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Abstract: The property of “return to equilibrium” is established for a class of quantum-
mechanical models describing interactions of a (toy) atom with black-body radiation,
or of a spin with a heat bath of scalar bosons, under the assumption that the inter-
action strength is sufficiently weak. For models describing the first class of systems,
our upper bound on the interaction strength is independent of the temperature T , (with
0 < T ≤ T0 < ∞), while, for the spin-boson model, it tends to zero logarithmically, as
T → 0. Our result holds for interaction form factors with physically realistic infrared
behaviour.

Three key ingredients of our analysis are: a suitable concrete form of theAraki-Woods
representation of the radiation field, Mourre’s positive commutator method combined
with a recent virial theorem, and a norm bound on the difference between the equilibrium
states of the interacting and the non-interacting system (which, for the system of an atom
coupled to black-body radiation, is valid for all temperatures T ≥ 0, assuming only that
the interaction strength is sufficiently weak).

1. Introduction

The problem of return to equilibrium for models describing small systems with finitely
many degrees of freedom coupled to a dispersive heat bath at positive temperature has
been studied at various levels of mathematical precision, since the early days of quan-
tum theory. Fairly recently, a new approach to this problem based on spectral theory for
thermal Hamiltonians, or Liouvillians, has been described and applied to simple models
in [18, 19]. The general strategy followed in our paper is based on the spectral approach
proposed in these references; but our tactics are quite different and draw inspiration from
techniques developed in [21] that have been motivated by methods in [6]. For further
results and methods relevant to our paper, see [5, 8, 15] and, in particular, [12, 13]. The
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work described in all these references relies on the deep insights of Haag, Hugenholtz
and Winnink [17] and on the Araki-Woods representation [4].

The main result proven in this paper is Theorem 2, asserting return to equilibrium for a
class of models describing a “small system” with a finite-dimensional state space coupled
to a “large system”, a dispersive heat bath at some temperatureT , with 0 < T ≤ T0 < ∞.
The heat bath is modelled by a spatially infinitely extended free massless bosonic field.
The systems we consider fall into two categories corresponding to a regular or a sin-
gular infrared behaviour of the coupling between the two subsystems. Both cases are
physically realistic.

We show return to equilibrium under the assumption that the interaction strength is
sufficiently weak. For infrared-regular systems, such as toy atoms interacting with black-
body radiation, our upper bound on the interaction strength only depends on T0, but not
on T < T0. For infrared singular systems, such as the usual spin-boson model, our upper
bound on the interaction strength depends on T and tends to zero logarithmically, as
T → 0.

The proof of Theorem 2, which is presented in Sect. 3, relies on a result of independent
interest, Theorem 3, which says that the norm of the difference of the equilibrium states
of the coupled system and of the non-interacting system is small, for weak interaction
strength (uniformly in the temperature in the infrared-regular case, and with an explicit
temperature-dependent upper bound on the interaction strength for the singular case).
Theorem 3 is proven in Sect. 4, and the proof draws on ideas developed in [2, 14, 5, 11].

With Theorems 2 and 3, we accomplish two goals. First, for infrared-regular systems,
our results are uniform in the temperature T , for 0 < T ≤ T0 (where the high-tempera-
ture bound, T0, has a clear physical origin, see also the comment after Theorem 2 below),
assuming only that the interaction strength is small enough, with an upper bound only
depending on T0. Second, our results also hold for infrared-singular systems, provided
the temperature is not too small (depending on the interaction strength).

In order to render our discussion more concrete, we describe the models studied in
this paper more explicitly. The first class describes systems consisting of an atom, or
of an array of finitely many atoms, coupled to the quantized electromagnetic field. We
assume that the temperature T of the electromagnetic field is so small that it is justified
to treat the atomic nucleus as static and to neglect the role played by atomic states of high
energy, in particular those corresponding to the continuous energy spectrum describing
an ionized atom. Thus, the upper bound, T0, on the temperature range considered in this
paper is determined by the requirement that

kBT0 << matc
2, kBT0 < �, (1)

where kB is Boltzmann’s constant, matc2 is the rest energy of an atom, and � is the
ionization(-threshold) energy. If T ≤ T0, with T0 satisfying (1), then an atom can be
described, approximately (in the spirit of the Born-Oppenheimer approximation), as
a quantum-mechanical system with a finite-dimensional state space spanned by those
unperturbed atomic eigenstates corresponding to atomic energies E � const kBT0 in
the discrete spectrum. This defines what we call a “toy (or truncated) atom”.

The coupling of the toy atom to the quantized radiation field is described, in the dipole
approximation, by an interaction term

−edat · E(ρ), (2)

where e is the elementary electric charge, dat is the atomic dipole (moment) operator,
and E is the quantized electric field. Furthermore, ρ is a density function corresponding
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to an approximate (smooth) δ-function peaked at the position of the nucleus and of width
comparable to the size of the atom. (The interaction term (2) defines the Ritz Hamilto-
nian.) When expressed in terms of (Newton-Wigner) photon creation- and annihilation
operators the interaction term (2) gives rise to a momentum-space form factor g0(k) (see
Sect. 1.1) corresponding to

g0(k) = i
√

|k|ρ̂(k) ∝
√

|k|, (3)

for |k| → 0, where k is the photon momentum. Interactions characterized by an infra-
red behaviour g0(k) ∝ |k|p, as |k| → 0, with p > −1/2, are called infrared-regular.
Nowhere in our analysis will the helicity of photons play an interesting role. The helicity-
(polarization-) index will therefore be suppressed in our notation, and we shall think of
the heat bath as being described by a scalar field (instead of a transverse vector field).

The second class of models deals with systems of a quantum mechanical spin S, with
S · S = s(s + 1) (and usually s = 1/2) coupled to a heat bath described in terms of
a quantized, real, massless scalar field ϕ. Before the spin is coupled to the heat bath it
exhibits precession around an external field B pointing in the z-direction. Its dynamics
is generated by a Hamiltonian

Hspin = εSz, with ε ∝ |B|. (4)

The interactions of the impurity spin with the heat bath give rise to spin-flip processes
described by an interaction term e.g. of the form

gSxϕ(ρ), (5)

where g is a coupling constant, and ρ is a density function as described above. The
bound, T0, on the temperature range considered is determined by our desire not to take
orbital excitations of the particle (an electron, neutron or atom in a dispersive medium,
such as an insulator) carrying the impurity spin S into account.

When ϕ is expressed in terms of (Newton-Wigner) creation- and annihilation opera-
tors the interaction term (5) gives rise to a momentum-space form factor g0, with

g0(k) = ρ̂(k)√|k| ∝ 1√|k| , (6)

for |k| → 0, where k is the momentum of a scalar boson in the heat bath. Interactions
characterized by an infrared behaviour (6) are called infrared-singular.

The physical interest of the second model, the spin-boson model, is somewhat limited.
But it has often been used to illustrate the phenomena of interest to us in this paper.

A general class of model systems reminiscent of the ones just described is introduced,
in a formal mathematical way, in Sect. 1.1 below. In the following, we attempt to clar-
ify what we mean by “return to equilibrium”. Let C

d be the state space of the “small
system” (the toy atom or impurity spin), and let B(Cd) denote the algebra of matrices
acting on C

d . Let W denote the algebra of Weyl operators over a suitably chosen space
of one-boson test functions describing the quantum-mechanical degrees of freedom of
the heat bath. The Weyl operators, which are exponentials of field operators smeared
out with test functions, are bounded operators, and the algebra W they generate is a
C∗-algebra. The kinematics of the composed system consisting of the “small system”
and the heat bath is described by the C∗-algebra

A = B(Cd)⊗ W, (7)
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and its dynamics, in the Heisenberg picture, is given by a one-parameter group {αt },
with t ∈ R denoting time, of ∗automorphisms of A. Before the small system is coupled
to the heat bath, αt ≡ αt,0 is given by

αt,0 = αatt ⊗ α
f
t , (8)

where αatt (A) = eitHat Ae−itHat , A ∈ B(Cd), is the Heisenberg-picture dynamics of

an isolated toy atom, Hat is its Hamiltonian, and where αft describes the Heisenberg-
picture dynamics of the heat bath. We choose {αft } to be the ∗automorphism group of
W describing the dynamics of free, relativistic, massless bosons, such as photons (but,
as announced, we shall suppress reference to their helicity in our notation).

