rapid decrease, it can be integrated against any power of |s|, and we conclude that
the r.h.s. of (113) has a limit as R → ∞. Since Y is a closed operator, it follows
that χ(X)ψ ∈ D(Y ). �
PROPOSITION 5.5. Let χ ∈ C∞

0 (R), χ = F 2 � 0. Suppose (X, Y,D) satis-
fies the GJN condition. Suppose F(X) leaves D(Y ) invariant. Let Z be a sym-
metric operator on D s.t., for some M � 1, and n = 0, 1, . . . ,M, the triples
(ad(n)

X (Z), Y,D) satisfy the GJN condition. Moreover, we assume that the multiple
commutators, for n = 1, . . . ,M, are relatively X2p-bounded in the sense of Kato
on D , for some p � 0. In other words, there is some k < ∞, s.t. ∀ψ ∈ D ,

‖ad(n)
X (Z)ψ‖ � k(‖ψ‖ + ‖X2pψ‖), n = 1, . . . ,M.

Then the commutator [χ(X),Z] = χ(X)Z − Zχ(X) is well defined on D and
extends to a bounded operator.

Proof. We write F, χ instead of F(X), χ(X). Since F leaves D(Y ) invariant,
we have that

[χ,Z] = F [F,Z] + [F,Z]F,

as operators on D(Y ). We expand the commutator

[F,Z]=
∫

F̂ (s)eisX(Z − e−isXZeisX)

=
∫

F̂ (s)eisX

{
M−1∑
n=1

sn

n! ad(n)
X (Z)+

+
∫ s

0
ds1 · · ·

∫ sM−1

0
dsMe−isMXad(M)

X (Z)eisMX

}
. (114)

Multiplying this equation from the right with F (and noticing that F commutes
with eisMX), we see immediately that [F,Z]F is bounded, and hence F [F,Z] =
−([F,Z]F)∗ is bounded, too. �
PROPOSITION 5.6. Suppose (X, Y,D) is a GJN triple. Then the resolvent
(X − z)−1 leaves D(Y ) invariant, for all z ∈ {C | |Im z| > k}, for some k > 0.

Proof. Suppose Im z < 0 (the case Im z > 0 is dealt with similarly). We write
the resolvent as

(X − z)−1 = i

∫ ∞

0
dt ei(X−z)t ,
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and it follows from Theorem 5.1 that for ψ ∈ D(Y ),

‖Y (X − z)−1ψ‖ � ‖Yψ‖
∫ ∞

0
dt e(Im z+k)t < ∞,

provided Im z < −k. �

6. Proof of the Virial Theorems and the Regularity Theorem

Proof of Theorem 3.2. We start by introducing some cutoff operators, and the
regularized (cutoff, approximate) eigenfunction.

Let g1 ∈ C∞
0 ((−1, 1)) be a real valued function, s.t. g1(0) = 1, and set g =

g2
1 ∈ C∞

0 ((−1, 1)), g(0) = 1. Pick a real valued function f on R with the
properties that f (0) = 1 and f̂ ∈ C∞

0 (R) (Fourier transform). We set

f1(x) =
∫ x

−∞
f 2(y) dy,

so that f ′
1(x) = f 2(x). Since f̂ ′

1 (s) = isf̂1(s) = (2π)−1/2f̂ ∗ f̂ (s), it follows that
f̂1 has compact support, and is smooth except at s = 0, where it behaves like s−1.

We have f̂
(n)

1 = (is)nf̂1 ∈ C∞
0 , for n � 1. Let α, ν > 0 be two parameters and

define the cutoff-operators

g1,ν = g1(νN) =
∫

R

ĝ1(s)e
isνN ds,

gν = g2
1,ν,

fα = f (αA) =
∫

R

f̂ (s)eisαA ds.

For η > 0, define

f
η

1,α = 1

α

∫
R\(−η,η)

dsf̂1(s)e
isαA = (f

η

1,α)
∗.

f
η

1,α leaves D(�) invariant, and ‖f η

1,α‖ � k/α, where k is a constant independent
of η; this can be seen by noticing that ‖f1‖∞ < ∞.

