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Abstract. We apply a multigrid reduction-in-time (MGRIT) algorithm to hyperbolic partial
differential equations in one spatial dimension. This study is motivated by the observation that
sequential time-stepping is a computational bottleneck when attempting to implement highly con-
current algorithms; thus parallel-in-time methods are desirable. MGRIT adds parallelism by using
a hierarchy of successively coarser temporal levels to accelerate the solution on the finest level. In
the case of explicit time-stepping, spatial coarsening is a suitable approach to ensure that stability
conditions are satisfied on all levels, and it may be useful for implicit time-stepping by producing
cheaper multigrid cycles. Unfortunately, uniform spatial coarsening results in extremely slow con-
vergence when the wave speed is near zero, even if only locally. We present an adaptive spatial
coarsening strategy that addresses this issue for the variable coefficient linear advection equation
and the inviscid Burgers equation using first-order explicit or implicit time-stepping methods. Serial
numerical results show this method offers significant improvements over uniform coarsening and is
convergent for the inviscid Burgers equation with and without shocks. Parallel scaling tests on up
to 128K cores indicate that run-time improvements over serial time-stepping strategies are possible
when spatial parallelism alone saturates, and that scalability is robust for oscillatory solutions which
change on the scale of the grid spacing.

Key words. adaptive spatial coarsening, multigrid reduction in time (MGRIT), parallel-in-time,
hyperbolic problems, XBraid

AMS subject classifications. 65F10, 65M22, 65M55, 35L03, 35L60

DOI. 10.1137/17M1144982

1. Introduction. Due to stagnating processor speeds and increasing core counts,
the current paradigm of high performance computing is to achieve shorter computing
times by increasing the concurrency of computations. Time integration represents
an obvious bottleneck for achieving greater speedup due to the sequential nature of
many time integration schemes. The need for parallel-in-time is further exacerbated
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by communication latency costs, which limit the degree to which codes can parallellize
in space effectively; i.e., strong scaling in space often becomes inefficient when less
than a few hundred or a few thousand spatial degrees-of-freedom remain per core. In
such cases, parallelism in time can lead to further speedups. While temporal paral-
lelism may seem counterintuitive, the development of parallel-in-time methods is an
active area of research, with a history spanning several decades [18]. Variants include
direct methods and iterative methods based on deferred corrections [12], domain de-
composition [20], multigrid [21, 3], multiple shooting [6], and waveform relaxation [33]
approaches. These methods have had significant success in providing further speedup
in the solution of parabolic equations, or equations with significant diffusivity, but
have had markedly less success with hyperbolic or advection dominated problems
[28].

For example, one of the most influential parallel-in-time methods is parareal
[25], an iterative predictor-corrector method (that is equivalent to a 2-level multi-
grid scheme [19]) which combines the use of a coarse time integrator in serial and a
fine time integrator in parallel. However, highly advective problems (and hyperbolic
problems in general) are known to be difficult for parareal [19]. In general, the more
dissipation present in an advective problem, the faster parareal converges [31]. Thus,
the highly advective case remains a topic of active research. The work [16] proposes
the parareal implicit time-integrator method (PITA), which is further developed and
interpreted as a Krylov subspace enhanced parareal method [9, 29, 17]. This method
stabilizes parareal for hyperbolic problems, but in contrast to the present work this
method requires the large cost of storing the space-time solution vector from each
parareal iteration. Other notable parareal variants for hyperbolic problems [10, 7]
have similarly stabilized parareal by projecting coarse grid error corrections onto sub-
spaces incorporating previously computed information. More recently, the work [26]
showed improved parareal performance by pipelining several parareal solves applied
to successive intervals of the time-line. This approach takes advantage of the fact that
parareal converges faster for smaller time windows (i.e., smaller amounts of time par-
allelism), even for advective problems [32]. In contrast, our work considers applying
massive parallelism to the entire time domain. In general, future performance gains
for parareal applied to hyperbolic problems appear to depend on finding coarse time
propagators that match the fine-grid phase as closely as possible [28].