Let ωatβ and ωfβ be the equilibrium states of the small system isolated from the heat

bath, and of the free heat bath, respectively, at inverse temperature β = (kBT )
−1. Let

H denote the Hilbert space of state vectors of the composed system obtained from the
algebra A in (7) and the equilibrium state, ωβ,0, given by

ωβ,0 = ωatβ ⊗ ω
f
β , (9)

before the small system is coupled to the heat bath, by applying the GNS construction.
Furthermore let
β,0 ∈ H denote the cyclic vector in H corresponding to the state ωβ,0,
and let πβ be the GNS representation of A on H. Sinceωβ,0 is time-translation invariant,
in the sense that ωβ,0(αt,0(A)) = ωβ,0(A), for all A ∈ A and all times t ∈ R, there is
a selfadjoint operator, L0, called thermal Hamiltonian or Liouvillian, acting on H with
the properties

πβ(αt,0(A)) = eitL0πβ(A)e
−itL0 , (10)

for all A ∈ A, and

L0
β,0 = 0. (11)

In order to describe interactions between the small system and the heat bath at inverse
temperature β, one replaces the (unperturbed) Liouvillian L0 by an (interacting) Liou-
villian Lλ, which is a selfadjoint operator on H given by

Lλ = L0 + λIβ, (12)

where Iβ is an operator on H determined by a formal interaction Hamiltonian, such as
those in (2) or (5). The interaction Iβ has the property that the dynamics generated by
Lλ defines a ∗automorphism group {σt,λ} of the von Neumann algebra Mβ ⊂ B(H)
obtained by taking the weak closure of the algebra πβ(A). This means that, for every
operator A ∈ Mβ and arbitrary t ∈ R, the operator

σt,λ(A) := eitLλAe−itLλ (13)

belongs again to Mβ . (For a representation-independent way of introducing interactions
between the small system and the heat bath, see e.g. [12].) Following ideas in [2, 10],
one can prove that, for a large class of interactions Iβ , there exists a vector 
β,λ ∈ H
with the property that the state

ωβ,λ(A) := 〈
β,λ, A
β,λ
〉
, A ∈ Mβ (14)
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is an equilibrium state for the interacting system, in the sense that it satisfies the Kubo-
Martin-Schwinger (KMS) condition for the interacting dynamics on the von Neumann
algebra Mβ , described by σt,λ; (see [17], or [19, 5, 10], for an explanation of these
notions). The property of return to equilibrium means that the equilibrium state on Mβ

given by ωβ,λ is dynamically stable, in the sense of the following definition.

Definition. The system described by the von Neumann algebra Mβ and the time-evo-
lution σt,λ on Mβ (a so-called W ∗-dynamical system) has the property of return to
equilibrium iff, for an arbitrary normal state ω on Mβ (i.e., a state on Mβ given by a
density matrix on H) and an arbitrary operator A ∈ Mβ ,

lim
t→∞ω(σt,λ(A)) = ωβ,λ(A), (15)

or (more modestly)

lim
t→∞

1

t

∫ t

0
ds ω(σs,λ(A)) = ωβ,λ(A), (16)

(return to equilibrium in the sense of ergodic averages).

The convergence in (15) and (16) follows from the KMS condition for ωβ,λ and
certain spectral properties of the interacting Liouvillian, Lλ; see e.g. [19, 5]. Because
ωβ,λ is invariant under the time evolution σt,λ, the interaction λIβ in (12) can be chosen
s.t.

Lλ
β,λ = 0, (17)

i.e., zero is an eigenvalue of Lλ. If zero is a simple eigenvalue of Lλ then, as a fairly
easy consequence of the KMS condition and the von Neumann ergodic theorem, prop-
erty (16) holds, and if the spectrum of Lλ is absolutely continuous, except for a simple
eigenvalue at zero, then (15) holds (this again is easily seen by using the KMS condition
and the RAGE theorem. Let us also mention that if the kernel of Lλ is simple then Lλ
does not have any nonzero eigenvalues, see e.g. [20]).

The purpose of this paper is to exhibit a class of physically interesting interactions
with the property that, for all β, with (kBT0)

−1 ≡ β0 < β < ∞, return to equilibrium
in the sense of ergodic averages, (16), holds, provided the coupling constant λ is small
enough,

0 < |λ| < λ0,

where, for infrared-regular interactions, λ0 only depends on β0, while, for infrared-sin-
gular interactions, λ0 → 0 logarithmically, as β → ∞; see Theorem 2. This result
relies, in part, on the following result: Given any ε > 0, there exists a positive constant
λ1(ε) and a choice of the phases of the vectors 
β,λ and 
β,0 such that

‖
β,λ −
β,0‖ < ε, (18)

for all λ, with |λ| < λ1(ε); in the infrared-regular case, the constant λ1(ε) only depends
on ε, but is independent of β, and it decays to zero as β → ∞ for infrared-singular
systems; see Theorem 3.
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A proof of return to equilibrium in the stronger sense (15), and uniformly in the tem-
perature 0 < T ≤ T0 < ∞ has been obtained already in [5] and in [8], under the infrared
conditions g0(k) ∼ |k|p, (|k| ∼ 0) for some p > 0 and p > 2, respectively. In addition,
[8] show (15) in the infrared-singular case (6), for small coupling, tending to zero as
T → 0. The infrared conditions we impose to show (16) are p = −1/2 (T -dependent
smallness of the coupling), and p = 1/2, 3/2, p > 2 (small coupling, uniformly in T ).

1.1. The model. We consider a quantum system composed of a “small” subsystem inter-
acting with a “large” subsystem. The pure states of the small subsystem, which is also
called atom (or spin), are given by rays in the finite dimensional Hilbert space

Hat = C
d . (19)

The atomic Hamiltonian Hat has simple eigenvalues E0 < E1 < · · · < Ed−1,

Hat = diag(E0, E1, . . . , Ed−1). (20)

It determines the dynamics αatt of observables A ∈ B(Hat ) according to

αatt (A) = eitHat Ae−itHat , (21)

where t ∈ R. For any inverse temperature 0 < β < ∞ there is a unique β-KMS state
on B(Hat ) associated with the dynamics (21), called the atomic Gibbs state (at inverse
temperature β). It is given by

ωatβ (·) = tr
(
e−βHat ·)

tr e−βHat
, (22)

where the trace is taken over Hat .
The large subsystem is infinitely extended and is described by a free, scalar, massless

Bose field. Its state is taken to be the equilibrium state at inverse temperature 0 < β < ∞.
The description of this state and the GNS representation is standard (see e.g. [4, 18, 19,
12]). We present only the essentials and point out a modification we introduce (namely
the phase φ in (36)). Let

L2
0 := L2(

R
3, d3k

) ∩ L2(
R

3, |k|−1d3k
)

(23)

and denote by W(L2
0) the Weyl algebra over L2

0, i.e., the C∗-algebra generated by Weyl
operators W(f ), f ∈ L2

0, satisfying the CCR

W(f )W(g) = e−
i
2 Im〈f,g〉W(f + g) = e−iIm〈f,g〉W(g)W(f ), (24)

and the relations W(f )∗ = W(−f ), W(0) = 1l (unitarity). The brackets 〈·, ·〉 in (24)
denote the inner product ofL2(R3, d3k). The large subsystem is described by theβ-KMS
state ωfβ on W(L2

0) associated with the dynamics

α
f
t (W(f )) = W(eitωf ), (25)

with dispersion relation

ω(k) = |k|. (26)
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An interaction between the two subsystems can be specified in a representation
independent way in terms of a suitable ∗automorphism group αt,λ on the C∗-algebra
B(Hat )⊗W(L2

0), where λ is a perturbation parameter and αt,0 = αatt ⊗αft . Here we do
not discuss this procedure of defining αt,λ – this has been discussed in [12]. Rather, we
directly specify how the interacting dynamics acts (is implemented) on the GNS Hilbert
space corresponding to

ωβ,0 = ωatβ ⊗ ω
f
β , (27)

the (β, αt,0)-KMS state on the algebra A = B(Hat )⊗ W(L2
0). The GNS representation

of the algebra A determined by the state (27) is explicitly given in [4] and has been put,
in [18, 19], in a form adapted to the use of the theory of spectral deformations (and of
positive commutators). We use a slight modification of the representation in [18, 19].
The representation Hilbert space is

H = Hat ⊗ Hat ⊗ F, (28)

where

F = F
(
L2(R × S2, du× dσ)

)
(29)

is the bosonic Fock space over L2(R × S2, du × dσ), where dσ denotes the uniform
measure on S2. We use the following notational convention: we write L2(R × S2) for
L2(R×S2, du×dσ) andL2(R3) stands forL2(R3, d3k), or forL2(R+×S2, u2du×dσ)
(polar coordinates).