Suppose that ψ is an eigenfunction of L with eigenvalue e: Lψ = eψ . Since
ψ ∈ D(L), then ψ = (L + i)−1ϕ, for some ϕ ∈ H . Let {ϕn} ⊂ D(�) be a
sequence of vectors converging to ϕ. Then

ψn := (L + i)−1ϕn −→ ψ, n −→ ∞, (115)

and moreover, ψn ∈ D(�). The latter follows because the resolvent (L + i)−1

leaves D(�) invariant, see Proposition 5.6; without loss of generality, we assume
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that k = 1. Moreover, by Proposition 5.3, we know that fα leaves D(�) invariant
(see also (61)), and gν leaves D(�) invariant (� commutes with N in the strong
sense on D). Hence, the regularized eigenfunction

ψα,ν,n = fαgνψn

satisfies ψα,ν,n ∈ D(�), ψα,ν,n → ψ , as α, ν → 0, n → ∞.
Notice that in the definition of ψn, we introduced the resolvent of L, so that we

have (L − e)ψn → 0, as n → ∞, which we write as

(L − e)ψn = o(n). (116)

We now prove the estimate

|〈if η

1,α(L − e)〉gνψn
| � k

1

α
(
√

ν + o(n)), (117)

where k is some constant independent of η, α, ν, n. This estimate follows from
the bound

‖(L − e)gνψn‖ � k(
√

ν + o(n)), (118)

which is proven as follows. We have that

(L − e)gνψn = gν(L − e)ψn + (119)

+ g1,ν[L, g1,ν]ψn + (120)

+ [L, g1,ν]g1,νψn, (121)

and the r.h.s. of (119) is o(n), by (116). Let us show that both (120) and (121)
are bounded above by k

√
ν, uniformly in n. The commutator expansion of Theo-

rem 5.2 (see also (114)) yields

g1,ν[L, g1,ν] = ν

∫
R

dsĝ1(s)e
isνN

∫ s

0
ds1e−is1νNg1,νDeis1νN, (122)

as operators on D(�), where D is given in (80). We use that g1,ν commutes with
eisνN . From (62), we see that for any φ ∈ D(�),

‖g1,νDeis1νNφ‖= sup
ϕ∈D,ϕ 
=0

|〈ϕ, g1,νDeis1νNφ〉|
‖ϕ‖ � sup

ϕ∈D,ϕ 
=0

‖Dg1,ϕ‖‖φ‖
‖ϕ‖

� k sup
ϕ∈D,ϕ 
=0

‖N1/2g1,νϕ‖
‖ϕ‖ ‖φ‖ � k

1√
ν
‖φ‖,

and consequently,

‖g1,ν[L, g1,ν]φ‖� ν

∫
R

ds|ĝ1(s)|
∫ s

0
ds1‖g1,νDeis1νNφ‖

� k
√

ν

∫
R

ds|sĝ1(s)| ‖φ‖. (123)
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Thus, the desired bound for (120) is proven, and the same bound is established
for (121) by proceeding in a similar way. This proves (118).

Next, since f
η

1,α leaves D(�) invariant, the commutator [f η

1,α, L] is defined in
the strong sense on D(�), and Theorem 5.2 yields

[f η

1,α, L]
=

∫
R\(−η,η)

dsf̂1(s)e
isαA

(
sC1 + α

s2

2
C2

)
+

+ α2
∫

R\(−η,η)

dsf̂1(s)e
isαA

∫ s

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3e−is3αAC3eis3αA.

(124)

For n � 1, we have

f
(n)

1 (αA) =
∫

R

ds(is)nf̂1(s)e
isαA =

∫
R\(−η,η)

ds(is)nf̂1(s)e
isαA − Rη,n,

where the remainder term

Rη,n = −
∫ η

−η

ds(is)nf̂1(s)e
isαA

satisfies Rη,n = (Rη,n)
∗, and ‖Rη,n‖ � knη, with a constant kn that does not

depend on α, η. We obtain from (124)

[f η

1,α, L]
= −i(f ′

1(αA) + Rη,1)C1 − α

2
(f ′′

1 (αA) + Rη,2)C2 +

+ α2
∫

R\(−η,η)

dsf̂1(s)e
isαA

∫ s

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3e−is3αAC3eis3αA.

(125)

Recalling that f ′
1(αA) = f 2(αA) = f 2

α , we write

−if 2
α C1 = −ifαC1fα −

− ifα

∫
R

dsf̂ (s)eisαA

(
αsC2 + α2

∫ s

0
ds1

∫ s1

0
ds2e−is2αAC3eis2αA

)
= −ifαC1fα − αfαf

′
αC2 −

− iα2fα

∫
R

dsf̂ (s)eisαA

∫ s

0
ds1

∫ s1

0
ds2e−is2αAC3eis2αA, (126)

where f ′
α = f ′(αA). Remarking that fαf

′
α = 1

2 (f 2)′(αA) = 1
2f

′′
1 (αA), we obtain
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from (125), (126):

[f η

1,α, L]
= −ifαC1fα − αf ′′

1 (αA)C2 − iRη,1C1 − α

2
Rη,2C2 +

+ α2
∫

R\(−η,η)

dsf̂1(s)e
isαA

∫ s

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3e−is3αAC3eis3αA −

− iα2fα

∫
R

dsf̂ (s)eisαA

∫ s

0
ds1

∫ s1

0
ds2e−is2αAC3eis2αA. (127)

