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Abstract Starting from a microscopic system–environment model, we construct a
quantum dynamical semigroup for the reduced evolution of the open system. The
difference between the true system dynamics and its approximation by the semigroup
has the following two properties: It is (linearly) small in the system–environment
coupling constant for all times, and it vanishes exponentially quickly in the large time
limit. Our approach is based on the quantum dynamical resonance theory.

Keywords Open quantum system · Quantum resonances · Dynamical semigroup ·
Complete positivity

Mathematics Subject Classification 82C10 · 81S22

1 The issue

Due to the entanglement of an open system with its surroundings, its dynamics
V (t) : ρ0 �→ ρt , mapping an initial system density matrix ρ0 to its value at time
t , is not a semigroup in time. For each fixed t , the mapping V (t), called a dynamical

1 We recall that a map on bounded operators on a Hilbert space, V : B(H) → B(H), is called
completely positive if V ⊗ 1 : B(H ⊗ C

n) → B(H ⊗ C
n) is positive (maps positive operators into

positive ones) for all n ∈ N.
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map, is a linear, completely positive, trace preserving transformation.1 Under certain
assumptions, one can approximate the dynamics of an open system by a continuous
one-parameter semigroup of dynamical maps, called a quantum dynamical semigroup
[5,12]. The dynamics given by such a semigroup has two important features: (i) It
is Markovian due to the semigroup property and (ii) it maps density matrices into
density matrices due to its trace and positivity preserving quality. Complete positivity
of the dynamical semigroup implies its positivity preservation, but not vice versa. It is
a crucial physical property which ensures that the dynamics of initially entangled sys-
tems interacting with an environment is well defined [1,3]. The semigroup property is
particularly convenient since the spectral analysis of the generator L of the semigroup
yields dynamical properties of the system, such as the final state(s) and convergence
speeds. Controlling the remainder in the approximation V (t)ρ0 ≈ etLρ0 rigorously is
difficult. Microscopic derivations, passing from a full (Hamiltonian) model of system
plus environment and tracing out the environment degrees of freedom, involve approx-
imations (Born, Markov, rotating wave) that are hard to deal with mathematically. In
some situations where the system–environment interaction is weak, measured by a
small coupling constant λ, one can implement a (time-dependent) perturbation theory,
λ = 0 giving the unperturbed (uncoupled) case. For certain systems, it has been shown
[7,8] that for all a > 0,

lim
λ→0

sup
0�λ2t<a

‖V (t) − et (L0+λ2K )‖ = 0,

whereL0 is the generator of the uncoupled (Hamiltonian) dynamics and K is a (lowest
order) correction responsible for dissipative effects.Wediscuss herefinite-dimensional
open systems and so the nature of the norm is immaterial. This weak coupling result
allows a description of the dynamics by a semigroup up to times t = O(λ−2). How-
ever, the asymptotics t → ∞ is not resolved correctly by the dynamical semigroup
et (L0+λ2K ). For instance, the invariant state of the latter is typically the uncoupled
system Gibbs equilibrium state, while the true asymptotic state is the restriction of the
coupled system–environment equilibrium to the system alone. A more recent dynam-
ical resonance theory [13,20–22] improves the weak coupling result to

‖V (t) − etM(λ)‖ � Cλ2e−γ ′t , t � 0,

where M(λ) = L0 + λ2K + · · · is analytic in λ and γ ′ > 0. This approach grew out
of works proving “return to equilibrium” of open systems using elements of algebraic
quantum field theory and spectral theory [4,14] and is useful in different physical
settings [16–19]. While it is known that the “Davies generator” L0 +λ2K , describing
the weak coupling limit, generates a dynamical semigroup [7,10], this is not known
for the generator M(λ) emerging from the dynamical resonance theory. In the present
paper, we construct a dynamical semigroup Tt satisfying

T0 = 1, Tt+s = Tt Ts, ∀s, t � 0
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and

‖V (t) − Tt‖ � C |λ| (1 + λ2t
)
e−λ2(1+O(λ))γ t , t � 0,

where γ > 0. Giving the Schrödinger dynamics Tt is equivalent to giving the
completely positive, identity preserving semigroup τ t acting on the algebra of observ-
ables of the system (Heisenberg dynamics), defined by the relation Tr({Ttρ0}X) =
Tr(ρ0 τ t (X)) for all system density matrices ρ0 and all system observables X . Our
main result, Theorem 2.1, shows the existence of theHeisenberg dynamics τ t .We con-
struct it by modifying the dynamical resonance theory approach right at its starting
point. Namely, instead of taking the uncoupled system equilibrium state as a reference
state, we take for it the effective, coupled system equilibrium state, which contains all
orders of interactions with the reservoir. We show that this leads to a dynamics that is
a quantum dynamical semigroup and that has the correct final state.

Our paper is organized as follows. In Sect. 2, we give the setup of the problem,
state our assumptions and present the main result, Theorem 2.1. At the beginning of
Sect. 3, we explain the mathematical description of the reservoir, and in Sect. 3.2 we
construct the renormalized quantities (i.e., the system reference state). We provide the
proof of Theorem 2.1 in Sect. 3.3 (representation of the dynamics by τ t ) and Sect. 3.4
(complete positivity).

2 Main result

The Hilbert space of a finite-dimensional quantum system S in contact with a bosonic
quantum field (reservoir) R is

H = HS ⊗ HR, (2.1)

where HS = C
d and HR = ⊕n�0L2

sym(R3n, d3nk) is the Fock space over the single

particle space L2(R3, d3k). We consider Hamiltonians

H = HS + HR + λ VS ⊗ ϕ(g), (2.2)

where HS and VS are self-adjoint matrices onHS,

HS =
d∑

j=1

E j |φ j 〉〈φ j |, and HR =
∫

R3
|k| a∗(k)a(k)d3k (2.3)

is the second quantization of multiplication with the function |k|, the energy of the
mode k. The creation operators a∗(k) and annihilation operator a(k) satisfy the Bose
canonical commutation relations [a(k), a∗(l)] = δ(k − l) (Dirac delta). We assume
for convenience of exposition that all eigenvalues E j of HS are simple and that
min1� j�d E j = 0. Our arguments are readily generalized to degenerate (and shifted)
spectrum. The interaction strength is gauged by the coupling constant λ ∈ R and
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ϕ(g) = 1√
2

(
a∗(g) + a(g)

)
, a∗(g) =

∫

R3
g(k)a∗(k)d3k,

is the field and the creation operator [whose adjoint is a( f ), the annihilation operator],
respectively, smoothed out with a form factor g ∈ L2(R3, d3k).

