
In reservoir simulation we predict the 
recovery of gas and oil by solving for 
the fluid flow in porous media. Our 
reservoir simulator is designed from the 
ground up to run in parallel to speed up 
the computations and to reduce the 
overall simulation time. In general we 
distinguish between two properties 
when assessing the performance of an 
algorithm executed in parallel: weak 
and strong scalability. Weak scalability 
is the “speed up” which results from 
increasing the number of processors and 
keeping the same problem size per 

processor. In the ideal case we want to solve twice the problem size in the same time given 
twice the number of processors. Strong scalability is defined as the speed up which results 
from increasing the number of processors and freezing the original problem size. In the ideal 
case we solve the original problem in half the time given twice the number of processors. 

In reality these ideal scenarios are hard to achieve because of latency in communication, i.e. 
there exists no communication between processors with infinite speed. Moreover, we pay a 
penalty when the ratio between communication and the actual amount of work per processor 
becomes unfavorable. This means that a processor is without work while waiting for data 
from neighboring processors. 

The time-dependent, non-linear equations which underlie reservoir simulation are discretized 
by the Finite Volume method and solved by the Newton-Raphson method and implicit time 
integration. In every step of the Newton-Raphson method we evaluate the derivatives of the 
non-linear reservoir simulation equations and solve the corresponding linear system. Typically 
for a simulation of  cells we solve for  unknowns, with  unknowns per cell. These are pressure, 
water (and gas) saturations and molefractions.  

The matrices in the resulting linear systems are non-symmetric. We solve these systems with 
FGMRES preconditioned by the constrained pressure residual (CPR). To tackle the two 
different numerical properties of the discrete operator, elliptic and hyperbolic, we have two 
stages in CPR: 1st stage solve the pressure equations, 2nd stage solve the complete system. We 
solve the 1st stage by AMG and the 2nd stage by block-ILU(k), where k is 0 or 1. 

The AMG solver is the bottleneck of this algorithm. It takes considerable amount of time, 
mostly in the setup. AMG is the state-of-the-art and (near-) optimal for solving elliptic 
equations. Moreover, AMG is well known for its excellent weak scalability property, it scales 
well for increasingly bigger problem sizes. However, the strong scalability of AMG is poor. The 
poor strong scalability of AMG is a critical business issue as clients expect to run cases 
(considerably) faster when running cases of fixed size on a cluster.  

The aim of this workshop is to explore if domain decomposition methods can improve the 
strong scalability of the pressure solver.