Consequently, taking into account estimate (64), we obtain that

〈i[f η

1,α, L]〉gνψn
= 〈C1〉ψα,ν,n

− Re iα〈f ′′(αA)C2〉gνψn
+ Re〈Rη,1C1〉gνψn

−
− Re i

α

2
〈Rη,2C2〉gνψn

+ O

(
α2

√
ν

)
, (128)

as we show next. We have taken the real part on the right side, since the left side is
a real number. To estimate the remainder term, we use condition (64) to obtain

‖e−is3αAC3eis3αAgνψn‖ � k
1√
ν

eαk′|s3|,

uniformly in n, so the middle line in (127) is estimated from above by

k
α2

√
ν

∫
R

ds|f̂1(s)| |s|3eαk′|s| � k
α2

√
ν

eαk′K
∫

R

ds|f̂1(s)| |s|3,

where K < ∞ is such that suppf̂1 ⊂ [−K,K]. The exponential is bounded
uniformly in 0 � α < 1, hence the r.h.s. is � k(α2/

√
ν). The last line in (127)

is analyzed in the same way and (128) follows.
Finally, we observe that

− Re〈iαf ′′(αA)C2〉gνψn

= −α

2
〈i[f ′′(αA),C2]〉gνψn

= −α2

2

〈 ∫
R

dsf̂ ′′(s)eisαA

∫ s

0
ds1e−is1αAC3eis1αA

〉
gνψn

= O

(
α2

√
ν

)
,

where we use (64) again, as above. A similar estimate yields

Re i
α

2
〈Rη,2C2〉gνψn

= −i
α

4
〈[Rη,2C2]〉gνψn

= O

(
α2η√

ν

)
,

and using the bound (63), we have that

〈Rη,1C1〉gνψn
= O

(
η

νp

)
.
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Combining this with (128) and (117) shows that

|〈C1〉ψα,ν,n
| � k

(√
ν + o(n)

α
+ α2

√
ν

+ η

νp

)
. (129)

Notice that

C1ψα,ν,n =
∫

dsf̂ (s)C1eisαAgνψn −→ C1ψα,ν,

as n → ∞, where ψα,ν := fαgνψ . This follows from the boundedness condi-
tion (63) and from ψn → ψ , n → ∞, see (115). Consequently we obtain by
taking the limit n → ∞ in (129)

|〈C1〉ψα,ν
| � k

(√
ν

α
+ α2

√
ν

+ η

νp

)
.

Choose, for instance, ν = α3, η = α3p+δ, for any δ > 0, then

lim
α→0

〈C1〉ψ
α,α3 = 0.

This concludes the proof of the theorem. �
Proof of Theorem 3.3. We adopt the definitions and notation introduced in the

proof of Theorem 3.2. It suffices to prove

lim
α→0

〈ψα, i[L,A0]ψα〉 = 0,

where we set ψα = ψα,ν|ν=α3 ; see in the proof of Theorem 3.2. The scalar product
can be estimated by

|〈ψα, i[L,A0]ψα〉|� 2|〈(L − e)ψα,A0ψα〉|
� 2‖P(N � n0)(L − e)ψα‖ ‖A0ψα‖.

We have

P(N � n0)(L − e)ψα,ν = lim
n→∞ P(N � n0)[L, fα]gνψn + (130)

+ lim
n→∞ P(N � n0)fα[L, gν]ψn. (131)

Using condition (63), we easily find (expanding the commutator [L, fα]) that
‖P(N � n0)[L, fα]gνψn‖ � kn0α. Similarly, using (62), we find that ‖P(N �
n0)fα[L, gν]ψn‖ � k

√
ν. It follows that ‖P(N � n0)(L − e)ψα‖ � kn0α. �

Proof of Theorem 3.4. The inequality C � P −B, the continuity of B, and (67)
imply that for any ε > 0, there is an α0(ε), s.t. if α < α0(ε) then

〈ψα,Pψα〉 � 〈ψ,Bψ〉 + ε. (132)
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Let µφ be the spectral measure of P corresponding to some φ ∈ H . Then

〈ψα,Pψα〉 =
∫

R+
p dµψα

(p) = lim
R→∞

∫
R+

pχ(p � R) dµψα
(p),

where χ(p � R) is the indicator of [0, R]. We obtain from (132)

lim
R→∞

〈ψα, χ(P � R)Pψα〉= lim
R→∞

‖χ(P � R)P 1/2ψα‖2

� 〈ψ,Bψ〉 + ε ≡ k.