In this work, we are concerned with the time evolution of observables X ∈ B(HS)

under the coupled system–reservoir Heisenberg dynamics αt
λ generated by the Hamil-

tonian H ,
t �→ ω

(
αt

λ(X ⊗ 1R)
)
. (2.4)

The initial state ω is a “normal state,” characterized by the fact that asymptotically
in space, the reservoir is in its thermal equilibrium state. We do not demand that
the system and reservoir are initially disentangled. There is a slight mathematical
complication in the precise definition of (2.4) because thermal reservoirs are spatially
infinitely extended systems. We explain this point in Sect. 3.1.

The non-interacting dynamics is the product αt
0 = αt

S ⊗ αt
R, where the individual

dynamics of each factor is generated by its own Hamiltonian HS or HR. For small cou-
pling constants λ, one can use a perturbation theory for the reduced system dynamics.
Effectively, the energy levels of HS acquire complex valued corrections [of O(λ2)]
which describe irreversibility of the open system dynamics. It is convenient to express
this scheme in terms of the system Liouville operator

LS = HS ⊗ 1S − 1S ⊗ HS (2.5)

acting on the doubled spaceHS ⊗ HS. The Liouville representation is quite standard
[23]. The eigenvalues of LS are the differences of those of HS. They describe the
temporal oscillations of the system density matrix elements in the energy basis under
the uncoupled dynamics. Namely, the density matrix elements oscillate in time with
frequencies that are the eigenvalues of LS. The coupling with the reservoir produces
corrections. To lowest order in λ, the corrected eigenvalues are those of LS + λ2�,
where � is the so-called level shift operator, a non-self-adjoint matrix on HS ⊗ HS,
which can be calculated explicitly [c.f. (3.17)]. The operators LS and � commute and
satisfy

(LS + λ2�)�S,β = 0 (2.6)

for all λ ∈ R, where [c.f. (2.3)]

�S,β = Z−1/2
S

∑

j

e−βE j /2φ j ⊗ φ j , ZS = Tr e−βHS (2.7)

is the system Gibbs (equilibrium) vector, defining the equilibrium state

ωS,β(X) = Z−1
S TrS(e

−βHSX) = 〈
�S,β , (X ⊗ 1S)�S,β

〉
, X ∈ B(HS). (2.8)

Relation (2.6) reflects the fact that the systemGibbs state is invariant under the coupled
dynamics, to lowest order in the perturbation. (In fact, generically, it is the final system
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state, as t → ∞, to lowest order in λ.) For simplicity of the exposition, we assume
that

(A1) (i) All eigenvalues of � are simple.
(ii) All eigenvalues of � but zero have strictly positive imaginary part,

γ = min
{
Im a : a ∈ spec(�)\{0}} > 0. (2.9)

Since LS and � commute, the eigenvalues of LS + λ2� are of the form e+ λ2a, with
e ∈ spec(LS), a ∈ spec(�). In particular, for small enough, but non-vanishing λ, the
operator LS + λ2� has only simple eigenvalues and, apart from zero, all its spectrum
has imaginary part � γ . Both assumptions are readily and generically verified in
concrete examples. Assumption (i) simplifies the analysis somewhat and guarantees
in particular that LS + λ2� is diagonalizable. Assumption (ii) is commonly referred
to as the Fermi Golden Rule Condition and ensures that irreversible effects are visible
already in the lowest order correction to the dynamics.

In the dynamical theory of quantum resonances, the resonances (complex energy
eigenvalues) associated with the Liouville operator are determined using spectral
deformation or Mourre theory [4,13,14,16–22]. In order not to muddle the core ideas
of the current work, we follow here the technically least complicated situation, where
the Hamiltonian is “translation deformation analytic” [4,14]. This requires a regularity
assumption on the form factor g ∈ L2(R3, d3k). To state it, define the complex valued
function gβ on R × S2 by

gβ(u, �) =
√

u

1 − e−βu
|u|1/2

{
g(u, �), u ≥ 0
−g(−u, �), u < 0

(2.10)

where g(u, �) is g(k) in spherical coordinates (u, �) ∈ R+ × S2. The regularity
condition is the following.

(A2) For θ ∈ R, define (Tθgβ)(u, �) = gβ(u − θ,�). There is a θ0 > 0 such that,
viewed as a map from R to L2(R× S2, du × d�), the function θ �→ Tθgβ has
an analytic extension to 0 < Imθ < 2θ0 which is continuous as Imθ → 0+.

This condition is satisfied for instance for the following family of form factors, given
in spherical coordinates (r, �) ∈ R+ × S2 = R

3,

g(k) = g(r, �) = r pe−rm g1(�),

where p = −1/2 + n, n = 0, 1, 2, . . ., m = 1, 2 and g1(σ ) = eiφ ḡ1(σ ) for an
arbitrary phase φ (see also [11]).

Let αt
λ be the coupled system–reservoir dynamics. The resonance approach, devel-

oped in [20–22], gives the expansion (2.11) below.We give an outline of the derivation
at the end of this section. If 0 < |λ| < λ0 for a sufficiently smallλ0, thenwe have for all
system–reservoir initial states ω0 belonging to a dense set S0, all system observables
X ∈ B(HS) and all times t � 0,

ω0
(
αt

λ(X ⊗ 1R)
) = ωSR,β,λ(X ⊗ 1R) + ω0

(
δtλ(X) ⊗ 1R

) + Rλ,t (X), (2.11)
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whereωSR,β,λ is the coupled system–reservoir equilibrium state, where δtλ : B(HS) →
B(HS) and the remainder Rλ,t (X) satisfy

|δtλ(X)| � Ce−λ2γ t ‖X‖ (2.12)

|Rλ,t (X)| � C |λ| (e−θ0t + λ2t e−λ2γ t) ‖X‖. (2.13)

Here, γ is the gap (2.9) and θ0 is given in Assumption (A2).2 The resonance approach
requires that λ2γ << θ0. The map δtλ is defined by the relation

