Diameter-6 distance-regular graphs

No. of verticesIntersection ArrayGraph
64$\{6,5,4,3,2,1; 1,2,3,4,5,6\}$6-cube $Q_6 \cong H(6,2)$
126$\{3,2,2,2,2,2;1,1,1,1,1,3\}$Tutte's 12-cage
189$\{4,2,2,2,2,2;1,1,1,1,1,2\}$Line graph of Tutte's 12-cage
728$\{4,3,3,3,3,3;1,1,1,1,1,4\}$Incidence graph of $GH(3,3)$
729$\{12,10,8,6,4,2;1,2,3,4,5,6\}$$H(6,3)$
924$\{36,25,16,9,4,1;1,4,9,16,25,36\}$$J(12,6)$
1716$\{42,30,20,12,6,2;1,4,9,16,25,36\}$$J(13,6)$
1716$\{7,6,6,5,5,4;1,1,2,2,3,3\}$Odd graph $O_7$
2048$\{22,21,20,3,2,1;1,2,3,20,21,22\}$Coset graph of the shortened binary Golay code
2048$\{12,11,10,9,8,7;1,2,3,4,5,12\}$Folded 12-cube
2048$\{66,45,28,15,6,1;1,6,15,28,45,66\}$Halved 12-cube
3003$\{48,35,24,15,8,3;1,4,9,16,25,36\}$$J(14,6)$

Back to: Graphs by diameter
Last updated: 12 August 2024