We have ‖χ(P � R)P 1/2ψ‖ � R1/2‖ψ − ψα‖ + √
k, and taking α → 0

gives ‖χ(P � R)P 1/2ψ‖ �
√

k, uniformly in R, so limR→∞
∫ R

0 p dµψ(p) ex-
ists and is finite, by the monotone convergence theorem. Since D(P 1/2) = {ψ |∫ ∞

0 p dµψ(p) < ∞}, we have that ψ ∈ D(P 1/2), and ‖P 1/2ψ‖ � 〈ψ,Bψ〉. �

7. Flows and Induced Unitary Groups

Let R ⊆ R
n be a Borel set of R

n (with nonempty interior), let X be a vector field
on R

n, and consider the initial value problem for x ∈ R:

d

dt
xt = X(xt ), xt |t=0 = x. (133)

We assume that X has the property that, for any initial condition x ∈ R, there
is a unique, global (for all t ∈ R) solution xt ∈ R to (133). Let �t denote the
corresponding flow and assume �t is a diffeomorphism of R into R, for all t ∈ R.
The following properties of the flow will be needed: �s+t = �s ◦ �t , �−1

t = �−t ,
�0 = 1. The Jacobian determinant of �t(x) is given by

Jt (x) = |det �′
t (x)|, (134)

where �′
t (x) is the matrix ( ∂(�t )i

∂xj
(x)).

Let µ: R → R+ be a continuous function which is C1 on the interior of R

and which is strictly positive except possibly on a set of measure zero. We write
dµ for the absolutely continuous measure µ(x) dx, where dx denotes Lebesgue
measure on R

n. Given a Hilbert space H, consider L2(R, dµ;H), the space of
square integrable functions ψ : R → H, equipped with the scalar product

〈ψ,φ〉 =
∫

R

〈ψ(x), φ(x)〉H dµ(x).

On the Hilbert space L2(R, dµ;H), the flow �t induces a strongly continuous
unitary group, Ut , defined by

(Utψ)(x) =
√

Jt(x)
µ(�t(x))

µ(x)
ψ(�t(x)), (135)
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for ψ ∈ L2(R, dµ;H). To check that Ut preserves the norm, we make the change
of variables y = �t(x) to arrive at∫

R

|(Utψ)(x)|2 dµ(x)=
∫

R

Jt (x)|ψ(�t(x))|2µ(�t(x)) dx

=
∫

R

Jt (�
−1
t (y))|det(�−1

t )′(y)| |ψ(y)|2µ(y) dy.

We observe that Jt (�
−1
t (y))|det(�−1

t )′(y)| = |det 1| = 1, hence ‖Utψ‖ = ‖ψ‖.
Next, using that �t+s = �t ◦ �s , one easily shows that Jt+s(x) = Jt(�s(x))Js(x),
and that

µ(�t+s(x))

µ(x)
= µ(�t(�s(x)))

µ(�s(x))

µ(�s(x))

µ(x)
,

hence t �→ Ut is a unitary group.
In order to see that the unitary group is strongly continuous and to calculate its

generator, we impose some additional assumptions on µ and X.

(1) X is C∞ and bounded,
(2) for any compact set M ⊂ R, there is a k < ∞ s.t. ∂t |t=0Jt (x) � k, uniformly

in x ∈ M,
(3) for any compact set M ⊂ R, there is a k < ∞ s.t. ‖X′(x)∇µ(x)

µ(x)
‖ � k, uniformly

in x ∈ M,
(4) t �→ {Jt(x)µ(�t (x))}1/2 is C1 in a neighbourhood (−t0, t0) of zero, and

for any compact set M ⊂ R, there is a k < ∞ s.t. we have the estimate
|{Jt(x)µ(�t(x))}1/2| < f (x), for |t| < t0, where f ∈ L2

loc(R, dx).

If X is C∞ then so is �t(x) (jointly in (t, x)), and using that

�t(x) = x +
∫ t

0
X(�s(x)) ds,

�′
t (x) = 1 +

∫ t

0
X′(�s(x))�′

s (x) ds, (136)

it follows immediately that

‖�t(x)‖ � ‖x‖ + |t| ‖X‖∞, (137)

where the subscript ∞ denotes the supremum norm over x ∈ R. In order to obtain
an estimate on ‖�′

t (x)‖ (the operator norm on B(Rn), i.e. the matrix norm, for x

fixed), we recall Gronwall’s lemma. If µ: R → R+ is continuous, and ν: R → R+
is locally integrable, then the inequality

µ(t) � c +
∫ t

t0

ν(s)µ(s) ds,



THERMAL IONIZATION 279

where c � 0, and t � t0, implies that

µ(t) � ce
∫ t
t0

ν(s) ds
. (138)

Equation (136) implies

‖�′
t (x)‖ � 1 + ‖X′‖∞

∫ t

0
‖�′

s(x)‖ ds,

so Gronwall’s lemma yields the estimate

‖�′
t (x)‖ � exp(‖X′‖∞t), ∀t > 0.