(
δtλ(X) ⊗ 1S

)
�S,β = ei t (LS+λ2�)P⊥

S,β

(
X ⊗ 1S

)
�S,β , (2.14)

where �S,β ∈ HS ⊗ HS is the system Gibbs vector (2.7), PS,β = |�S,β〉〈�S,β | and
P⊥
S,β = 1S−PS,β .3 The operators LS and� are the system Liouville and the level shift

operators, respectively, acting on HS ⊗ HS and commuting with each other. Under
typical well-coupledness conditions (e.g., “the Fermi Golden Rule condition”), one
has

Ker(LS + λ2�) = C�S,β , (2.15)

which sharpens (2.6). The property of return to equilibrium follows from (2.11),
namely,

lim
t→∞ ω0(α

t
λ(X ⊗ 1R)) = ωSR,β,λ(X ⊗ 1R). (2.16)

By modifying δtλ, (2.14), on the “stationary subspace” Ran PS,β , we define the map
σ t

λ : B(HS) → B(HS) by

(
σ t

λ(X) ⊗ 1S
)
�S,β = ei t (LS+λ2�)

(
X ⊗ 1S

)
�S,β . (2.17)

It follows from (2.14) and (2.6) that

σλ
t (X) = δλ

t (X) + ωS,β(X)1S, X ∈ B(HS). (2.18)

Expanding the joint equilibrium state for small λ,

ωSR,β,λ(X ⊗ 1R) = ωS,β(X) + R′
λ(X), (2.19)

where

|R′
λ(X)| � Cλ2‖X‖, (2.20)

2 If the initial state is of product form ωS ⊗ ωR,β , then the term C |λ|e−θ0t in (2.13) can be replaced by

Cλ2e−θ0t , see Theorem 3.1 of [20], Resonance theory of decoherence and thermalization.
3 �S,β is cyclic, meaning that (B(HS) ⊗ 1S)�S,β = HS ⊗ HS and �S,β is separating, meaning that
if (X ⊗ 1S)�S,β = 0 then X = 0. Due to the cyclic and separating property, (2.14) defines the map δtλ
uniquely, and it shows that t �→ δtλ is a group.
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and combining (2.11) and (2.18) we obtain

ω0
(
αt

λ(X ⊗ 1R)
) = ω0

(
σ t

λ(X) ⊗ 1R
) + R′

λ(X) + Rλ,t (X), (2.21)

where Rλ,t (X) and R′
λ(X) satisfy (2.13) and (2.20), respectively.

The expansion (2.21) has an advantage and a disadvantage over the expansion
(2.11).

• The advantage: Themain term in (2.21) is given by σ t
λ, which is a quantum dynam-

ical semigroup (in the Heisenberg picture). This means that σ t
λ is a semigroup of

completely positive maps and satisfies σ t
λ(1S) = 1S. The latter property (which is

equivalent to the dual map acting on density matrices being trace preserving) fol-
lows directly from definition (2.17) and (2.15).We give a derivation of its complete
positivity in Sect. 3.4.

• The disadvantage: The main term of expansion (2.21) describes the time asymp-
totics only up to an accuracy of O(λ2). Indeed, the final state of σ t

λ is the uncoupled
equilibrium ωS,β while the true final state is the reduction to S of the coupled state
ωSR,β,λ, as correctly described by (2.11). In other words, the remainder in expan-
sion (2.21) does not vanish as t → ∞, but stays of O(λ2).

The main result of this paper is Theorem 2.1 below, which gives an effective system
dynamics τ tλ that combines the advantages of the above expansions (2.11) and (2.21),
namely

(i) τ tλ is a quantum dynamical semigroup of the system, and
(ii) τ tλ describes the correct long time asymptotics (vanishing remainder as t → ∞).

Theorem 2.1 There is a constant λ0 > 0 such that the following holds for |λ| < λ0.
There is a completely positive, identity preserving semigroup τ tλ acting on B(HS), the
observables of the system, such that ∀ω0 ∈ S0, ∀t � 0, ∀X ∈ B(HS),

ω0
(
αt

λ(X ⊗ 1R)
) = ω0

(
τ tλ(X) ⊗ 1R

) + Rλ,t (X), (2.22)

where Rλ,t (X) satisfies

|Rλ,t (X)| � C |λ| (1 + λ2t
)
e−λ2(1+O(λ))γ t ‖X‖. (2.23)

The dynamical semigroup τ tλ can be constructed perturbatively in λ, by using the
resonance data (energies and vectors) of a renormalized, λ-dependent system Hamil-
tonian.

In analogy with (2.14) and (2.17), we will construct τ tλ by the definition

(
τ tλ(X) ⊗ 1S

)
�̃S,β,λ = ei t (L̃S+λ2�̃)(X ⊗ 1S)�̃S,β,λ, (2.24)

where L̃S = L̃S(λ) and �̃ = �̃(λ) are suitably renormalized Liouville and level shift
operators, respectively, which commute with each other. Here, �̃S,β,λ is a cyclic and
separating vector spanning the kernel of L̃S + λ2�̃.

123

Author's personal copy



M. Könenberg, M. Merkli

2.1 Outline of the derivation of (2.11)–(2.13)

The detailed derivation is found in [20–22]. We sum it up as follows. A purification
(GNS representation) of the state ω0 gives the expression

ω0(α
t
λ(X ⊗ 1R)) =

〈
�0, e

i t Lλπ(X ⊗ 1R)e−i t Lλ�0

〉
, (2.25)

where �0 is a normalized vector in a suitable representation Hilbert space with inner
product 〈·, ·〉, Lλ is the self-adjoint Liouville operator and π is a ∗-representation,
mapping system–reservoir observables to bounded operators on the representation
Hilbert space. The algebraic structure (Tomita–Takesaki theory) implies that it suffices
to consider vectors of the form �0 = B�SR,β,λ, where B is a bounded operator in the
commutant of Ran π , and where �SR,β,λ is the purification of the coupled system–
reservoir equilibrium stateωSR,β,λ [the (αt

λ, β)-KMS state], satisfying Lλ�SR,β,λ = 0
(stationary state). Then, (2.25) takes the form

ω0
(
αt

λ(X ⊗ 1R)
) =

〈
�0, Be

i t Lλπ(X ⊗ 1R)�SR,β,λ

〉
. (2.26)