The cyclic vector representing ωβ,0 in H is


β,0 = 
atβ ⊗
. (30)

Here 
 is the vacuum vector in F and


atβ =
(

tr e−βHat
)−1/2 d−1∑

j=0

e−βEj /2ϕj ⊗ ϕj , (31)

where ϕj is the eigenvector of Hat associated to the eigenvalue Ej , see also (20). To
complete our description of the GNS representation of (27) we need to give the repre-
sentation map πβ : B(Hat )⊗ W(L2

0) → B(H). It is the product

πβ = πat ⊗ π
f
β , (32)

with

πat (A) = A⊗ 1lat , (33)

π
f
β (W(f )) = eiϕ(τβf ), (34)

and where, for h ∈ L2(R × S2), ϕ(h) is the selfadjoint operator on F given by

ϕ(h) = a∗(h)+ a(h)√
2

. (35)
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The operators a∗(h) and a(h) are standard creation and annihilation operators on F ,
smeared out with h. We take h �→ a∗(h) to be linear. The real-linear map τβ : L2

0 →
L2(R × S2) appearing in (34) acts as

(τβf )(u, σ ) =
√

u

1 − e−βu

{√
u f (u, σ ), u > 0,√−u eiφf (−u, σ ), u < 0,

(36)

where we represent f in polar coordinates and f means the complex conjugate of f .
We have introduced an arbitrary phase φ ∈ R which can be chosen conveniently so as
to tune discontinuity properties of the r.h.s. in (36) at u = 0. The origin of this freedom
can be explained as follows. The expectation functional of ωfβ is given by

L2
0 � f �→ ω

f
β (W(f )) = exp

[
−1

4

∫

R3

(
1 + 2

eβ|k| − 1

)
|f (k)|2d3k

]
, (37)

which corresponds to the state of black body radiation at inverse temperature β, see [4].
We define a family of (equivalent) representations of the Weyl algebra W(L2

0) on the
Hilbert space (29) by the map

π
U+,U−
β

(
W(f )

) = exp
[
iϕ
(
τ
U+,U−
β f

)]
, (38)

where ϕ is defined in (35), U+, U− are arbitrary unitary operators on L2(R3), and

(
τ
U+,U−
β f

)
(u, σ ) =

{
u(U+(1 − e−βu)−1/2f )(u, σ ), u > 0,
u(U−(eβu − 1)−1/2f )(−u, σ ), u < 0.

(39)

It is easily seen that, for any choice of the unitaries U±,
〈

, exp

[
iϕ
(
τ
U+,U−
β f

)]


〉

equals the r.h.s. of (37). Expression (39) reduces to (36) for U+ = id , U− = eiφ .

Remark. We recall that there is a second representation, π̃U+,U−
β of W(L2

0) on F given
by

π̃
U+,U−
β

(
W(f )

) = exp
[
iϕ
(
τ
U+,U−
β

(
e−βu/2f

))]
, (40)

which commutes with the representation πU+,U−
β .

In previous articles involving this setting, [18, 19, 5, 7, 21, 8, 12, 13], the freedom of
choosing U± arbitrarily was not used, only U± = ±id was considered. For a suitable
choice of U± one can apply the existing positive commutator methods, based on the
generator of translations in u ∈ R as conjugate operator, to models with fermionic or
bosonic fields having dispersion relation different from (26). These matters will be pur-
sued in another work. Here we restrict our attention to the representation (36), where φ is
a phase determined by the interaction, see assumption (A1) and the discussion thereafter.

We are now ready to define the interacting dynamics as the ∗automorphism group

σt,λ(·) = eitLλ(·)e−itLλ (41)
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on the von Neumann algebra

Mβ := πβ

(
B(Hat )⊗ W(L2

0)
)′′ ⊂ B(H), (42)

where ′′ denotes the double commutant (weak closure), and where the generator Lλ,
called the standard Liouvillian of the system, is the selfadjoint operator on H given by
([18, 19, 12])

Lλ = L0 + λI, (43)

with

L0 = Lat + Lf , Lat = Hat ⊗ 1lat − 1lat ⊗Hat , Lf = d�(u). (44)

Here, d�(u) denotes the second quantization (acting on F) of the operator of multipli-
cation by u ∈ R, λ is a coupling constant, and I is the finite sum

I =
∑

α

{
Gα ⊗ 1lat ⊗ ϕ(τβ(gα))− 1lat ⊗ CatGαCat ⊗ ϕ(τβ(e

−βu/2gα))
}
, (45)

where the operators Gα are bounded, selfadjoint operators on Hat , and the functions
gα ∈ L2

0 are called form factors. Cat is the antilinear operator of component-wise com-
plex conjugation in the basis {ϕj }d−1

j=0 diagonalizing Hat . Note that L0 does not depend
on the choice of the phase φ, but I does. The following relative bounds are standard:

‖I (N + 1)−1/2‖, ‖(N + 1)−1/2I‖ < C(1 + 1/β), (46)

where C is some constant which is independent of β.
At temperature zero (β = ∞), the Liouvillian (43) corresponds to the Hamiltonian

Hλ = Hat + d�(ω)+ λ
∑

α

Gα ⊗ ϕ(gα), (47)

which describes interactions of the atom with the quantized field involving emission and
absorption of field quanta.

The pair (Mβ, σt,λ) is called a W ∗-dynamical system. For λ = 0 the state on Mβ

determined by 
β,0 is a (β, σt,0)-KMS state. It is well known ([2, 14, 5, 10]) that the
vector


β,λ := Z−1
β,λ e

−β(L0+λI�)/2
β,0 ∈ H, (48)

where Zβ,λ is a normalization factor, and I� is obtained from I by dropping the second
term in the sum (45), defines a (β, σt,λ)-KMS state on Mβ .

Before stating our results we make two assumptions on the interaction.

(A1) The form factors are given by gα(u, σ ) = upg̃α(u, σ ), where p takes one of the
values −1/2, 1/2, 3/2 orp > 2, and the g̃α satisfy a set of conditions we describe
next. For fixed σ and α, the map u �→ g̃α(u, σ ) is C3 on (0,∞) and

‖∂ju g̃α‖L2(R3) < ∞, for j = 0, 1, 2, 3. (49)
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If p = −1/2, 1/2 or 3/2 then the limits

∂
j
u g̃α(0, σ ) := lim

u→0+
∂
j
u g̃α(u, σ ) (50)

exist, for j = 0, 1, 2, and there is a phase φ0 ∈ R, not depending on α, σ and
j = 0, 1, 2, s.t.

e−iφ0∂
j
u g̃α(0, σ ) ∈ R. (51)

In addition, if p = −1/2, 1/2 then we require ∂ug̃α(0, σ ) = 0. Finally, we
assume that

‖u2gα‖L2(R3) < ∞. (52)

(A2) It is assumed that

min
Em �=En

∫

S2
dσ

∣∣∣∣∣

∑

α

〈ϕm,Gαϕn〉 gα (|Em − En|, σ )
∣∣∣∣∣

2

> 0. (53)

Discussion of Assumptions (A1) and (A2). Assumption (A1) concerns smoothness and
decay properties of the form factors, which are necessary in the application of the Virial
Theorem, see the remark after Theorem 5. If the interaction is characterized, according
to (A1), by p = −1/2, then we choose the phase φ in (36) to be φ = 2φ0. For all other
values of p we take φ = π + 2φ0. For p = −1/2, 1/2 an admissible infrared behaviour
of the form factors is gα ∼ up times a constant, as u ∼ 0. Other than for the applicability
of the Virial Theorem, condition (52) is also used to show that Lλ is selfadjoint (for any
λ ∈ R). This follows from the Glimm-Jaffe-Nelson commutator theorem, see [12].

Assumption (A2) is called the Fermi Golden Rule Condition and has been discussed
extensively in previous works, see e.g. [18, 19, 5, 7, 21, 8, 9]. Its role is to guarantee that
the probability of absorption and emission processes of field quanta does not vanish in
second order perturbation theory (in λ). This can be translated into a suitable positivity
condition on an operator �0, called the level shift operator, see (56) below. Let

� = P0 ⊗ P
 (54)

denote the projection onto the kernel of L0, where P0 is the rank-d projection onto the
kernel of Lat , and P
 is the projection onto C
, 
 being the vacuum vector in F , see
(29). We will see that if the non-negative operator �Iδ(L0)I�, where δ is the Dirac
distribution, has a one-dimensional kernel (the dimension is at least one, since the ker-
nel contains the atomic Gibbs state (31)) then the system has the property of return to
equilibrium.

Theorem 1. Assume (53). There is an ε0 > 0, independent of β ≥ β0 (for any β0 fixed),
s.t. if 0 < ε < ε0 then

�I
ε

L2
0 + ε2

I� ≥ �0�− Cε1/4, (55)

where C is a constant independent of β, and �0 is a bounded operator on H = Hat ⊗
Hat ⊗F , acting trivially on the last factor, F , and leaving KerLat invariant. Moreover,
�0 restricted to KerLat has zero as a simple eigenvalue, with the atomic Gibbs state
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atβ as eigenvector, see (31), and is strictly positive on the complement of C
atβ . More
precisely, there is a constant γ0 > 0, independent of 0 < β < ∞, s.t.

�0 �RanP

at
β

≥ γ0. (56)

Here, P
atβ = 1l − P
atβ
and P
atβ is the projection onto C
atβ .

A proof of this result, in the case where the sum in (45) reduces to a single term, can be
in found [21, 5]. It is easy to carry out that proof for the more general interaction (45).
An explicit lower bound, in terms of (53), can be given:

�0 �RanP

at
β

≥ min
Em �=En

(Em − Em)
2 tr e−βHat

|e−βEm − e−βEn |
∫

S2

×dσ
∣∣∣∣∣

∑

α

〈ϕm,Gαϕn〉 gα (|Em − En|, σ )
∣∣∣∣∣

2

,

which yields γ0 in (56) by minimizing the r.h.s. over 0 < β < ∞.