A similar bound holds for t < 0, and hence

‖�′
t (x)‖ � exp(‖X′‖∞|t|), t ∈ R, (139)

from which it follows that

Jt (x) � exp(n‖X′‖∞|t|). (140)

For ψ ∈ C∞
0 ,

−1

i
∂t |t=0(Utψ)(x)

= −1

i

(
1

2
∂t |t=0Jt (x) + 1

2

∇µ(x) · X(x)

µ(x)
+ X(x) · ∇

)
ψ(x)

= (Aψ)(x), (141)

which defines an operator A on C∞
0 . Notice that due to conditions (1–3), A maps

C∞
0 into L2(R, dµ;H).

PROPOSITION 7.1. Assume conditions (1–4) hold. Then for any ψ ∈ C∞
0 , in the

strong sense on L2(R, dµ;H),

−1

i

Ut − 1

t
ψ −→ Aψ, t −→ 0. (142)

Consequently, C∞
0 is in the domain of definition of the selfadjoint generator of the

unitary group Ut , and on C∞
0 , this generator can be identified with the operator A

of Equation (141).
Proof. Invoking the dominated convergence theorem, it is enough to verify that∥∥∥∥−1

i

1

t
(Ut − 1)ψ(x) − (Aψ)(x)

∥∥∥∥2

H

(143)
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is bounded above by a dµ-integrable function which is independent of t , for small t .
We write

(143)� 1

µ(x)

∣∣∣∣1

t
(
√

Jt (x)µ(�t(x)) − √
µ(x))

∣∣∣∣2

‖ψ(�t(x))‖2
H + (144)

+ 1

t2
‖ψ(�t(x)) − ψ(x)‖2

H + (145)

+ ‖(Aψ)(x)‖2
H. (146)

Clearly, (146) is integrable, and, using the continuity properties of ψ and � and
the bound (139), one sees that (145) is bounded above by a t-independent function
that is dµ-integrable (use the mean value theorem). Next, if ψ has support in a ball
of radius ρ in R ⊂ R

n, then ψ ◦�t has support in the ball of radius ρ +|t|‖X‖∞ �
ρ + ‖X‖∞, for |t| � 1. This follows from (137). Let χ(x) denote the indicator
function on the ball of radius ρ + ‖X‖∞, then we have for |t| < t0 with t0 as in
condition (4),

(144)� kχ(x)
1

µ(x)

∣∣∣∣1

t
(
√

Jt (x)µ(�t(x)) − √
µ(x))

∣∣∣∣2

� kχ(x)
1

µ(x)
|f (x)|2,

where we have used the mean value theorem and condition (4). The latter function
is dµ-integrable. �

Proof of Proposition 4.1. Since ξ is globally Lipshitz (with Lipshitz constant
‖ξ ′‖∞), we have existence and uniqueness of global solutions to the initial value
problem (133). Due to uniqueness and the fact that R � t �→ et = 0 is a solution
(since ξ(0) = 0), we see that �t(e) ∈ (0,∞), for all t ∈ R, e ∈ (0,∞), so �t is
a diffeomorphism in R+. It is not difficult to verify that conditions (1–4) above are
satisfied. Consequently, it follows from Proposition 7.1 that C∞

0 ⊂ D(A), and that
A is given by (70) on C∞

0 . Since ξ is infinitely many times differentiable, A leaves
C∞

0 invariant. Hence C∞
0 is a core for A. �

8. Proofs of Some Propositions

Proof of Proposition 4.2. Since �I� = 0 and �IR2
ε (p̄0 ⊗ p̄0)I� = 0, we have

�IR
2
ε I� = �IR 2

ε I�

= �IR2
ε (p̄0 ⊗ p0 + p0 ⊗ p̄0)I� + �IR2

ε (p0 ⊗ p0)I�. (147)

It is not difficult to see that ε�IR2
ε (p0 ⊗ p0)I� → 0, as ε → 0, so the last

term in (147) does not contribute effectively to a lower bound in the limit ε → 0.
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Let J be the modular conjugation operator introduced in (47). Using the relations
J 2 = J , Jp0 ⊗ p̄0 = p̄0 ⊗ p0J , JR2