In this paper, we discuss the multigrid reduction-in-time (MGRIT) method [13]
and use XBraid [2], an open-source implementation of MGRIT. This work takes a
multilevel approach, as opposed to the previous 2-level parareal work, and builds
on the insight from [32], which shows, by investigating iteration counts and asymp-
totic convergence rates theoretically and using serial numerical tests, that MGRIT
with multiple levels, small per-level temporal coarsening factors, and FCF-relaxation
can converge for advection-dominated advection-diffusion problems (including some
hyperbolic problems with wave speed 1), when parareal does not. A strength of
the MGRIT framework is its nonintrusive nature, which allows existing time-step-
ping routines to be used within the MGRIT implementation. Thus far, MGRIT
has been successfully implemented using time-stepping routines for linear [13] and
nonlinear [15] parabolic partial differential equations (PDEs) in multiple dimensions,
the Navier--Stokes equations [14], and power system models [23]. We now consider
applying MGRIT to hyperbolic PDEs.

As a multigrid method, MGRIT primarily involves temporal coarsening, but spa-
tial coarsening is a suitable approach for explicit time integration to ensure that
stability conditions are satisfied on all levels of the grid hierarchy. Spatial coarsening
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may also be used with implicit time integration to produce smaller coarse-grid prob-
lems and, hence, cheaper multigrid cycles. However, small local Courant numbers---
resulting from small local wave speeds---induce a sort of anisotropy in the discrete
equations, meaning that the nodal connections in space are small compared to those
in time. As will be explained in more detail in section 3.1, these so-called weak connec-
tions prevent pointwise relaxation from smoothing the error in space, thus inhibiting
the effectiveness of spatial coarsening and leading to slow convergence. In this paper
we present an adaptive spatial coarsening strategy that resolves this problem for the
conservative hyperbolic PDE

(1) \partial tu+ \partial x(f(u, x, t)) = 0,

by locally preventing coarsening in regions with near-zero Courant numbers. In par-
ticular, we consider the variable coefficient linear advection equation, f(u, x, t) =
a(x, t)u, and the inviscid Burgers equation, f(u, x, t) = 1

2u
2.

The remainder of this paper is structured as follows. In section 2, we describe the
MGRIT algorithm and the discretization of (1). In section 3, we present our adap-
tive coarsening approach, providing algorithms for grid coarsening and transferring
solutions between different spatial grids. In section 4, we provide serial numerical
results illustrating the efficacy of the adaptive coarsening strategy. In section 5, we
provide parallel scaling results comparing MGRIT with adaptive coarsening and dif-
ferent combinations of space-time parallelism to sequential time-stepping with spatial
parallelism, illustrating the robustness of the approach for large problem sizes and its
potential to achieve run-time speedups when spatial parallelism alone saturates. In
section 6, we summarize our results and briefly describe related current and future
work.

2. MGRIT formulation and discretization. Consider a system of ordinary
differential equations (ODEs) of the form

u\prime (t) = f(t,u(t)), u(0) = u0, t \in [0, T ],

which can represent a system obtained from a method-of-lines discretization of (1).
This system is discretized on a uniform temporal mesh ti = i\delta t, i = 0, 1 . . . , Nt,
\delta t = T/Nt, with ui \approx u(ti). A general one-step iteration for computing the discrete
solution is

ui = \Phi i,\delta t(u\bfi  - \bfone ) + gi, i = 1, 2, . . . , Nt,

where \Phi i,\delta t is a time-stepping function depending on ti and \delta t, and gi contains so-
lution-independent terms. We write this as the equivalent matrix equation (abusing
notation in the nonlinear case)

(2) Au \equiv 

\left[     
I

 - \Phi 1,\delta t I
. . .

. . .

 - \Phi Nt,\delta t I

\right]     
\left[     
u0

u1

...
uNt

\right]     =

\left[     
g0

g1

...
gNt

\right]     \equiv g,

where g0 = u0. Here forward substitution corresponds to sequential time-stepping.

2.1. MGRIT. To solve (2) by MGRIT, we require a coarse-grid problem, a
relaxation scheme, and restriction and prolongation operators. We set a temporal
coarsening factor m and define a coarse time grid Tic = ic\Delta T , ic = 0, 1, . . . , NT =
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Nt/m, \Delta T = m\delta t, as pictured in Figure 1 [13, original figure]. The Tic present on
both fine and coarse grids are C-points and the remaining ti are F-points. We define
a coarse time stepper \Phi ic,\Delta T by rediscretizing on the coarse-in-time grid. In 2-level
MGRIT, this coarse-grid problem is solved exactly, whereas multilevel MGRIT applies
this process recursively.

t0 t1 t2 t3 · · · tm

T0 T1 · · ·

tNt

∆T = mδt

δt

Fig. 1. Fine and coarse temporal grids.