2. Main Results

Our main result on return to equilibrium is

Theorem 2 (Return to equilibrium). Assume Conditions (A1) and (A2). There is a
constant λ0 > 0, independent of β ≥ β0, for any β0 > 0 fixed, s.t. if

0 < |λ| < λ0

{
1 if p > −1/2(

1 + log(1 + β)
)−9/2

if p = −1/2,
(57)

then the kernel of Lλ is spanned by the interacting KMS vector 
β,λ, (48). In other
words, the system has the property of return to equilibrium.

If the temperature of the heat bath is very large then second order processes of absorption
and emission of field quanta do not dominate the ones of higher order, and we cannot
expect to describe the physics of the system using perturbation theory in second order
(although, for the toy atom considered here, the phenomenon of return to equilibrium is
expected to take place at all temperatures; see also our discussion in the introduction).
This is why, in the following analysis, the dependence of the constant λ0 in Theorem
2 on β0 is natural. The fact that, for p = −1/2, we must impose an upper bound on
the coupling constant tending to zero, as β → ∞ (see (57)), can be understood as fol-
lows: Our methods are perturbative (in λ) and rely on controlling the (norm-) distance
between the KMS states for the interacting and the non-interacting systems (see Theo-
rem 3). One cannot, in general, expect this distance to be small, for small but non-zero
coupling constants, uniformly in β → ∞. This is due to the fact that, for p = −1/2,
and in the zero temperature limit, β → ∞, the groundstate of an interacting, infrared
singular system is not in Fock space (i.e., the Hamiltonian (47) does not have a ground-
state in Hat ⊗F(L2(R3)), see e.g. [1, 24]), but the non-interacting system (λ = 0) does
have a groundstate in Fock space! Consequently, we expect the difference between the
interacting and the non-interacting KMS state to diverge, as β → ∞, for p = −1/2.
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Assuming that the interaction between the small system and the heat bath is such that〈

β,λ,N
β,λ

〉
is small, for small values of λ, uniformly in β → ∞, where N = d�(1l)

is the number operator in the Araki-Woods representation and
β,λ is given in (48), then
our methods can be used to establish return to equilibrium for sufficiently small values
of λ, uniformly in β ≥ β0, even when p = −1/2.

From a more technical point of view, we can describe the above discussion as follows.
A typical estimate involved in our analysis is inequality (46), whereC is some finite con-
stant. Then ‖λI (N+1)−1/2‖ can be made smaller than any constant δ > 0, provided |λ|
is chosen sufficiently small, independently of β > β0, for an arbitrary, but fixed β0 > 0.
Similarly, in order to estimate the norm of the difference between the interacting and
the non-interacting KMS state, we need an upper bound on the expectation value of the
number operator N in the interacting KMS state 
β,λ. As explained after the statement
of Theorem 3, this expectation value is bounded above by ‖λI1(N + 1)−1/2‖, where I1
is defined in (63). For p = −1/2, the latter norm is not uniformly bounded in β ≥ β0,
but diverges logarithmically, as β → ∞. Thus, requiring it to be bounded by a small
constant, we must assume that |λ| log(β) is sufficiently small.

Among the technical results used in our proof of Theorem 2 we single out the fol-
lowing one, which shows that the perturbed and unperturbed KMS states are close to
each other, for small coupling constants. In the infrared-regular regime p > −1/2, the
difference between the two KMS states is small independently of the inverse temperature.

Theorem 3. Assume (A1) and let P
β,λ and P
β,0 denote the projections onto the spans
of the interacting and non-interacting KMS states, 
β,λ (see (48)) and 
β,0 (see (30)),
respectively. For any ε > 0 there is a λ0(ε) > 0, which does not depend on β > 0, s.t. if

|λ| < λ0(ε)

{
1 if p > −1/2(

1 + log(1 + β)
)−1

if p = −1/2
(58)

then
∥∥P
β,λ − P
β,0

∥∥ < ε. (59)

Remark. The constant λ0(ε) in Theorem 3 depends on the spectral gap E1 −E0 > 0 of
the atomic Hamiltonian, and, if the norms ‖Gα‖ are assumed to satisfy a d-independent
upper bound, then λ0(ε) can be chosen independently of the dimension d of the atomic
Hilbert space.

We prove Theorem 3 in Sect. 4.

3. Proof of Theorem 2

We use a simplified version of the positive commutator (PC) method, introduced in the
present context, for zero temperature systems, in [6], and extended to the positive tem-
perature situation in [21]. We refer to [7, 8, 22, 15, 16], and to the book [3], for recent
different implementations of this method.

3.1. Mechanism of the proof. There are two key ingredients in our proof, the PC esti-
mate and the Virial Theorem. While we give a proof of the PC estimate, we refer to [12]
for a proof of the Virial Theorem.
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Let Af = d�(i∂u) be the second quantization of i∂u on F (cf. (29)) and set

A0 = iθλ
(
�IR

2
ε − R

2
εI�
)
, (60)

where � = P0 ⊗ P
 has been defined in (54), Rε = �Rε , � = 1l − �, Rε =
(L2

0 + ε2)−1/2, and θ, ε are positive parameters. We note that A0 is a bounded operator
satisfying RanA0 ⊂ D(Lλ), and that the commutator [L,A0] extends to a bounded
operator with

‖[Lλ,A0]‖ ≤ C

(
θ |λ|
ε

+ θλ2

ε2

)
. (61)

On the domain D(N) of the number operator N = d�(1l) we define the operator

B = N + λI1 + i[Lλ,A0], (62)

where

I1 =
∑

α

(
Gα ⊗ 1lat ⊗ ϕ(∂uτβ(gα))− 1lat ⊗ CatGαCat ⊗ ϕ(∂ue

−βu/2τβ(gα))
)
. (63)

The operator B represents the quadratic form i[Lλ,Af + A0], see [12].

Theorem 4 (Positive commutator estimate). Assume (A1) and (A2), and fix 0 < η <

2/3. For any ν > 1 set

Bν = {ψ ∈ D(N1/2) | ‖ψ‖ = 1, ‖(N + 1)1/2ψ‖ ≤ ν}.

There is a choice of the parameters ε and θ , and a constant λ1(η) = λ1 > 0, not
depending on ν and β ≥ β0, s.t. if

0 < |λ| < λ1

{
1 if p > −1/2

min
(

1
1+log(1+β) ,

ν1/η−9/2

(1+log(1+β))η
)

if p = −1/2,
(64)

then we have

P
β,λBP
β,λ ≥ |λ|2−ην3−9η/2γ0P
β,λ , (65)

in the sense of quadratic forms on RanE�(Lλ) ∩ Bν , where � is any interval around
the origin s.t. � ∩ σ(Lat ) = {0}, E�(Lλ) is the spectral projection, and where γ0 is
given in (56).

We note that it is enough, for our purposes, to examine B as a quadratic form on a subset
of D(N1/2), because any eigenvector ψλ of Lλ satisfies ψλ ∈ Bν0 , for some ν0 which
is independent of |λ| ≤ 1. Moreover, for p > −1/2, ν0 does not depend on β ≥ β0,
while for p = −1/2, ν0 diverges logarithmically for large β. These facts follow from
the next result.
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Theorem 5 (Regularity of eigenvectors and Virial Theorem, [12, 13]). Assume (A1).
Let ψλ be an eigenvector of Lλ. There is a constant c(p, β) < ∞, not depending on λ,
s.t.

‖N1/2ψλ‖ ≤ c(p, β)|λ| ‖ψλ‖, (66)

and s.t. for all β ≥ β0 (for any β0 > 0 fixed),

c(p, β) ≤ c1(p)

{
1 if p > −1/2

1 + log(1 + β) if p = −1/2 , (67)

where c1 does not depend on β ≥ β0. Moreover,

〈B〉ψλ := 〈ψλ,Bψλ〉 = 0. (68)

Remarks. The constant c(p, β) can be expressed in terms of the operator I1 given in
(63) as follows:

‖I1(N + 1)−1/2‖ ≤ 2
∑

α

‖Gα‖ ‖∂uτβ(gα)‖L2 = c(p, β).