The right side is now most easily analyzed using spectral deformation (complex scal-
ing) techniques as in [20–22], similarly to what we do in the present paper in Sect. 3,
see in particular (3.38).4 The complex deformation effectively replaces the propagator
ei t Lλ by ei t Lλ,θ , where Lλ,θ is the deformed, non-self-adjoint Liouville operator. For
a fixed deformation parameter θ , the spectrum of Lλ,θ = L0,θ + λIθ [in accordance
with (3.6)] can be analyzed using standard analytic perturbation theory in λ, since the
eigenvalues of L0,θ , which are real, are isolated, separated from the continuous spec-
trum, which is shifted by Imθ > 0 into the upper complex plane (this is the action of
the deformation). The eigenvalues of Lλ,θ (θ fixed, such that Imθ >> λ2) close to an
unperturbed eigenvalue e of L0 are e + λ2λe, j + O(λ3), j = 1, . . . ,me (multiplicity
of e, m0 = d) and the corresponding eigenprojections are �e, j = Qe, j + O(λ). Here
λe, j and Qe, j are the eigenvalues and eigenprojections of the level shift operator �e

[see (3.17), (3.18)]. The deformed propagator is then “diagonalized” as

ei t Lλ,θ = |�SR,β,λ〉〈�SR,β,λ| + ∑d−1
j=1 e

i tλ2(λ0, j+O(λ)) �0, j (2.27)

+∑
e∈spec(LS)\{0}

∑me
j=1 e

i t (e+λ2(λe, j+O(λ))) �e, j (2.28)

+O(λe−θ0t ). (2.29)

This last equality sign has to be taken cum grano salis, in the weak sense on suitable
vectors, and it is proven rigorously by means of a resolvent representation of the
propagator (complex path integral over the resolvent). The term |�SR,β,λ〉〈�SR,β,λ|
is the projection onto the invariant state (associated with the simple eigenvalue zero
of Lλ,θ ). The sums on lines (2.27) and (2.28) describe the bifurcation of complex

4 One may also follow an extended Mourre theory approach, recently developed in [15]. This method is
more powerful in that it requires less restrictive assumptions, but it is technically somewhatmore demanding.
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resonance energies of Lλ,θ out of the zero and nonzero real (Bohr) system energies
[the eigenvalues of LS, (2.5), which are the same as the eigenvalues of L0,θ ]. The
remainder term (2.29) is brought about by the (continuous) spectrum of Lλ,θ , all of
whose spectral points have imaginary part exceeding θ0 = Imθ . We now use the
expansion (2.27)–(2.29) in (2.26). The projection onto �SR,β,λ contributes with

〈
�0, B�SR,β,λ

〉 〈
�SR,β,λ, π (X ⊗ 1R)�SR,β,λ

〉 = ωSR,β,λ (X ⊗ 1R) . (2.30)

A general term in the sums of (2.27), (2.28) contributes in (2.26) with

〈
�0, Be

i t (e+λ2(λe, j+O(λ)))�e, j π(X ⊗ 1R)�SR,β,λ

〉

=
〈
�0, Be

i t (e+λ2λe, j ) Qe, j π(X ⊗ 1R)(�S,β ⊗ �R)
〉
+ O

(
|λ| ‖X‖(1 + λ2t)e−λ2γ t

)
.

(2.31)

We have replaced ei t (e+λ2(λe, j+O(λ))) by ei t (e+λ2λe, j ), leading to an error term
O(|λ|3‖X‖ te−λ2γ t ), where γ is given in (2.9) (see also footnote 5). Then, we have
replaced �e, j by Qe, j , making an error of O(|λ| ‖X‖ e−λγ t ) and the same error is
incurred by replacing the coupled KMS vector �SR,β,λ by the uncoupled KMS vector
�S,β ⊗ �R, since ‖�SR,β,λ − �S,β ⊗ �R‖ = O(λ). Next, summing (2.31) over all

e and j , as dictated by the sums in (2.27) and (2.28), turns ei t (e+λ2(λe, j ))Qe, j into
ei t (LS+λ�)P⊥

S,β [the eigenvalue zero of � is excluded as it is taken care of in the term
coming from |�SR,β,λ〉〈�SR,β,λ| in (2.27)]. Consequently,

ω0
(
αt

λ (X ⊗ 1R)
) = ωSR,β,λ (X ⊗ 1R) +

〈
�0, Be

i t(LS+λ�)P⊥
S,β π (X ⊗ 1R)

(
�S,β ⊗ �R

)〉

+O
(
|λ| ‖X‖(1 + λ2t)e−λ2γ t

)
. (2.32)

Next, we use definition (2.14) of δtλ to see that

〈
�0, Be

i t(LS+λ�)P⊥
S,β π (X ⊗ 1R)

(
�S,β ⊗ �R

)〉

= 〈
�0, B

(
δtλ(X) ⊗ 1S ⊗ 1R

) (
�S,β ⊗ �R

)〉

= 〈
�0,

(
δtλ(X) ⊗ 1S ⊗ 1R

)
B

(
�S,β ⊗ �R

)〉

= 〈
�0, π

(
δtλ(X) ⊗ 1R

)
�0

〉 + O
(
|λ| ‖X‖ e−λ2γ t

)
. (2.33)

In the last step, we have exploited that B(�S,β ⊗ �R) = B�SR,β,λ + O(λ) and
B�SR,β,λ = �0. Finally, combining (2.32) and (2.33), voilà, we obtain the expansion
(2.11).
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3 The renormalized dynamics and complete positivity

3.1 States and dynamics

The description (2.1)–(2.3) given above is common in the theoretical physics literature
and serves, in particular, to introduce the system–reservoir interaction operators [taken
here to be linear in the field, (2.2)]. It is, however, well known that the Fock spaceHR
above is not the correct Hilbert space onwhich one can represent the state of a spatially
infinitely extended Bose gas in thermal equilibrium. To find that Hilbert space, one
has to first perform the thermodynamic limit of the reservoir equilibrium state and
then reconstruct its Hilbert space representation using the Gelfand–Naimark–Segal
construction. This is the Araki–Woods representation for thermal reservoirs [2].