Two fundamental types of temporal relaxation are used in MGRIT: F-relax-
ation and C-relaxation. F-relaxation updates the F-point values ui in the interval
(Tic , Tic+1) by starting with the C-point value umic and then applying each \Phi i,\delta t in
sequence. Since each interval is updated independently, the intervals can be processed
in parallel. Similarly, C-relaxation updates C-point values umic based on current F-
point values umic - 1, which can also be done in parallel. These relaxation strategies
are illustrated in Figure 2 [13, original figure]. In particular, note that 2-level MGRIT
with F-relaxation is equivalent to parareal [13, 19]. These sweeps can also be com-
bined into FCF-relaxation: F-relaxation followed by C-relaxation followed by a second
F-relaxation. Ideal restriction and prolongation (``ideal"" as they generate the Schur
complement as the Petrov--Galerkin coarse-grid operator) are equivalent to particular
combinations of injection and F-relaxation: ideal restriction is injection preceded by
an F-relaxation, and ideal prolongation is injection followed by an F-relaxation [13].

Φ Φ Φ

g g g

Φ Φ Φ

g g g

F-Relaxation

Φ Φ

g g g

C-Relaxation

Fig. 2. Illustration of F- and C-relaxation on a 9-point temporal grid with coarsening factor 4.

MGRIT uses the full approximation storage (FAS) framework [4] for solving both
linear and nonlinear problems, which involves computing the coarse-grid correction
by solving a coarsened version of the residual equation \scrA (u + e)  - \scrA (u) = r, where
\scrA is the (potentially nonlinear) operator to be inverted. The two-grid MGRIT FAS
algorithm first appeared in [14], though we instead reproduce here the variant from
[15] which accounts for the possibility of spatial coarsening; see Algorithm 1. We
denote injection-based temporal restriction by RI, ideal temporal prolongation by P,
spatial restriction by Rs, and spatial prolongation by Ps. The multigrid variant is
obtained by replacing line 5 with a recursive call. In the case of \scrA being a matrix A
this reduces to the standard multigrid algorithm.

Using MGRIT to solve the system in (2) requires an increase in overall memory,
but it allows us to effectively make use of additional parallel resources, which includes
more available memory. In particular, with spatial coarsening and enough parallelism
in time, the memory use of MGRIT per processor is a small multiple of that required
in the serial time-stepping case (for a spatial coarsening factor of m, the multiplier is
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Algorithm 1 FAS-MGRIT.

1: procedure u = FAS-MGRIT(\scrA ,u,g)
2: Apply F- or FCF-relaxation to \scrA (u) = g
3: Inject the fine-grid approximation and residual to the coarse grid

u\Delta = RI(u), r\Delta = RI(g  - \scrA (u))
4: If using spatial coarsening, then:

u\Delta = Rs(u\Delta ), r\Delta = Rs(r\Delta )
5: Solve \scrA \Delta (v\Delta ) = \scrA \Delta (u\Delta ) + r\Delta 
6: Compute the coarse-grid error approximation: e\Delta = v\Delta  - u\Delta 

7: If using spatial coarsening, then: e\Delta = Ps(e\Delta )
8: Correct using ideal interpolation: u = u+P(e\Delta )
9: end procedure

m/(m - 1)).

2.2. Discretization. We consider the numerical solution of (1) on a finite spa-
tial interval [a, b] and assume periodic boundary conditions in all that follows to ensure
a nonconstant solution on the majority of [a, b] for all times. The methods considered
are essentially unchanged when Dirichlet boundary conditions are used, and numeri-
cal results for Dirichlet conditions are very similar to those reported later for periodic
boundary conditions.

We use the vertex-centered approach to construct spatial grids [22, section III.4]:
a grid is defined by points \{ xj\} N - 1

j=0 and has cells \Omega j = [xj - 1/2, xj+1/2], where xj\pm 1/2 =
1
2 (xj + xj\pm 1); i.e., the vertices (boundaries/cell interfaces) are centered between xj

and xj\pm 1. When performing spatial coarsening, the vertex-centered approach allows
us to use a subset of \{ xj\} N - 1

j=0 to describe the grid on each level: no new reference
points are required. Dividing [a, b] into Nx cells of equal width, the fine-grid points
\{ xj\} are

xj = a+ 1
Nx

(b - a)
\bigl( 
1
2 + j

\bigr) 
, j = 0, 1, . . . , Nx  - 1.