One can understand (68) formally by expanding the commutator,
〈
ψλ, [Lλ,Af + A0]ψλ

〉 = 2iIm
〈
Lλψλ, (Af + A0)ψλ

〉 = 0. (69)

The same argument gives
〈
[Lλ,Af ]

〉
ψλ

= 0, from which it follows that

0 ≥ 〈N〉ψλ − ∣∣〈λI1〉ψλ
∣∣ ≥ 〈N〉ψλ − c(p, β)|λ| ‖ψλ‖ ‖N1/2ψλ‖
≥ 1

2
〈N〉ψλ − 1

2
c(p, β)2λ2‖ψλ‖2, (70)

which yields the bound (66). In order to make the arguments leading to (68) rigorous,
one needs to control multiple commutators of Lλ with Af +A0 of order up to three. In
particular, we need the first, second and third commutator of I with the dilation gener-
ator Af to be a well-defined, relatively N1/2-bounded operator, see [21, 12]. The latter
condition is satisfied provided

∂
j
uτβ(gα) is continuous in u ∈ R for j = 0, 1, 2, and (71)

∂
j
uτβ(gα) ∈ L2(R × S2) for j = 0, 1, 2, 3. (72)

We point out that for this argument, i.e. for the proof of (68), theL2-norms of the functions
∂
j
uτβ(gα) do not need to be bounded uniformly in β. It is not difficult to verify that (71),

(72) follow from (A1). Let p and φ0 be as in Assumption (A1); then, for p = 1/2, 3/2,
p > 2, we use the representation (36) with φ = 2φ0, while for p = −1/2, we take
φ = π + 2φ0.

The proof of Theorem 2 is an easy consequence of Theorems 4 and 5. Indeed, if, for λ
satisfying (64), with ν = ν0 (introduced after Theorem 2), there were a unit eigenvector
ψλ ∈ KerLλ, orthogonal to 
β,λ, then

0 = 〈B〉ψλ ≥ |λ|2−ην3−9η/2
0 γ0. (73)

Relation (73) cannot hold since the r.h.s. is strictly positive. For p = −1/2 condition
(64) (with ν = ν0 = C[1 + log(1 + β)]) gives (57), independently of η.
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3.2. Proof of Theorem 4. Since 
β,λ is in the kernel of Lλ, the commutator B given in
(62) cannot be strictly positive on the entire space; see (68). To show that dim KerLλ = 1
it is natural to try to show that

B + δP
β,λ ≥ γ, (74)

for some δ ≥ γ , where γ > 0. Let � ⊂ R be an interval around the origin not contain-
ing any non-zero eigenvalue of the atomic Liouvillian Lat . In Subsect. 3.2.1 we prove
(74) in the sense of quadratic forms on the spectral subspace of L0 associated with the
interval � (see (96)). Using this inequality, we show in Subsect. 3.2.2 that

P
β,λBP
β,λ ≥ 1

2
γP
β,λ , (75)

in the sense of quadratic forms on RanE�′(Lλ) ∩ Bν , where E�′(Lλ) is the spectral
projection of Lλ associated to an interval�′, which can be chosen arbitrarily, as long as
it is properly contained in �.

3.2.1. PC estimate localized w.r.t.L0 We will use the Feshbach method with the decom-
position

H0
� := RanE0

� = RanE0
��⊕ RanE0

��, (76)

where� is given in (54), and where E0
� is the spectral projection of L0 associated with

the interval �. For a presentation of this method resembling most closely the form in
which it is used here we refer to [21, 12], and, for more background, to [6, 5, 7].

In what follows, C denotes a constant independent of λ, θ, ε, β ≥ β0 (for any fixed
β0 > 0), and C(p, β) denotes a constant independent of λ, θ, ε, satisfying the bound
given in (67). The values of C, C(p, β) can vary from expression to expression.

From� = P 0⊗P
+P
 and the properties of� it follows that RanE0
�� ⊂ RanP


and

E0
��(B + δP
β,λ)�E

0
� = E0

��N
1/2
(

1l +N−1/2λI1N
−1/2
)
N1/2�E0

�

+E0
��
(
i[Lλ,A0] + δP
β,λ

)
�E0

�

≥ 1

2
E0
��+ E0

��i[Lλ,A0]�E0
�

≥ 1

2

(
1 − C

θλ2

ε2

)
E0
��, (77)

provided

‖P
N−1/2λI1N
−1/2P
‖ ≤ C(p, β)|λ| < 1/2, (78)

see the remark after Theorem 5, and where we use the bound

‖E0
��[Lλ,A0]�E0

�‖ ≤ C
θλ2

ε2 (79)

which follows easily from the definition of A0, (60). We choose the parameters s.t.

C
θλ2

ε2 < 1/2, (80)
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and hence we have that

E0
��(B + δP
β,λ)�E

0
� ≥ 1

4
E0
��. (81)

The Feshbach map associated with the decomposition (76) and with the spectral param-
eter m < 1/8, applied to the operator

E0
�(B + δP
β,λ)E

0
� (82)

viewed as an operator on the Hilbert space H0
�, is given by

F�,m(E
0
�(B + δP
β,λ)E

0
�) = E0

��
(
B + δP
β,λ − (B + δP
β,λ)

×E0
��
(
B + δP
β,λ −m

)−1
�E0

�(B + δP
β,λ)
)
�E0

�, (83)

where the barred operator is understood to be restricted to the subspace RanE0
�� ⊂ H0

�.
Using the definition of A0, (60), and �I1� = 0, one sees that

�B� = 2θλ2�IR
2
εI� ≥ 0. (84)

We show that the second term on the r.h.s. of (83), which is negative-definite, is smaller
than �B�. By (81), the norm of the resolvent in (83) is bounded from above by 8 (for

m < 1/8). Using this fact, the estimates ‖L0Rε‖ ≤ 1, ‖R2
ε‖ ≤ ε−2 and�i[Lλ,A0]� =

θλ�LλR
2
εI�, we find that, for any ψ ∈ H0

�, the modulus of the expectation value
〈·〉ψ = 〈ψ, ·ψ〉 of the second term in the r.h.s. of (83) is bounded above by

8‖E0
��(λI1 + i[Lλ,A0] + δP
β,λ)�ψ‖2 ≤ 16θ2λ2‖RεI�ψ‖2

+C
(
δ2‖�P
β,λ�‖2 + C(p, β)λ2 + θ2λ4

ε4

)
‖ψ‖2. (85)

It follows that
〈
F�,m(E

0
�(B + δP
β,λ)E

0
�)
〉

ψ
≥ 2θλ2(1 − 8θ)

〈
�IR

2
εI�
〉

ψ
+ δ‖P
β,λ�ψ‖2

−C θλ
2

ε

(
ε

θ
C(p, β)+ θλ2

ε3 + ε

θλ2 δ
2‖�P
β,λ�‖2

)
‖ψ‖2. (86)

The expectation value on the r.h.s. of (86) is estimated from below using

�IR
2
εI� ≥ 1

ε

(
�0 − Cε1/4

)
, (87)

provided ε < ε0, see (55), (56). Pick θ and ε s.t.

θ < 1/16, ε < ε0, (88)

and, for ψ ∈ Ran�, note the estimate

θλ2
〈
IR

2
εI + δ

θλ2P
β,λ

〉

ψ

≥ θλ2

ε

〈
γ0P
atβ

+ εδ

θλ2P
β,λ − Cε1/4
〉

ψ

= θλ2

ε
γ0

[(
1 − Cε1/4/γ0

)
‖ψ‖2 +

〈
εδ

θλ2γ0
P
β,λ − P
β,0

〉

ψ

]

, (89)
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where we use that P
atβ ψ = P
β,0ψ for ψ ∈ Ran�. We choose

δ ≥ θλ2

ε
γ0 ≥ θλ2

4ε
γ0 =: γ, (90)

see also inequality (74), and

C
ε1/4

γ0
< 1/4. (91)

The r.h.s. of (89) is bounded from below by

θλ2

ε
γ0

(
3/4 − ‖P
β,λ − P
β,0‖

)
‖ψ‖2 ≥ θλ2

2ε
γ0 ‖ψ‖2. (92)

In the last step, we have applied Theorem 3, (59), which tells us that ‖P
β,λ −P
β,0‖ <
1/4, provided

λ satisfies the condition (58) (with ε = 1/4). (93)

Combining this with (86), where we use

‖�P
β,λ�‖2 = ‖�(P
β,λ − P
β,0)�‖2 ≤ ‖P
β,λ − P
β,0‖2,

gives

〈
F�,m(E

0
�(B + δP
β,λ)E

0
�)
〉

ψ
≥ θλ2

4ε
γ0 ‖ψ‖2, (94)

provided

C

(
ε

θ
C(p, β)+ θλ2

ε3 + εδ2

θλ2

)
< γ0/4. (95)

The isospectrality property of the Feshbach map tells us that

E0
�(B + δP
β,λ)E

0
� ≥ min

(
1

8
,
θλ2

4ε
γ0

)
E0
� = θλ2

4ε
γ0E

0
�. (96)

3.2.2. PC estimate localized w.r.t.Lλ Let 0 ≤ χ� ≤ 1 be a smooth function with support
inside the interval �, s.t. χ�(0) = 1, and denote by χ0

� = χ�(L0) and χ� = χ�(Lλ)

the operators obtained from the spectral theorem. We show in this subsection that any
unit vector ψ ∈ RanP
β,λ ∩ Bν , s.t. χ�ψ = ψ , satisfies

〈
B + δP
β,λ

〉
ψ

= 〈B〉ψ ≥ θλ2

8ε
γ0, (97)

provided suitable bounds on the parameters ε, λ, θ are satisfied. We will repeatedly use
the estimate