It consists of a triple (HR,β , πβ,�R), where HR,β is the representation Hilbert
space, πβ : W → B(HR,β) is a representation of the Weyl algebra and �R ∈ HR,β is
a normalized vector representing the equilibrium state. Explicitly,

HR,β = F
(
L2

(
R × S2, du × d�

))
≡

⊕

n�0

L2
sym

((
R × S2

)n
, (du × d�)n

)

(3.1)
is the bosonic Fock space over the single particle space L2(R× S2, du × d�), where
d� is the uniform measure on the sphere S2. The vector �R is the vacuum vector of
F , and the representation map is given by

πβ (W ( f )) = W
(
fβ

)
, (3.2)

where f �→ fβ was defined by (2.10). The operator W ( f ) on the left side of (3.2)
is an (abstract) Weyl operator in W, while the represented W ( fβ) on the right side
is given by W ( fβ) = eiϕ( fβ ), with ϕ( fβ) = 2−1/2[a( fβ) + a∗( fβ)]. Here, a∗( fβ) is
the creation operator smoothed out with fβ , acting on F and a( fβ) its adjoint. The
reservoir equilibrium state at temperature T = 1/β is represented as

ωR,β (W ( f )) = 〈�R | πβ (W ( f ))�R 〉.
The free reservoir dynamics is implemented as πβ(W (eiωt f )) = ei t LRπβ(W ( f ))
e−i t LR , where

LR = d�(u) (3.3)

is the reservoir Liouville operator, the second quantization of multiplication with the
radial variable u.

Together with (2.5), the joint system–reservoir Hilbert space and non-interacting
Liouville operator are given by

H = C
d ⊗ C

d ⊗ HR,β and L0 = LS + LR. (3.4)

The interaction associated with (2.2) is represented by the operator

I = VS ⊗ 1S ⊗ ϕ(gβ) − J
(
VS ⊗ 1S ⊗ ϕ(gβ)

)
J, (3.5)
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where J = JS⊗JR is themodular conjugation. It is given explicitly as follows. LetC be
the antilinear operator acting onCd by taking complex conjugates of vector coordinates
in the energy basis {ϕn}, then JS acts onCd⊗C

d as JSχ⊗ψ = Cψ⊗Cχ . Similarly, JR
acts on F sector-wise and on the n-sector, its action is JRψn(u1, �1, . . . , un, �n) =
ψn(−u1, �1, . . . ,−un, �n). The full Liouville operator is then

Lλ = L0 + λI. (3.6)

The non-interacting and interacting systems, whose dynamics is generated by L0 and
Lλ, have unique β-KMS states ωSR,β,0 and ωSR,β,λ, which are represented by the
KMS vectors �SR,β,0 and �SR,β,λ respectively, where [recall (2.7)]

�SR,β,0 = �S,β ⊗ �R and �SR,β,λ = e−β(L0+λVS⊗1S⊗ϕ(gβ))/2�SR,β,0

‖e−β(L0+λVS⊗1S⊗ϕ(gβ))/2�SR,β,0‖
.

(3.7)
We refer to [4,6,9] for more detail on the construction of the interacting KMS state.

3.2 Construction of the renormalized quantities

The reduction in the joint equilibrium state to the system is given by the density matrix
ρS,β,λ, defined by

TrS
(
ρS,β,λX

) = ωSR,β,λ (X ⊗ 1R) for all X ∈ B(HS). (3.8)

Since ωSR,β,λ is faithful, it is readily seen that ρS,β,λ is strictly positive. Set

Z̃ := ‖ρS,β,λ‖−1 (3.9)

(operator norm) and define the renormalized system Hamiltonian by

H̃S = − 1
β
ln

(
Z̃ρS,β,λ

)
, (3.10)

so that
ρS,β,λ = Z̃−1 e−β H̃S . (3.11)

Note that Z̃ = TrS e−β H̃S . The operator H̃S depends on λ, and we have H̃S|λ=0 = HS
and Z̃ |λ=0 = TrS e−βHS ≡ ZS [c.f. (2.7)].

Remark Given ρS,β,λ, the relation ρS,β,λ = (Z̃(λ))−1e−β H̃S(λ) [c.f. (3.11)] implies

that Z̃(λ) = TrS e−β H̃S(λ) but defines the operator H̃S(λ) only up to an additive term
∝ 1S. Let Ẽ0(λ) = min spec(H̃S(λ)), then taking the operator norm gives ‖ρS,β,λ‖ =
e−β Ẽ0(λ)/Z̃(λ). The ground-state energy normalization Ẽ0(λ) = 0, in accordance
with min spec(HS) = 0 [see after (2.3)], gives the choice (3.9).
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Lemma 3.1 Let {φn}n=1,...,d be an orthonormal basis of eigenvectors of HS, such
that HSφn = Enφn. The eigenvalues of H̃S are Ẽn, satisfying En − Ẽn = O(λ). The
normalized eigenvectors, H̃Sφ̃n = Ẽnφ̃n, satisfy φn − φ̃n = O(λ).

Proof of Lemma 3.1 Araki’s perturbation theoryofKMSstates [4,6,9] yields‖ρS,β,λ−
ρS,β,0‖ = O(λ). It follows from (3.9) that |Z̃ − ZS| = O(λ), where ZS is the unper-
turbed system partition function, (2.7). Then, (3.10) gives ‖H̃S − HS‖ = O(λ). The
lemma then follows from usual analytic perturbation theory for matrices. ��

We define

L̃S = H̃S ⊗ 1S − 1S ⊗ C H̃SC (3.12)

�̃S,β,λ = Z̃−1/2
d∑

n=1

e−β Ẽn/2φ̃n ⊗ Cφ̃n, (3.13)

where C is the antilinear map satisfying Cφn = φn (i.e., C implements complex
conjugation of coordinates in the basis {φn}). The vector �̃S,β,λ represents the state
ρS,β,λ, meaning

〈
�̃S,β,λ, (X ⊗ 1S)�̃S,β,λ

〉 = TrS (ρS,β,λX), X ∈ B(HS). (3.14)

�̃S,β,λ and is a β-KMS vector with respect to the dynamics ei t L̃S ·e−i t L̃S of the system
observable algebra B(HS) ⊗ 1S. We let

L̃0 = L̃S + LR (3.15)

�̃0 = �̃S,β,λ ⊗ �R (3.16)

and denote by P̃̃e the eigenprojection onto the eigenvalue ẽ of L̃0.
The level shift operators of the original (not renormalized) system are given as

follows. For each e ∈ spec(LS),

�e = −Pe I P
⊥
e (L0 − e + i0+)−1 I Pe, and � =

∑

e∈spec(LS)

�e, (3.17)

where Pe is the spectral projection of L0 onto the eigenvalue e (having multiplicity
me). �e is diagonalizable and has the spectral representation