Defining \delta xj =
1
2 (xj+1  - xj - 1), (1) is semidiscretized in space as [22]

(3) \partial tuj +
1

\delta xj

\Bigl( 
f\ast 
j+1/2(t) - f\ast 

j - 1/2(t)
\Bigr) 
= 0,

where f\ast 
j+1/2(t) is chosen as the local Lax--Friedrichs flux approximation:

(4)
f\ast 
j+1/2(t) =

f(uj+1(t), xj+1/2, t) + f(uj(t), xj+1/2, t)

2

 - 1

2

| \partial uf(uj+1(t), xj+1/2, t)| + | \partial uf(uj(t), xj+1/2, t)| 
2

(uj+1(t) - uj(t)).

For variable coefficient linear advection, this reduces to

(5) f\ast 
j+1/2(t) =

1
2

\bigl[ 
a(xj+1/2, t) (uj+1(t) + uj(t)) - | a(xj+1/2, t)| (uj+1(t) - uj(t))

\bigr] 
,

and for Burgers' equation to

(6) f\ast 
j+1/2(t) =

1
4

\bigl[ 
(uj+1(t))

2 + (uj(t))
2  - (| uj+1(t)| + | uj(t)| ) (uj+1(t) - uj(t))

\bigr] 
.

This conservative discretization was chosen to make our approach applicable to non-
linear conservation laws \partial tu+\partial xf(u) = 0, where (4) guarantees correct shock speeds.
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In this paper we consider the forward and backward Euler time discretizations, which
result in the fully discrete equations (space index j, time index i)

(7)

\Bigl( 
aij - 1/2 +

\bigm| \bigm| \bigm| aij - 1/2

\bigm| \bigm| \bigm| \Bigr) \delta t

2\delta xj
ui
j - 1  - 

\Bigl( 
aij+1/2  - 

\bigm| \bigm| \bigm| aij+1/2

\bigm| \bigm| \bigm| \Bigr) \delta t

2\delta xj
ui
j+1

+

\biggl[ 
1 - 

\Bigl( 
aij+1/2  - aij - 1/2 +

\bigm| \bigm| \bigm| aij+1/2

\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| aij - 1/2

\bigm| \bigm| \bigm| \Bigr) \delta t

2\delta xj

\biggr] 
ui
j = ui+1

j

and

(8)

 - 
\Bigl( 
ai+1
j - 1/2 +

\bigm| \bigm| \bigm| ai+1
j - 1/2

\bigm| \bigm| \bigm| \Bigr) \delta t

2\delta xj
ui+1
j - 1 +

\Bigl( 
ai+1
j+1/2  - 

\bigm| \bigm| \bigm| ai+1
j+1/2

\bigm| \bigm| \bigm| \Bigr) \delta t

2\delta xj
ui+1
j+1

+

\biggl[ 
1 +

\Bigl( 
ai+1
j+1/2  - ai+1

j - 1/2 +
\bigm| \bigm| \bigm| ai+1

j+1/2

\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| ai+1
j - 1/2

\bigm| \bigm| \bigm| \Bigr) \delta t

2\delta xj

\biggr] 
ui+1
j = ui

j

for linear advection, and the fully discrete equations

(9)

\bigl( 
ui
j - 1 +

\bigm| \bigm| ui
j

\bigm| \bigm| + \bigm| \bigm| ui
j - 1

\bigm| \bigm| \bigr) \delta t

4\delta xj
ui
j - 1  - 

\bigl( 
ui
j+1  - 

\bigm| \bigm| ui
j+1

\bigm| \bigm|  - \bigm| \bigm| ui
j

\bigm| \bigm| \bigr) \delta t

4\delta xj
ui
j+1

+

\biggl[ 
1 - 

\bigl( \bigm| \bigm| ui
j+1

\bigm| \bigm| + 2
\bigm| \bigm| ui

j

\bigm| \bigm| + \bigm| \bigm| ui
j - 1

\bigm| \bigm| \bigr) \delta t

4\delta xj

\biggr] 
ui
j = ui+1

j

and

(10)

 - 
\bigl( 
ui+1
j - 1 +

\bigm| \bigm| ui+1
j

\bigm| \bigm| + \bigm| \bigm| ui+1
j - 1

\bigm| \bigm| \bigr) \delta t

4\delta xj
ui+1
j - 1 +

\bigl( 
ui+1
j+1  - 

\bigm| \bigm| ui+1
j+1

\bigm| \bigm|  - \bigm| \bigm| ui+1
j

\bigm| \bigm| \bigr) \delta t

4\delta xj
ui+1
j+1

+

\biggl[ 
1 +

\bigl( \bigm| \bigm| ui+1
j+1

\bigm| \bigm| + 2
\bigm| \bigm| ui+1

j

\bigm| \bigm| + \bigm| \bigm| ui+1
j - 1

\bigm| \bigm| \bigr) \delta t

4\delta xj

\biggr] 
ui+1
j = ui

j

for Burgers' equation.
We note that these first-order schemes exhibit significant numerical diffusion,

which may contribute to the efficient convergence of MGRIT, based on the strong
performance of MGRIT for diffusive parabolic problems [13].