‖(1 − χ0
�)ψ‖ = ‖(χ� − χ0

�)ψ‖ ≤ C|λ| ‖I (N + 1)−1/2‖ ‖(N + 1)1/2ψ‖
≤ Cν|λ|, (98)
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where the first inequality is a consequence of the standard functional calculus. Let us
decompose the expectation value

〈B〉ψ =
〈
χ0
�(B + δP
β,λ)χ

0
�

〉

ψ
(99)

+
〈
(1 − χ0

�)(B + δP
β,λ)(1 − χ0
�)
〉

ψ
(100)

+2 Re
〈
(1 − χ0

�)(B + δP
β,λ)χ
0
�

〉

ψ
. (101)

Because E0
�χ

0
� = χ0

�, inequality (96) implies that

〈
χ0
�(B + δP
β,λ)χ

0
�

〉

ψ
≥ θλ2

4ε
γ0‖χ0

�ψ‖2 ≥ θλ2

4ε
γ0(1 − Cν|λ|)‖ψ‖2. (102)

Since N + δP
β,λ is non-negative, we have that

(100) ≥ −
∣∣∣∣
〈
(1 − χ0

�)(λI1 + i[Lλ,A0])(1 − χ0
�)
〉

ψ

∣∣∣∣

≥ −|λ| ‖(1 − χ0
�)ψ‖ ‖I1(N + 1)−1/2‖ ‖(N + 1)1/2ψ‖

−‖[Lλ,A0]‖ ‖(1 − χ0
�)ψ‖2

≥ −Cν2 θλ
2

ε

(
ε

θ
C(p, β)+ |λ| + λ2

ε

)
, (103)

where we have used (61).
Our next task is to estimate (101). Since N commutes (strongly) with χ0

� and
P
β,λψ = 0, and using that ψ ∈ RanP
β,λ , we conclude that

Re
〈
(1 − χ0

�)(B + δP
β,λ)χ
0
�

〉

ψ

≥ δ
〈
(1 − χ0

�)P
β,λ(χ
0
� − 1)

〉

ψ
+ Re

〈
(1 − χ0

�)(λI1 + i[Lλ,A0])χ0
�

〉

ψ

≥ −δ‖(1 − χ0
�)ψ‖2 − C(p, β)νλ2‖ψ‖2 −

∣∣∣∣
〈
(1 − χ0

�)[Lλ,A0]χ0
�

〉

ψ

∣∣∣∣ . (104)

Taking into account that (1 − χ0
�)� = 0 and ‖(1 − χ0

�)L
−1
0 ‖ ≤ C (the constant is of

the size |�|−1), one sees that the last term can be estimated as follows:
∣∣∣∣
〈
(1 − χ0

�)[Lλ,A0]χ0
�

〉

ψ

∣∣∣∣

= θ |λ|
∣∣∣∣
〈
(1 − χ0

�)(λI�IR
2
ε − LλR

2
εI�+ λR

2
εI�I)χ

0
�

〉

ψ

∣∣∣∣

≤ Cνθ |λ|
(
λ2

ε2 + |λ|
)

‖ψ‖2 = Cν
θλ2

ε

( |λ|
ε

+ ε

)
‖ψ‖2. (105)

Plugging (105) into (104) and combining this with (102), (103), we arrive at the bound

〈B〉ψ ≥ θλ2

4ε
γ0

(
(1 − Cν|λ|)− Cν

γ0

(
ν
ε

θ
C(p, β)+ ν|λ| + ν

λ2

ε
+ |λ|

ε
+ ε

))
‖ψ‖2.

(106)
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Inequality (97) then follows by choosing parameters s.t.

Cν|λ| < 1/4 and
Cν

γ0

(
ν
ε

θ
C(p, β)+ ν|λ| + ν

λ2

ε
+ |λ|

ε
+ ε

)
< 1/4. (107)

3.2.3. Choice of ε, θ and δ We must show that the conditions

(78), (80), (88), (90), (91), (93), (95), (107) (108)

can be simultaneously satisfied. We set

λ = ν−9/2λ′, (109)

ε = ν−3|λ′|e, some 0 < e < 1, (110)

θ = |λ′|t , some 0 < t < e < 1 s.t. t > 3e − 2, (111)

δ = θλ2

ε
γ0, (112)

and it is easily verified that there is a λ1 > 0, depending on e, t , but not on ν, β ≥ β0,
s.t. if

0 < |λ| < λ1 min
(
C(p, β)−1, ν1/η−9/2C(p, β)−1/η

)
, (113)

where η = e− t > 0, then conditions (108) are met. The “gap of the positive commuta-
tor” (see (97)) is of size θλ2

ε
= |λ|2−ην3−9η/2. The maximal value of η under conditions

(110), (111) is taken for e → 2/3, t → 0.

4. Proof of Theorem 3

The following high-temperature result is well known. Given any ε > 0, there is an
η(ε) > 0 s.t. if

β|λ| < η(ε) (114)

then inequality (59) in Theorem 3 holds. A proof of this fact can be given by using
the explicit expression (48) for the perturbed KMS state, and using the Dyson series
expansion to estimate ‖
β,λ − 
β,0‖ (see e.g. [5]). Condition (114) comes from the
fact that the term of order λn in the Dyson series is given by an integral over an n-fold
simplex of size β, and, naively, (114) is needed to ensure that ‖
β,λ − 
β,0‖ is small.
We shall improve our estimates on ‖
β,λ −
β,0‖ by taking advantage of the decay in
(imaginary) time of the field propagators.

To start our analysis, we use the fact that the trace-norm majorizes the operator-norm
to write

‖P
β,λ − P
β,0‖2 ≤ ‖P
β,λ − P
β,0‖2
2 = 2

(
1 − 〈
β,λ, P
β,0
β,λ

〉)

≤ 2
〈

β,λ, P
atβ


β,λ

〉
+ 2
〈

β,λ, P

β,λ

〉
, (115)

where we use 1l − P
β,0 ≤ P
atβ
+ P
. Here, 
atβ is the atomic Gibbs state at inverse

temperature β given in (31), and 
 is the vacuum vector in F , see (29). We know that
〈

β,λ, P

β,λ

〉 ≤ ‖N1/2
β,λ‖2 ≤ c(p, β)2|λ|2, (116)
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where c(p, β) satisfies (67), see Theorem 5. There is a β1(ε) ≥ β0 s.t. if β > β1(ε) then

‖P
atβ − Pϕ0⊗ϕ0‖ < ε/2, (117)

where ϕ0 is the groundstate eigenvector of Hat and Pϕ0⊗ϕ0 ∈ B(Hat ⊗ Hat ) is the
projection onto the span of ϕ0 ⊗ ϕ0. It follows from (115) that

‖P
β,λ − P
β,0‖2 ≤ 2
〈

β,λ, Pϕ0⊗ϕ0
β,λ

〉+ ε + 2c(p, β)2|λ|2, (118)

for β > β1(ε). Let

Q = Pϕ0 ∈ B(Hat ) (119)

be the projection onto the orthogonal complement of the groundstate subspace of the
atomic Hamiltonian Hat so that

Pϕ0⊗ϕ0 ≤ Q⊗ 1lat + 1lat ⊗Q. (120)

Noticing that
〈

β,λ,Q⊗ 1lat 
β,λ

〉 = 〈
β,λ, 1lat ⊗Q 
β,λ
〉 = ωβ,λ(Q) we see from

(118) that

‖P
β,λ − P
β,0‖2 ≤ 4ωβ,λ(Q)+ ε + 2c(p, β)2|λ|2, (121)

provided β > β1(ε).

