Diameter-5 distance-regular graphs

No. of verticesIntersection ArrayGraph
20$\{3,2,1,1,1;1,1,1,2,3\}$Dodecahedron
20$\{3,2,2,1,1;1,1,2,2,3\}$Desargues graph $D(O_3)$
32$\{5,4,3,2,1; 1,2,3,4,5\}$5-cube $Q_5 \cong H(5,2)$
100$\{7,6,6,1,1;1,1,6,6,7\}$Doubled Hoffman-Singleton graph
112$\{10,9,8,2,1;1,2,8,9,10\}$Doubled Gewirtz graph
154$\{16,15,12,4,1;1,4,12,15,16\}$Doubled $M_{22}$ graph
200$\{22,21,16,6,1;1,6,16,21,22\}$Doubled Higman-Sims graph
243$\{10,8,6,4,2;1,2,3,4,5\}$$H(5,3)$
252$\{25,16,9,4,1;1,4,9,16,25\}$$J(10,5)$
310$\{7,6,6,4,4;1,1,3,3,7\}$Doubled Grassmann graph $\mathrm{DJ}_{2}(5,2)$
462$\{30,20,12,6,2;1,4,9,16,25\}$$J(11,5)$
462$\{6,5,5,4,4;1,1,2,2,3\}$Odd graph $O_6$
512$\{10,9,8,7,6;1,2,3,4\}$Folded 10-cube
512$\{45,28,15,6,1;1,6,15,28,45\}$Halved 10-cube
729$\{22,20,18,2,1;1,2,9,20,22\}$Coset graph of shortened extended ternary Golay code
792$\{35,24,15,8,3;1,4,9,16,25\}$$J(12,5)$
1024$\{11,10,9,8,7;1,2,3,4,5\}$Folded 11-cube
1024$\{55,36,21,10,3;1,6,15,28,45\}$Halved 11-cube
1287$\{40,28,18,10,4;1,4,9,16,25\}$$J(13,5)$
2002$\{45,32,21,12,5;1,4,9,16,25\}$$J(14,5)$
2420$\{13,12,12,9,9;1,1,4,4,13\}$Doubled Grassmann graph $\mathrm{DJ}_3(5,2)$
3003$\{50,36,24,14,6;1,4,9,16,25\}$$J(15,5)$

Back to: Graphs by diameter
Last updated: 9 August 2024