Distance-regular graphs from 101 to 150 vertices

GraphNo. of verticesDiameter
Paley graph $P_{101}$1012
Biggs-Smith graph1027
Flag graph of $PG(2,4)$1053
Goethals-Seidel graph1052
$J(15,2)$1052
$\mathrm{K}(15,2)$1052
Paley graph $P_{109}$1092
1st subconstituent of McLaughlin graph1122
Paley graph $P_{113}$1132
Incidence graph of $PG(2,7)$1143
$\mathrm{NO}_6^+(3)$ graph1172
$\mathrm{O}_8^-(2)$ graph1192
$J(16,2)$1202
$J(10,3)$1203
$\mathrm{K}(16,2)$1202
$\mathrm{L}_3(4).2^2$ graph1202
Merged Johnson graph $J(10,3)$1202
$\mathrm{NO}_5^-(4)$ graph1202
$\mathrm{NO}_8^+(2)$ graph1202
$\overline{\mathrm{NO}_8^+(2)}$ graph1202
$H(2,11)$1212
Paley graph $P_{121}$1212
Peisert graph on 121 vertices1212
$H(3,5)$1253
Paley graph $P_{125}$1252
Folded Johnson graph $J(10,5) \cong$ Merged Johnson graph $J(9,4)$1262
Goethals graph1262
$J(9,4)$1264
Odd graph $O_5$1264
Tutte's 12-cage1266
Zara graph on 126 vertices $\cong \mathrm{NO}_6^-(3)$ graph1262
7-cube $Q_7 \cong H(7,2)$1287
Folded 8-cube1284
Halved 8-cube1284
Incidence graph of $AG(2,8)$ minus a parallel class1284
Grassmann graph $J_3(4,2)$1302
Dual polar graph $\mathrm{B}_3(2) \cong$ Dual polar graph $\mathrm{C}_3(2)$1353
$\overline{\mathrm{O}_8^+(2)}$ graph1352
$\mathrm{O}_8^+(2)$ graph1352
$J(17,2)$1362
$\mathrm{K}(17,2)$1362
$\mathrm{NO}_5^+(4)$ graph1362
$\overline{\mathrm{NO}_5^+(4)}$ graph1362
$\mathrm{NO}_8^-(2)$ graph1362
Paley graph $P_{137}$1372
Faradžev–Klin–Muzychuk graph from $\mathrm{L}_3(3)$1442
Halved Leonard graph1442
$H(2,12)$1442
Incidence graph of $PG(2,8)$1463
Paley graph $P_{149}$1492

Back to: Graphs by number of vertices
Last updated: 8 August 2024