Proposition 1. For any ε > 0 there existβ2(ε) > 0 andλ1(ε) > 0 such that ifβ > β2(ε)

and |λ| < λ1(ε) then

ωβ,λ(Q) < ε. (122)

The proof is presented below. For now, we use (122) to prove Theorem 3. We set

β3(ε) := max(β1(ε), β2(ε)),

λ′
0(ε) := min

(
λ1(ε), c(p, β)

−1
√
ε/2, η(ε)/β3(ε)

)
, (123)

where η(ε) is the constant appearing in (114). In the casep > −1/2 the constant c(p, β)
has an upper bound which is uniform in β ≥ β0, see (67), and we take λ0(ε) to be the
r.h.s. of (123) with c(p, β) replaced by this upper bound. For p = −1/2 we can find a
λ0(ε), indpendent of β > 0, satisfying (1 + log(1 + β))−1λ0(ε) ≤ λ′

0(ε), see (67).
We always assume (58). Inequalities (121) and (122) yield

‖P
β,λ − P
β,0‖2 ≤ 6ε, (124)

for β > β3(ε). If β ≤ β3(ε) then β|λ| < η(ε), and (59) follows from the high-tempera-
ture result mentioned above. This completes the proof of the theorem, given Proposition
1.
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Proof of Proposition 1. It is convenient to work with a finite volume approximation

ω�β,λ(·) =
tr
(
e−βH�

λ ·
)

tr e−βH�
λ

(125)

of the KMS state ωβ,λ, where � = [−L/2, L/2]3 ⊂ R
3. (We introduce a finite box

� just in order to be able to make use of some familiar inequalities for traces. The
inequalities needed in our proof also hold in the thermodynamic limit, � ↗ R

3; but
some readers may be less familiar with them.) In (125), the trace is taken over the Hilbert
space Hat ⊗ F(L2(�, d3x)). For n = (n1, n2, n3) ∈ Z

3, let

e�n (x) = L−3/2e2πinx/L, E�n = 2π

L
|n| = 2π

L
(n2

1 + n2
2 + n2

3)
1/2 (126)

denote the eigenvectors and eigenvalues of the operator
√−� onL2(�, d3x)with peri-

odic boundary conditions at ∂�. We identify the basis {e�n } of L2(�3, d3x) with the
canonical basis of l2(Z3), and define the finite-volume Hamiltonian by

H�
λ = Hat +H�

f + λv�, (127)

v� =
∑

α

Gα ⊗ ϕ(g�α ), (128)

where g�α ∈ l2(Z3) is given by

g�α (n) =
(

2π

L

)3/2 {
gα
( 2πn
L

)
, n �= 0,

1, n = 0,
(129)

and the operator

H�
f = d�(h�f ), (130)

acting on F(l2(Z3)), is the second quantization of the one-particle Hamiltonian

h�f e
�
n =
{
E�n e

�
n , if n �= (0, 0, 0),

e�n , if n = (0, 0, 0).
(131)

On the complement of the zero-mode subspace h�f equals
√−� with periodic bound-

ary conditions. Changing the action of h�f on finitely many modes (always under the

condition that e−βH
�
f is trace-class) does not affect the thermodynamic limit. Simi-

larly, we may modify the definition of g�α on finitely many modes without altering the
thermodynamic limit. The existence of the thermodynamic limit,

lim
L→∞

ω�β,λ(A) = ωβ,λ(A), (132)

can be proven by expanding e−βH�
λ into a Dyson (perturbation) series and using that

ω�β,0(A) =
tr
(
e−βH�

0 A
)

tr e−βH�
0

(133)

has the expected thermodynamic limit for quasi-local observables A.
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Our goal is to show that ω�β,λ(Q) < ε, for Q given in (119), provided β and λ sat-
isfy the conditions given in Proposition 1, uniformly in the size of �. In what follows,
we will use the Hölder and Peierls-Bogoliubov inequalities (see e.g. [23]). The Hölder
inequality (for traces) reads

‖A1 . . . An‖1 ≤
n∏

j=1

‖Aj‖pj , (134)

where 1 ≤ pj ≤ ∞,
∑
j p

−1
j = 1, and the norms are

‖A‖p = (tr |A|p)1/p , for p < ∞, and ‖A‖∞ = ‖A‖ (operator norm). (135)

The Peierls-Bogoliubov inequality says that

tr
(
eA+B)

tr eB
≥ exp

[
tr
(
AeB
)
/tr eB

]
, (136)

which implies that

tr e−βH�
0

tr e−βH�
λ

≤ e
β|λω�β,0(v�)| = 1, (137)

since, by (128), ω�β,0(v
�) = 0.

Using the Hölder inequality one sees that, for any 0 < τ ≤ β/2,

ω�β,λ(Q) =
tr
(
e−(β−2τ)H�

λ e−τH�
λ Qe−τH�

λ

)

tr e−βH�
λ

≤






tr

{(
e−τH�

λ Qe−τH�
λ

) β
2τ

}

tr e−βH�
λ






2τ
β

=






tr

{(
Qe−

β
2MH

�
λ Q
)2M
}

tr e−βH�
λ






1
2M

, (138)

where we are choosing τ s.t.

β

2τ
= 2M, for some M ∈ N. (139)

Setting

v�(t) = e−tH
�
0 v�etH

�
0 (140)

and using the Dyson series expansion we obtain

Qe−
β

2MH
�
λ Q = A+ B, (141)
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where the selfadjoint operators A and B are given by

A = Qe−
β

2MH
�
0 Q, (142)

B =
∑

n≥1

(−λ)n
∫

0≤tn≤...≤t1≤ β
2M

Qv�(tn) · · · v�(t1)e−
β

2MH
�
0 Q dt1 · · · dtn. (143)

We plug (141) into (138), expand (A+ B)2M and use the Hölder inequality to arrive at
the bound

ω�β,λ(Q) ≤
[

tr
(|A|2M)

tr e−βH�
λ

] 1
2M

+
[

tr
(|B|2M)

tr e−βH�
λ

] 1
2M

. (144)

The first term on the right-hand side of (144) is easy to estimate. Let� = E1 −E0 > 0
denote the spectral gap of the atomic Hamiltonian Hat . Then

tr
(|A|2M)

tr e−βH�
0

= tr Hat

(
Qe−βHat

)

tr Hat
e−βHat

=
∑d−1
j=1 e

−β(Ej−E0)

1 +∑d−1
j=1 e

−β(Ej−E0)

≤
d−1∑

j=1

e−β(Ej−E0) ≤ 2
∫ ∞

E1−E0

e−βxdx = 2
e−β�

β
. (145)

Taking into account (137) and (139), we obtain, for β ≥ 1,

[
tr
(|A|2M)

tr e−βH�
λ

] 1
2M

≤ 2e−2τ�. (146)

In order to make the r.h.s. small, we take τ large as compared to �−1 (hence β ≥ 2τ
must be large enough).

Next, we consider the second term on the r.h.s. of (144). From (137) one sees that

tr
(|B|2M)

tr e−βH�
λ

≤ ω�β,0

(
eβH

�
0 |B|2M

)
= ω�β,0

(
eβH

�
0 B2M

)
. (147)

We expand

eβH
�
0 B2M =

∑

k1,... ,k2M≥1

T (k1, . . . , k2M), (148)

where

T (k1, . . . , k2M) = (−λ)k1+···+k2M

∫ β
2M

0
dt
(1)
1 · · ·

∫ t
(1)
k1−1

0
dt
(1)
k1

×
∫ 2 β

2M

β
2M

dt
(2)
1 · · ·

∫ t
(2)
k2−1

β
2M

dt
(2)
k2

· · ·
∫ β

(2M−1) β2M

dt
(2M)
1 · · ·

∫ t
(2M)
k2M−1

(2M−1) β2M

dt
(2M)
k2M

×eβH�
0 Qv�(t

(1)
k1
) · · · v�(t(1)1 )Q Qv�(t

(2)
k2
) · · · v�(t(2)1 )Q× · · ·

· · · ×Qv�(t
(2M)
k2M

) · · · v�(t(2M)1 )Qe−βH
�
0 . (149)
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Note that the time variables in the integrand are ordered,

0 ≤ t
(1)
k1

≤ · · · ≤ t
(1)
1 ≤ t

(2)
k2

≤ · · · ≤ t
(2M)
1 ≤ β. (150)

Our goal is to obtain an upper bound on |ω�β,0(T (k1, . . . , k2M))|, sharp enough to show
that

∑

k1,... ,k2M≥1

∣∣∣ω�β,0(T (k1, . . . , k2M))

∣∣∣ (151)

converges, and to estimate the value of the series. Note that the factors eβH
�
0 and e−βH�

0

in the integrand in (149) drop when we applyω�β,0 (cyclicity of the trace), and the expec-

tation value of the integrand in the state ω�β,0 = ωatβ ⊗ωf,�β (see (133)) splits into a sum
over products

∑

α
(1)
1 ,... ,α

(1)
k1

· · ·
∑

α
(2M)
1 ,... ,α

(2M)
k2M

ωatβ

(
QG

α
(1)
k1

(t
(1)
k1
) · · ·G

α
(2M)
1

(t
(2M)
1 )Q

)

×ωf,�β
(
ϕ�
α
(1)
k1

(t
(1)
k1
) · · ·ϕ�

α
(2M)
1

(t
(2M)
1 )

)
, (152)

where ωatβ and ωf,�β are the atomic and field KMS states at inverse temperature β, and

Gα(t) = e−tHatGαetHat , (153)

ϕ�α (t) = e
−tH�

f ϕ(g�α )e
tH�

f = a∗
(
e
−th�f g�α

)
+ a
(
e
th�f g�α

)
. (154)

Using the Hölder inequality (134) it is not difficult to see that

∣∣∣∣ω
at
β

(
QG

α
(1)
k1

(t
(1)
k1
) · · ·G

α
(2M)
1

(t
(2M)
1 )Q

)∣∣∣∣ ≤
2M∏

j=1

‖G
α
(j)
1

‖ · · · ‖G
α
(j)
kj

‖. (155)

Since ωf,�β is a quasi-free state we can estimate the second factor in (152) with the help
of Wick’s theorem:

ω
f,�
β

(
ϕ�α1
(t1) · · ·ϕ�α2N

(t2N)
) =
∑

P

∏

(l,r)∈P
ω
f,�
β

(
ϕ�αl (tl)ϕ

�
αr
(tr )
)
, (156)

where the sum extends over all contraction schemes, i.e., decompositions of {1, . . . , 2N}
into N disjoint, ordered pairs (l, r), l < r . Applying (156) to

ω
f,�
β

(
ϕ�
α
(1)
k1

(t
(1)
k1
) · · ·ϕ�

α
(2M)
1

(t
(2M)
1 )

)
(157)

we find that all resulting terms can be organized in graphs G, constructed in the following
way. Partition the circle of circumference β into 2M segments (parametrized by the arc
length) �j = [(j − 1) β2M , j

β
2M ], j = 1, . . . , 2M . Put kj “dots” into the interval �j ,

each dot representing a time variable t (j)· ∈ �j (increasing times are ordered according
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to increasing arc length). Pick any dot in any interval and pair it with an arbitrary differ-
ent dot in any interval. Then pick any unpaired dot (i.e., one not yet paired up) and pair
it with any other unpaired dot. Continue this procedure until all dots in all intervals are
paired; (notice that the total number of dots on the circle is even, as follows from the
gauge-invariance of ωf,�β ). The graph G associated to such a pairing consists of all pairs
– including multiplicity – of intervals (�,�′) with the property that some dot in � is
paired with some dot in �′. “Including multiplicity” means that if, say, three dots of �
are paired with three dots in �′, we understand that G contains the pair (�,�′) three
times. The class of all pairings P leading to a given graph G is denoted by CG . Let

AP =
∏

(l,r)∈P
ω
f,�
β

(
ϕ�αl (tl)ϕ

�
αr
(tr )
)

(158)

denote the contribution to (156) corresponding to the pairing P . The numerical value,
|G|, corresponding to a graph G is defined by

|G| =
∣∣∣∣∣∣

∑

P∈CG

AP

∣∣∣∣∣∣
, (159)

and it follows from (156), (158) and (159) that
∣∣∣∣ω
�
β,f

(
ϕ�
α
(1)
k1

(t
(1)
k1
) · · ·ϕ�

α
(2M)
1

(t
(2M)
1 )

)∣∣∣∣ ≤
∑

G
|G|. (160)

In order to give an upper bound on the r.h.s. of (160), we must estimate the imaginary-
time propagators (two-point functions)

ω
f,�
β

(
e
−tlH�

f ϕ(g�αl )e
tlH

�
f e

−trH�
f ϕ(g�αr )e

trH
�
f

)

=
〈

g�αr , e
−(β+tl−tr )h�f e

βh�f

e
βh�f − 1

g�αl

〉

+
〈

g�αl , e
−(tr−tl )h�f e

βh�f

e
βh�f − 1

g�αr

〉

, (161)

where the g�αl,r ∈ l2(Z3) are given in (129), and where tl ∈ �l , tr ∈ �r s.t. 0 ≤ tl ≤
tr ≤ β. The r.h.s. of (161) equals

(
2π

L

)3 ∑

n�=(0,0,0)

[
gαr (2πn/L)gαl (2πn/L)e

−(β+tl−tr )E�n

+gαl (2πn/L)gαr (2πn/L)e−(tr−tl )E
�
n

]
× eβE

�
n

eβE
�
n − 1

+
(

2π

L

)3 [
e−(β+tl−tr ) + e−(tr−tl )

] eβ

eβ − 1
.

(162)

In the limit L → ∞, the Riemann sum in (162) converges to
∫

R3
d3k
[
gαr (k)gαl (k)e

−(β+tl−tr )|k| + gαl (k)gαr (k)e
−(tr−tl )|k|

] eβ|k|

eβ|k| − 1
, (163)
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since the form factors gαl,r satisfy conditions (A1). The term in (162) coming from
n = (0, 0, 0) disappears in the limit L → ∞. (This shows why a redefinition of h�f on
the zero mode does not affect the thermodynamic limit.)

It is not hard to see that, for arbitrary �l,�r and tl ∈ �l , tr ∈ �r ,

|tl − tr | ≥ d−(�l,�r) := β

2M

{
0, if l = r

|l − r| − 1, if l �= r
(164)

and

β − |tl − tr | ≥ d+(�l,�r) := β − β

2M
(|l − r| + 1) . (165)

Defining

d(�,�′) := min(d−(�,�′), d+(�,�′)), (166)

we obtain from (161) and (163), and for L large enough,
∣∣∣ωf,�β

(
e
−tlH�

f ϕ(g�αl )e
tlH

�
f e

−trH�
f ϕ(g�αr )e

trH
�
f

)∣∣∣

≤ 2

〈

g�αl ,
e−d(�l,�r )|k|

1 − e−β|k| g
�
αl

〉1/2 〈

g�αr ,
e−d(�l,�r )|k|

1 − e−β|k| g
�
αr

〉1/2

. (167)

Given any two intervals �,�′, set

C(�,�′) := 4 max
α

〈

gα,
e−d(�,�′)|k|

1 − e−β|k| gα

〉

. (168)

If L ≥ C, for some constant C, then (168) is a volume-independent upper bound on
the (finite-volume) two-point functions arising from contractions in the graph expansion
(Wick theorem). We are now ready to give an upper bound on the r.h.s. of (160); (see
also [11] for similar considerations).

It is useful to start the procedure of pairing dots in the interval with the highest order
k. Let π be a permutation of 2M objects, s.t.

kπ(1) ≥ kπ(2) ≥ · · · ≥ kπ(2M). (169)

There are k
l
(π(1))
1

possibilities of pairing the dot t (π(1))1 with some dot in an interval�
l
(π(1))
1

.

We associate to each such pairing the value

k
l
(π(1))
1

C(�π(1), �l(π(1))1
) ≤ √kπ(1)

√
k
l
(π(1))
1

C(�π(1), �l(π(1))1
), (170)

where we use (169). Next, we pair the dot labelled by t (π(1))2 (if it is still unpaired,
otherwise we move to the next unpaired dot) with a dot in �

l
(π(1))
2

and associate to this

pairing the value

√
kπ(1)

√
k
l
(π(1))
2

C(�π(1), �l(π(1))2
). (171)
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We continue this procedure until all dots are paired. This yields the estimate

∑

G
|G| ≤

2M∏

j=1

(kj )
kj /2
∑

G

∏

(�,�′)∈G
C(�,�′). (172)

Next, we establish an upper bound on the sum on the r.h.s. Using that

|gα(k)| ≤ C|k|p, (173)

for some constant C, and for all α, provided |k| is small enough, with p > −1, it is easy
to see that

C(�,�′) ≤ C

{
d(�,�′)−3−2p, d(�,�′) �= 0
1/β + 1, d(�,�′) = 0

. (174)

Furthermore, using definition (166) and inequality (174), we see that, for any �,

∑

�′
C(�,�′) ≤ � := C

(

1 + 1

β
+ 1

p + 1

(
β

2M

)−2−2p
)

< ∞, (175)

provided p > −1. Consequently, we find that
∑

G

∏

(�,�′)∈G
C(�,�′) ≤ �k1+···+k2M . (176)

Carrying out the integral over the simplex in (149), and using (152), (155), (160), (172),
(176), we obtain the bound

∣∣∣ω�β,0(T (k1, . . . , k2M))

∣∣∣ ≤
(
C′|λ|� β

2M

)k1+···+k2M 2M∏

j=1

(kj )
kj /2

kj !
, (177)

where C′ = ∑α ‖Gα‖, and where the factor ( β2M )
kj 1
kj ! is the volume of the simplex

{t ≤ tkj ≤ · · · ≤ t1 ≤ t + β
2M }. Thus, the series (151) converges for all values of λ and

β > 0, and

[
ω�β,0

(
eβH

�
0 B2M

)] 1
2M ≤ C′|λ|� β

2M

∑

k≥0

(
C′|λ|� β

2M

)k
(k + 1)

k+1
2

(k + 1)!
. (178)

Combining (144), (146), (147), (178), and using (139), we see that if L is large enough
(independent of λ or β) then

ω�β,λ(Q) ≤ 2e−2τ� + C′|λ|�τ
∑

k≥0

(
C′|λ|�τ)k (k + 1)

k+1
2

(k + 1)!
. (179)

The final step in the proof of Proposition 1 consists in showing that the r.h.s. (which
is independent of �) can be made arbitrarily small, provided β is large enough and
λ is small enough. Pick β2(ε) > 1 so large that e−β2(ε)� < ε/2. For β ≥ β2(ε) we
choose τ = β2(ε)/2 ≤ β/2. From the definition of �, (175), and the relation β

2M = 2τ ,
see (139), we see that �τ ≤ C(ε), uniformly in β ≥ β2(ε). It follows that there is a
λ1(ε) > 0 s.t. if |λ| < λ1(ε) then the second term on the r.h.s. of (179) is smaller than
ε/2. This completes the proof of Proposition 1. ��
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