�e =
me∑

j=1

λe, j Qe, j , (3.18)

where Qe, j = PeQe, j = Qe, j Pe and λe, j are the spectral projections and eigenvalues,
which are all simple [Assumption (A1)(i)]. According toAssumption (A1)(ii), we have
ker� = C�S,β and Imλe, j > 0 for all e �= 0 and j , Imλ0, j > 0 for j = 1, . . . , d − 1
and λ0,d = 0 (one-dimensional kernel of �).
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We now define the level shift operator �̃ of the renormalized system. For each
ẽ ∈ spec(L̃S), set

�̃ẽ = − P̃̃e I P̃
⊥̃
e (L̃0 − ẽ + i0+)−1 I P̃̃e , and �̃ =

∑

ẽ∈spec(L̃S)

�̃ẽ P̃̃e . (3.19)

Proposition 3.2 Theoperator �̃ẽ exists for each ẽ ∈ spec(L̃S)and satisfies�e−�̃ẽ =
O(λ). Its spectrum consists of simple eigenvalues λ̃ẽ, j , j = 1, . . . ,me, satisfying
λe, j − λ̃ẽ, j = O(λ). The associated Riesz spectral projections Q̃ẽ, j satisfy Qe, j −
Q̃ẽ, j = O(λ). Moreover, ker�̃ = C�̃0.

The proposition implies that �̃ has the spectral representation

�̃ =
d−1∑

j=1

λ̃0, j Q̃0, j +
∑

ẽ �=0

me∑

j=1

λ̃ẽ, j Q̃ẽ, j . (3.20)

Proof of Proposition 3.2 Let Uθ = eiθd�(−i∂u), so that Uθ L0U∗
θ = L0 + θN , where

N = d�(1R) is the number operator. Setting Iθ = Uθ IU∗
θ and using that Uθ Pe =

PeUθ = Pe, we have for all θ ∈ R and ε > 0

Pe I (L0 − e + iε)−1 I Pe = Pe Iθ (L0 + θN − e + iε)−1 Iθ Pe.

By Assumption (A2), the right side has an analytic extension into values of θ in a strip
with Im θ < 2θ0, for some θ0 > 0 and so

Pe I (L0 − e + iε)−1 I Pe = Pe Iiθ0 (L0 + iθ0N − e + iε)−1 Iiθ0 Pe

= P̃̃e Iiθ0
(
L̃0 + iθ0N − ẽ + iε

)−1
Iiθ0 P̃̃e + O(λ),

where the error term bounded uniformly in ε > 0. As Uθ P̃̃e = P̃̃eUθ = P̃̃e, we can
undo the spectral deformation in the main term on the right side and take ε → 0+ to
obtain

�e = �̃ẽ + O(λ). (3.21)

The statements about the eigenvalues and Riesz eigenprojections follow from basic
perturbation theory. [Recall that �e has simple, λ-independent eigenvalues by
Assumption (A1).] To show that ker�̃ = C�̃0 it suffices to show that �̃0�̃0 = 0, as all
the eigenvalues λ̃ẽ, j associated with e �= 0 and for e = 0 and j = 1, . . . , d − 1, have
strictly positive imaginary part, a property which is inherited from the eigenvalues of
� (for λ small).

To show �̃0�̃0 = 0, we introduce the auxiliary Liouville operator

L̃μ = L̃0 + λμI, (3.22)

where I is given in (3.5). By Araki’s perturbation theory of KMS states, we know that

L̃μ�̃μ = 0, (3.23)
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where

�̃μ = e−β{L̃0+λμVS⊗1S⊗ϕ(gβ)}/2�̃0

‖e−β{L̃0+λμVS⊗1S⊗ϕ(gβ)}/2�̃0‖
. (3.24)

Lemma 3.3 Let g0 > 0 be the spectral gap of L̃S at zero. The operator L̃⊥
μ :=

P̃⊥
0 L̃μ P̃⊥

0 |Ran P̃⊥
0

has purely absolutely continuous spectrum in the open interval

(−g0/2, g0/2). In particular, zero is not an eigenvalue of L̃⊥
μ .

Proof of Lemma 3.3 Let ϕ be a Uθ -analytic vector. For Imz < 0
〈
ϕ, (L̃⊥

μ − z)−1ϕ
〉

=
〈
ϕθ̄ , (L̃

⊥
0 + θN⊥ + λμI⊥

θ − z)−1ϕθ

〉

=
〈

ϕθ̄ , (L̃
⊥
0 + θN⊥ − z)−1

∑

n≥0

(−λμ)n
[
I⊥
θ (L̃⊥

0 + θN⊥ − z)−1
]n

ϕθ

〉

,

(3.25)

where X⊥ = P̃⊥
0 X P̃⊥

0 |Ran P̃⊥
0
. Using the decomposition P̃⊥

0 = P̃⊥
S ⊗ PR + 1S ⊗ P⊥

R ,

where P̃S is the orthogonal projection onto the kernel of L̃S and PR = |�R〉〈�R|, we
easily obtain the bounds

∥∥∥∥
(
L̃⊥
0 + iθ0N

⊥ − z
)−1

∥∥∥∥ � max
{
max
ẽ �=0

|̃e − z|−1, |θ0 − Imz|−1} (3.26)
∥∥∥
∥I

⊥
iθ0

(
L̃⊥
0 + iθ0N

⊥ − z
)−1

∥∥∥
∥ � Cθ0 max

{
max
ẽ �=0

|̃e − z|−1, |θ0 − Imz|−1}. (3.27)

Thus, for Imz � 0 and |Rez| � g0/2, where g0 > 0 is the spectral gap of L̃S at zero,
the combination of (3.25), (3.26) and (3.27) gives the limiting absorption principle

sup
z : |Rez|�g0/2,Imz�0

∣∣∣
〈
ϕ, (L̃⊥

μ − z)−1ϕ
〉∣∣∣ � C(ϕ).

This implies that L̃⊥
μ has purely absolutely continuous spectrum in the interval

(−g0/2, g0/2). Lemma 3.3 is proven.
Combining (3.23) with Lemma 3.3, and invoking the isospectrality of the Feshbach

map (see for instance Proposition B.2 in [15]), we obtain

F
(
L̃μ; P̃0

)
P̃0�̃μ = 0, (3.28)

where

F
(
L̃μ; P̃0

) = −λ2μ2 P̃0 I P̃
⊥
0

(
L̃⊥

μ + i0+
)−1

I P̃0. (3.29)

We now use the translation analyticity to obtain

P̃0 I
(
L̃⊥

μ + i0+
)−1

I P̃0 = P̃0 Iiθ0
(
L̃⊥
0 + iθ0N

⊥ + λμI⊥
iθ0

)−1
Iiθ0 P̃0. (3.30)

123

Author's personal copy



Completely positive dynamical semigroups and quantum...