ε = R2
ε J , J I = −IJ , and the invariance of

ϕ0 ⊗ ϕ0 ⊗ � under J , one verifies easily that

�IR2
ε (p0 ⊗ p̄0)I�

= �IR2
ε (p̄0 ⊗ p0)I�

=
∑
α,α′

�(Gα ⊗ 1p ⊗ a(τβ(gα)))
p̄0 ⊗ p0

(Hp ⊗ 1p − E + Lf )2 + ε2
×

× (Gα′ ⊗ 1p ⊗ a∗(τβ(gα′)))�,

where Lf = d�(u) and where τβ has been defined in (44). We pull the anni-
hilation operator through the resolvent, using the pull through-formula (for f ∈
L2(R × S2))

a(f )Lf =
∫

R×S2
f̄ (u,�)(Lf + u)a(u,�),

and then contract it with the creation operator. This gives the bound

�IR
2
ε I�

�
∫ E

−∞
du

∫
S2

d�
u2

e−βu − 1
×

×
(

p0F(−u,�)
p̄0

(Hp − E + u)2 + ε2
F(−u,�)∗p0

)
⊗ p0 ⊗ P�,

where we restricted the domain of integration over u to (−∞, E) ⊂ R− (as ε → 0,
ε

(Hp−E+u)2+ε2 tends to the Dirac distribution δ(Hp −E+u), hence u = −Hp +E ∈
(−∞, E)), and where we used (44). The desired result (91) now follows by making
the change of variable u �→ −u in the integral, and by remembering the definition
of γ , (39). �

Proof of Proposition 4.3. First, we prove a bound on �peitAa
pψ , for ψ ∈ C∞

0 .
Let �a

t denote the flow generated by the vector field ξa. Then, for each e ∈ [0,∞),
((�p − 1p)eitAa

pψ)(e) = eψ(�a
t (e)), and

‖(�p − 1p)eitAa
pψ‖2 =

∫
R+

e2‖ψ(�a
t (e))‖2 de

=
∫

R+
(�a

−t (y))2‖ψ(y)‖2(�a
−t )

′(y) dy, (148)

where we make the change of variables y = �a
t (e). Recall that �a

t (y) = y +∫ t

0 ξ(�a
s (y)/a) ds, so

|�a
t (y)| � |y| + |t| ‖ξ‖∞. (149)
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Next (�a
t )

′(y) = 1 + ∫ t

0
1
a
ξ ′(�a

s (y)/a)(�a
s )

′(y) ds yields

|(�a
t )

′(y)| � 1 +
∫ t

0

1

a
‖ξ ′‖∞|(�a

t )
′(y)| ds, (150)

and Gronwall’s estimate, (138), implies that

|(�a
t )

′(y)| � e‖ξ ′‖∞|t |/a. (151)

Using (151) and (149) in (148) yields

‖(�p − 1p)eitAa
pψ‖2 � e‖ξ ′‖∞|t |/a

∫
R+

(y + ‖ξ‖∞|t|)2‖ψ(y)‖2 dy

� 2e‖ξ ′‖∞|t |/a(1 + ‖ξ‖∞|t|)2(‖(�p − 1p)ψ‖ + ‖ψ‖)2,

from which it follows that

‖�peitAa
pψ‖� 4

√
2(1 + ‖ξ‖∞|t|)e‖ξ ′‖∞|t |/a‖�pψ‖

� 4
√

2e(‖ξ ′‖∞+‖ξ‖∞)|t |/a‖�pψ‖. (152)

Estimate (152) holds for all ψ ∈ C∞
0 , which is a core for �p. Next, let ψ ∈ D(�p),

and let {ψn} ⊂ C∞
0 be a sequence, s.t. ψn → ψ , �pψn → �pψ , as n → ∞. If χR

denotes the cutoff function χ(�p � R), for R > 0, we have

‖χR�peitAa
pψ‖� ‖χR�peitAa

pψn‖ + R‖ψ − ψn‖
� 4

√
2e(‖ξ ′‖∞+‖ξ‖∞)|t |/a‖�pψn‖ + R‖ψ − ψn‖.

Taking n → ∞ yields

‖χR�peitAa
pψ‖ � 4

√
2e(‖ξ ′‖∞+‖ξ‖∞)|t |/a‖�pψ‖,

uniformly in the cutoff parameter R. This shows that eitAa
pψ ∈ D(�p), and (152)

is valid for all ψ ∈ D(�p).
We complete the proof of the proposition by examining �f eitAf ψ . Let

ψ ∈ Df . Then one finds the following bound for the n-particle component:

‖[(�f − 1f )eitAf ψ]n‖2 =
∥∥∥∥∥

n∑
j=1

(u2
j + 1)ψn(u1 − t, . . . , un − t)

∥∥∥∥∥
2

=
∥∥∥∥∥

n∑
j=1

((uj + t)2 + 1)ψn(u1, . . . , un)

∥∥∥∥∥
2

� (2(1 + t2))2

∥∥∥∥∥
n∑

j=1

(u2
j + 1)ψn(u1, . . . , un)

∥∥∥∥∥
2

.
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It follows that ‖(�f − 1f )eitAf ψ‖ � 2(1 + t2)‖�f ψ‖, for all ψ ∈ Df , so that

‖�f eitAf ψ‖ � 2(1 + t2)‖�f ψ‖ + ‖ψ‖ � 3et‖�f ψ‖,
for all ψ ∈ Df . A similar argument as above shows that this estimate extends to
all ψ ∈ D(�f ). �

Proof of Proposition 4.4. We denote the fiber of Aa
p by Aa

p(e), i.e.

Aa
p(e) = i

(
1

2

1

a
ξ ′

(
e

a

)
+ ξ

(
e

a

)
∂e

)
, (153)

see also (71). For ψ ∈ C∞
0 , we have

(Aa
pGαψ)(e)= Aa

p(e)(Gαψ)(e)

= Aa
p(e)Gα(e,E)ψ(E) + Aa

p(e)

∫
R+

Gα(e, e
′)ψ(e′) de′.

Due to the regularity property (36), we can take the operator Aa
p(e) inside the

integral (dominated convergence theorem), and obtain the estimate

‖Aa
pGαψ‖2 � |ψ(E)|2

∫
R+

‖Aa
p(e)Gα(e,E)‖2

H de + (154)

+
∫

R+

[∫
R+

‖Aa
p(e)Gα(e, e

′)ψ(e′)‖H de′
]2

de. (155)

Using (153) and the bound |a−1ξ ′(e/a)| � e−1 supe�0 eξ ′(e) � ke−1, it is easily
seen that the integrand of (154) is bounded above by

k(‖e−1Gα(e,E)‖2
H + ‖∂1Gα(e,E)‖2

H),

which is integrable, due to (35). We estimate the integrand in (155) by

‖Aa
p(e)Gα(e, e

′)ψ(e′)‖H

� k(‖e−1Gα(e, e
′)‖B(H) + ‖∂1Gα(e, e

′)‖B(H))‖ψ(e′)‖H,

and using Hölder’s inequality, we arrive at

(155)� k

∫
R+

‖ψ(e)‖2 de ×

×
∫

R+

∫
R+

{‖e−1Gα(e, e
′)‖2

B(H) + ‖∂1Gα(e, e
′)‖2

B(H)} de de′.

By condition (36), the double integral is finite. We conclude that

‖Aa
pGαψ‖ � k‖ψ‖. (156)
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One also finds that ‖GαA
a
pψ‖ � k‖ψ‖, e.g., by noticing that

‖GαA
a
pψ‖ = sup

0 
=φ∈C∞
0

‖φ‖−1|〈φ,GαAa
pψ〉| = sup

0 
=φ∈C∞
0

‖φ‖−1|〈Aa
pGαφ,ψ〉|

and using (156). Consequently, we have shown (93) for n = 1.
The proof for n = 2, 3 follows the above lines. For instance, in order to

show boundedness of the third multi-commutator, a typical term to estimate is
‖Aa

pAa
pGαA

a
pψ‖, for ψ ∈ C∞

0 . We shall sketch the proof that this term is bounded,
all other ones being treated similarly. We have

‖Aa
pAa

pGαA
a
pψ‖ = sup

0 
=φ∈C∞
0

‖φ‖−1|〈φ,Aa
pAa

pGαA
a
pψ〉|, (157)

and the scalar product equals∫
R+

∫
R+

〈φ(e),Aa
p(e)2Gα(e, e

′)Aa
p(e′)ψ(e′)〉H de de′. (158)

Recalling (153), one can calculate the operator A2
p(e)2Gα(e, e

′). It can be written as
a sum of terms, involving multiplications by functions with argument e, and deriv-
atives ∂1Gα(e, e

′), ∂2
1Gα(e, e

′). Using the formulas for the adjoints of derivatives
of ∂

1,2
1 Gα(e, e

′), see (32), we obtain [Aa
p(e)2Gα(e, e

′)]∗, and (158) becomes∫
R+

∫
R+

〈Aa
p(e′)[Aa

p(e)2Gα(e, e
′)]∗φ(e), ψ(e′)〉H de de′, (159)

due to selfadjointness of Aa
p(e′) on H, and the fact that for all e ∈ R+,

[Aa
p(e)2Gα(e, e

′)]∗φ(e) ∈ D(Aa
p(e′)),

which follows from condition (36). Moreover, the same condition allows us to
estimate

|(159)|
�

∫
R+

∫
R+

‖Aa
p(e′)[|Aa

p(e)2Gα(e, e
′)]∗‖B(H)‖φ(e)‖H‖ψ(e′)‖H de de′

� ‖φ‖‖ψ‖
[∫

R+

∫
R+

‖Aa
p(e′)[Aa

p(e)2Gα(e, e
′)]∗‖2

B(H) de de′
]1/2

� k‖φ‖ ‖ψ‖,
where we have used Hölder’s inequality. This shows that (157) � k‖ψ‖. �

Proof of Proposition 4.5. We have mentioned before (90) that A0 satisfies the
conditions of Theorem 3.3, so it suffices to verify the conditions of Theorem 3.2.