Combining (3.28), (3.29) and (3.30), and taking μ → 0, gives

P̃0 Iiθ0
(
L̃⊥
0 + iθ0N

⊥)−1
Iiθ0 P̃0�̃0 = 0. (3.31)

Reversing the spectral deformation (i.e., taking θ0 → 0+) on the left hand side of
(3.31) gives precisely �̃0�̃0 = 0. This completes the proof of Proposition 3.2. ��

3.3 Representation of the dynamics: proof of (2.22)

We first introduce the dense set of initial states for which the dynamical resonance
theory based on spectral deformation can be applied. The three vectors �̃0, �SR,β,0
and �SR,β,λ play a role in what follows. We recall their definitions, (3.16) and (3.7).

Let M0 ⊂ M be the set of all finite linear combinations of operators of the form
π(AS ⊗W ( f )), where AS ∈ B(HS) and W ( f ) is a Weyl operator smoothed out with
a test function f that satisfies Assumption (A2). The following properties of the set
of vectors JM0�̃0 = JM0 J �̃0 are not difficult to verify:

JM0�̃0 is dense inH and JM0�̃0 ⊂ Aθ0 ∩ Dom
(
eαN

)
for all α ∈ R. (3.32)

Here,Aθ0 is the set of vectorsψ ∈ H such that θ �→ eiθ Aψ , A = d�(−i∂u), is analytic
in θ in a strip Imθ < θ0 and N = d�(1R) is the number operator. We consider the set
of states

S0 = {
ω(·) = 〈JC�̃0, π(·)JC�̃0〉 : C ∈ M0

}
. (3.33)

Lemma 3.4 We have �̃0 = J D�SR,β,λ for an operator D affiliated with M. More-
over, given any α > 0, we have for small enough λ, Dom(D#) ⊃ Dom(eαN )

and D#e−αNAθ0 ⊂ Aθ0 . Here, D# stands for D or its adjoint D∗. Moreover,
�SR,β,λ ∈ Aθ0 .

Remark The vectors �SR,β,0, �SR,β,λ and �̃0 are all invariant under the action of the
modular conjugation J . This implies that �̃0 = D�SR,β,λ = J DJ�SR,β,λ.

Proof of Lemma 3.4 We first construct an operator G satisfying �0 = JG�SR,β,λ

having the desired regularity properties. The perturbation theory of KMS states gives

�SR,β,λ = c−1e−β(L0+λK )/2eβL0/2�SR,β,0 and �SR,β,0 = ce−βL0/2eβ(L0+λK )/2�SR,β,λ,

(3.34)
where c is a normalization constant and, for short, K = VS ⊗ 1S ⊗ ϕ(gβ). A Dyson
series expansion yields

e−βL0/2eβ(L0+λK )/2 =
∑

n�0

λn
∫

0�s1�···�sn�β/2
ds1 · · · dsn K (sn) · · · K (s1) =: c−1G,

(3.35)
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where K (s) = e−sL0K esL0 . Using that

sup
0�s�β/2

∥∥
∥eαN K (s)e−αN (N + 1)−1/2

∥∥
∥ < ∞,

one readily sees that, for any α > 0 fixed and λ small enough, the series in (3.35)
converges strongly on Dom(eαN ) and defines an element affiliated with M, and that
furthermore, Ran(Ge−αN ) ⊂ Dom(eαN ). The analogous expansion and result can be
obtained starting with e−β(L0+λK )/2eβL0/2, which shows that �SR,β,λ ∈ Dom(eαN ).
Combining this with (3.34) gives

�SR,β,0 = G�SR,β,λ = JG�SR,β,λ. (3.36)

The last equality follows from J�SR,β,0 = �SR β,0. The cyclicity of�S,β implies that
there is a DS ∈ B(HS) satisfying �̃0 = J (DS ⊗ 1S ⊗ 1R)�SR,β,0. Thus, from (3.36),

�̃0 = J (DS ⊗ 1S ⊗ 1R)G�SR,β,λ =: J D�SR,β,λ. (3.37)

It remains to prove the analyticity statement, which is the same as Ge−αNAθ0 ⊂
Aθ0 . This follows again from the series expansion of G, (3.35), and the fact that
eiθ AK (sn) · · · K (s1)e−iθ A = Kθ (sn) · · · Kθ (s1), where Kθ (s) = eiθ Ae−sL0K esL0

e−iθ A, is analytic.
Finally, to show that �SR,β,λ ∈ Aθ0 , we note that the adjoint of the Dyson series

expansion (3.35) gives that G∗e−αNAθ0 ⊂ Aθ0 and the desired result follows from
(3.34). ��

For ω0 ∈ S0 and X ∈ B(HS), we have

ω0
(
αt

λ (X ⊗ 1R)
) =

〈
JC�̃0, e

i t L (X ⊗ 1S ⊗ 1R) e−i t L JC�̃0

〉

=
〈
JC∗C�̃0, e

i t L (X ⊗ 1S ⊗ 1R) e−i t L�̃0

〉

=
〈
JC∗C�̃0, e

i t L (X ⊗ 1S ⊗ 1R) e−i t L J DJ�SR,β,λ

〉

=
〈
JC∗C�̃0, J DJei t L (X ⊗ 1S ⊗ 1R)�SR,β,λ

〉

=
〈
J D∗C∗C�̃0, e

i t L (X ⊗ 1S ⊗ 1R) �SR,β,λ

〉
. (3.38)

Lemma 3.4 gives �SR,β,λ ∈ Aθ0 and since C∗C�̃0 ∈ Dom(eαN ) ∩ Aθ0 , it also gives
J D∗C∗C�̃0 ∈ Aθ0 . Thus, one can apply the spectral deformation method to (3.38)
to obtain

ω0
(
αt

λ (X ⊗ 1R)
) = 〈[

J D∗C∗C�̃0
]
θ̄
,
(∣∣[�SR,β,λ

]
θ

〉 〈[
�SR,β,λ

]
θ̄

∣∣) (X ⊗ 1S ⊗ 1R)
[
�SR,β,λ

]
θ

〉

+
d−1∑

j=1

ei tλ
2a0, j

〈[
JC∗C�̃0

]
θ̄
, �0, j (θ) (X ⊗ 1S ⊗ 1R)