We need to check that (X,�,D) is a GJN triple, for X = L,N,D,Ca
n , n = 1,

2, 3, and that (61), (62), (64), (63) are satisfied. Proposition 4.3 shows that (61)
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holds. The operator D, given in (80), is clearly N1/2-bounded in the sense of Kato
on D , since Gα are bounded operators, and g̃α , e−βu/2g̃α are square-integrable.
Hence (62) holds. Recalling Remark (1) after Theorem 3.2, and noticing that N

commutes with eitAa

, in the strong sense on D , and that Ca
3 � kN1/2, in the sense

of Kato on D (see (83)), we see that (64) is verified. Similarly, Ca
1 � kN in the

sense of Kato on D , see (81), so (63) holds.
It remains to show that the above mentioned triples satisfy the GJN properties.

We first look at (L,�,D). Clearly, ‖Lψ‖ � k‖�ψ‖, for ψ ∈ D . Moreover,
L0 commutes with � in the strong sense on D , so we need only consider the
interaction term in the verification of (58). Due to condition (37), we have for all
ψ ∈ C∞

0 : ‖�pGαψ‖ � k‖ψ‖, ‖Gα�pψ‖ � k‖ψ‖. Consequently, for ψ ∈ D :

|〈Gα ⊗ 1p ⊗ ϕ(g̃α)ψ,�ψ〉 − 〈�ψ,Gα ⊗ 1p ⊗ ϕ(g̃α)ψ〉|
� k‖ψ‖ ‖ϕ(g̃α)ψ‖+

+ |〈Gα ⊗ 1p ⊗ ϕ(g̃α)ψ,�f ψ〉 − 〈�f ψ,Gα ⊗ 1p ⊗ ϕ(g̃α)ψ〉|
� k‖ψ‖ ‖ϕ(g̃α)ψ‖ + k‖ψ‖ ‖ϕ((u2 + 1)g̃α)ψ‖
� k‖ψ‖ ‖�1/2ψ‖
� k(‖ψ‖2 + ‖�1/2ψ‖2)

� k〈ψ, (� + 1)ψ〉
� 2k〈ψ,�ψ〉. (160)

We used in the third step that ϕ(g̃α) and ϕ((u2 +1)g̃α) are relatively �
1/2
f bounded,

in the sense of Kato on D . This follows since (u2 + 1)g̃α ∈ L2(R × S2, du × d�),
due to conditions (33) and (34). The same estimates hold for 1p ⊗ CpGαCp ⊗
ϕ(e−βu/2g̃a), hence we have shown that (L,�,D) is a GJN triple.

It is clear that N � � in the sense of Kato on D , and since N commutes with �

in the strong sense on D , we see immediately that (N,�,D) is a GJN triple.
Next, consider (D,�,D). Since D has the same structure as I , c.f. (54)

and (80), the proof that (D,�,D) is a GJN triple goes as the one for (L,�,D).
We examine (Ca

n,�,D), n = 1, 2, 3, a > 0. Recall that the Ca
n are given in

(81)–(83). Each Ca
n has a term that acts purely on the particle space. This term is a

bounded multiplication operator that commutes with �, in the strong sense on D .
Therefore, we need only show that (N + λIa

1 ,�,D), (I a
2,3,�,D) are GJN triples.

Since we have shown it for (N,�,D), it suffices to treat (I a
n ,�,D), n = 1, 2, 3,

a > 0. We take the general term in the sum of (84):

X := ad(j)

Aa
p
(Gα) ⊗ 1p ⊗ ad(n−j)

Af
ϕ(g̃α)).

Since ad(j)

Aa
p
(Gα) is bounded, j = 1, 2, 3 (see Proposition 4.4), and

ad(n−j)

Af
(ϕ(g̃α)) = ϕ((i∂u)

n−j g̃α)

is relatively �
1/2
f -bounded, in the sense of Kato on D (this follows from ∂k

ug̃α ∈
L2(R × S2), k = 1, 2, 3, due to (33), (34)), then it is clear that ‖Xψ‖ � k‖�ψ‖,
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ψ ∈ D . Next, we verify condition (58) as above in (160):

|〈Xψ,�ψ〉 − 〈�ψ,Xψ〉|� k‖ψ‖ ‖ϕ((u2 + 1)(i∂)n−j g̃α)ψ‖
� k‖ψ‖ ‖�1/2ψ‖,

since (u2 + 1)(∂u)
kg̃α ∈ L2(R × S2), for k = 1, 2, 3, due to (33) and (34). �
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