[
�SR,β,λ

]
θ

〉
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+
∑

e �=0

me∑

j=1

ei t
(
e+λ2ae, j

) 〈[
JC∗C�̃0

]
θ̄
, �e, j (θ) (X ⊗ 1S ⊗ 1R)

[
�SR,β,λ

]
θ

〉

+ R(X, t), (3.39)

where [ψ]θ = eiθ Aψ and [recall (3.18)]

�e, j (θ) = Qe, j + O(λ) (3.40)

ae, j = λe, j + O(λ). (3.41)

The remainder R(X, t) in (3.39) satisfies

|R(X, t)| � const.|λ|(e−θ0t + e−λ2(1+O(λ))γ t)‖X‖ � const.|λ|e−λ2(1+O(λ))γ t ‖X‖.
(3.42)

The contribution ∝ e−θ0t is the usual contour integral term (c.f. [20–22]), the other
term is due to the fact that in the summands decaying in time t , we can replace D∗ by
1 plus a remainder of O(λ) and we have |ei tλ2ae, j | = e−λ2(1+O(λ))γ t . The first term
on the right side of (3.39) equals

〈
J D∗C∗C�̃0,�SR,β,λ

〉 〈
�SR,β,λ, (X ⊗ 1S ⊗ 1R) �SR,β,λ

〉

= 〈
�SR,β,λ, (X ⊗ 1S ⊗ 1R)�SR,β,λ

〉

= 〈
�̃0, (X ⊗ 1S ⊗ 1R) �̃0

〉

= 〈
JC∗C�̃0,

(∣∣�̃0〉〈�̃0
∣∣) (X ⊗ 1S ⊗ 1R) �̃0

〉
. (3.43)

In the first step, we have made use of

〈J D∗C∗C�̃0, �SR,β,λ〉 = 〈JC∗C�̃0, J D�SR,β,λ〉 = 〈JC∗C�̃0, �̃0〉 = ‖C�̃0‖2 = 1

and in the last step, again, 〈JC∗C�̃0, �̃0〉 = 1. The second equality in (3.43) follows
from (3.8), (3.14) and (3.16).

Since all “directions” but the stationary one in (3.39) are decaying, i.e., Im ae, j > 0
for all e, j , we can replace in these terms in the exponents e and ae, j by ẽ and λ̃ẽ, j ,�e, j

by Q̃ẽ, j and �SR,β,λ by �̃0 (see Proposition 3.2). This changes the remainder into a
new one which, instead of (3.42), has the bound (2.23).5 Making this replacement and
using the spectral representation (3.20),

ei t (L̃S+λ2�̃) =|�̃0〉〈�̃0| +
d−1∑

j=1

ei tλ
2λ̃0, j Q̃0, j +

∑

ẽ �=0

me∑

j=1

ei t (̃e+λ2λ̃ẽ, j ) Q̃ẽ, j ,

we obtain

ω0
(
αt

λ(X ⊗ 1R)
) =

〈
JC∗C�̃0, e

i t (L̃S+λ2�̃)(X ⊗ 1S ⊗ 1R)�̃0

〉
+ Rλ,t (X), (3.44)

5 Use the estimate |e−λ2tImae, j − e−λ2tImλ̃e, j | = e−λ2tImae, j |1 − eλ
2tIm(ae, j −̃λ̃e, j )| �

const.|λ|3te−λ2(1+O(λ))γ t .
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where Rλ,t (X) satisfies (2.23). According to definition (2.24) of τ tλ, the main term on
the right side of (3.44) is

〈
JC∗C�̃0, (τ

t
λ(X) ⊗ 1S ⊗ 1R)�̃0

〉 = ω0(τ
t
λ(X)).

This shows the representation (2.22).

3.4 Proof of complete positivity of τ t
λ

We first show complete positivity of the weak coupling dynamics σ t
λ, (2.17). Then,

we modify that argument just slightly to show complete positivity of τ tλ.

3.4.1 Complete positivity of the weak coupling dynamics σ t
λ

Using (2.21) and a density argument, one sees that for any system–reservoir state ω,

lim
λ→0

ω
(
α
t/λ2

λ ◦ α
−t/λ2

0 (X ⊗ 1R)
) = ω

(
σ̄ t (X) ⊗ 1R

)
, (3.45)

where σ̄ t (X) is defined by
(
σ̄ t (X) ⊗ 1S

)
�S,β = ei t�

(
X ⊗ 1S

)
�S,β and satisfies

[see (2.17)] σ t
λ = σ̄ λ2t ◦ αt

S = αt
S ◦ σ̄ λ2t . Since αt

S is completely positive, complete
positivity of σ t

λ follows from that of σ̄ t . Let ωR,β be the reservoir equilibrium state
and let PR be the partial trace over the reservoir, relative to ωR,β , defined by (linear
extension of) PR(X ⊗ B)PR = X ωR,β(B). Taking ω = ωS ⊗ ωR,β in (3.45), where
ωS is any system state, gives

lim
λ→0

ωS
(
PRα

t/λ2

λ ◦ α
−t/λ2

0 (X ⊗ 1R)PR
) = ωS(σ̄

t (X)).

As the system is finite-dimensional, this is equivalent to

lim
λ→0

PRα
t/λ2

λ ◦ α
−t/λ2

0 (X ⊗ 1R)PR = σ̄ t (X).

The left side is the limit of a family of completely positive maps. Hence, σ̄ t is com-
pletely positive as well.

3.4.2 Complete positivity of τ tλ

We denote by γ t
λ,μ(·) = ei t L̃μ · e−i t L̃μ the dynamics ofM generated by the Liouville

operator L̃μ defined in (3.22). The level shift operator of L̃μ isλ2μ2�̃ [see also (3.19)].
Repeating the argument of the weak coupling limit, we have [c.f. (3.45)]

lim
μ→0

ω
(
γ
t/μ2

λ,μ ◦ γ̃
−t/μ2

λ,0 (X ⊗ 1R)
) = ω

(
τ̄ tλ(X) ⊗ 1R

)
, (3.46)
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where τ̄ tλ is defined by (τ̄ tλ(X)⊗1S)�̃S,β,λ = ei tλ
2�̃(X⊗1S)�̃S,β,λ. Thus, by the same

argument as in Sect. 3.4.1, τ̄ tλ is completely positive, and hence so is τ tλ = τ̄ tλ ◦ α̃S,λ,

where α̃S,λ(·) = ei t H̃S · e−i t H̃S .
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