2.3. Coarse-grid time steppers. For temporal coarsening, the coarse-grid
time stepper \Phi ic,\Delta T is obtained by using \Delta T in place of \delta t in (7)--(10). For spa-
tial coarsening we handle the explicit and implicit cases in different ways. For explicit
time-stepping we simply use (7)/(9) on the coarse spatial grid, but for implicit time-
stepping we use a Galerkin definition involving \Phi ic,\Delta T . Galerkin-type discretizations
lead to optimal results in the A-norm for symmetric positive definite (SPD) prob-
lems [5], and they have also been used for nonsymmetric matrices, for example, in
[30]. We use a Galerkin approach in this paper for implicit time-stepping, because we
find it leads to better results than rediscretization. To describe this method, we first
note that the MGRIT matrix equation described in (2) typically corresponds to cases
where \Phi is a sparse matrix, such as that defined by (7)/(9). If \Phi is the inverse of a
sparse matrix, we may instead write  - I on the first block subdiagonal and \Phi  - 1

i,\delta t on

the block main diagonal. In this case, applying \Phi i,\delta t is a linear solve and \Phi  - 1
i,\delta t is the

matrix defined by (8)/(10).
Working with the sparse \Phi  - 1 MGRIT matrix in the implicit case and assuming

spatial restriction Rs,i and prolongation Ps,i correspond to time ti, we write the
coarse-grid block equation as

 - Rs,iPs,i - 1uc,i - 1 +Rs,i\Phi 
 - 1
i,\Delta TPs,iuc,i = Rs,igi,
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and thus we compute

(11) uc,i =
\Bigl( 
Rs,i\Phi 

 - 1
i,\Delta TPs,i

\Bigr)  - 1

[Rs,iPs,i - 1uc,i - 1 +Rs,igi] .

For linear advection the matrix Rs,i\Phi 
 - 1
i,\Delta TPs,i is computed as the product of the three

sparse matrices Rs,i, \Phi 
 - 1
i,\Delta T , and Ps,i, which is then factored and stored for future

use. In the nonlinear case we first prolong the coarse-grid vector to the previous
intermediate grid (coarse-in-time, fine-in-space), evaluate and compute the Jacobian
for \Phi  - 1

i,\Delta T (Ps,iuc,i) - Ps,i - 1uc,i - 1  - gi = 0, then restrict both and solve the resulting
coarse-grid linear system. Compared to rediscretization we find this definition results
in cheaper overall algorithms in the linear case, both in terms of iterations required
and overall time to solution, and comparable results in the nonlinear case.

We do not consider defining an explicit time-stepping coarse-grid operator in this
way for two reasons. First, it would result in a stricter stability condition when
compared to the rediscretized coarse-grid operator. Second, compared to the implicit
case, where this definition adds a matrix-vector product to the computational cost of
the iteration, in the explicit case the Galerkin definition adds a linear system solve
(computing the product as above for the explicit formulation results in a matrix
Rs,iPs,i multiplying ui that will need to be inverted), which is not as parallelizable
as the initial matrix-vector product required, becoming a significant bottleneck as
spatial parallelism is added.

3. Adaptive spatial coarsening. The main contribution of this paper is a set
of algorithms used to implement adaptive spatial coarsening such that local wave
speeds near zero do not cause extremely slow MGRIT convergence. The wave speed
for a hyperbolic PDE is the derivative of the flux function: \lambda (u, x, t) := \partial uf(u, x, t),
the characteristic speed with which small-amplitude perturbations propagate. For
linear advection we have \lambda (u, x, t) = a(x, t), and for the inviscid Burgers equation
\lambda (u, x, t) = u.

In section 3.1, we provide some motivating examples which illustrate why adaptive
spatial coarsening is necessary in certain cases. In section 3.2, we propose a criterion
for determining whether spatial coarsening should occur, and provide some examples
of the meshes generated by following it. In section 3.3, we describe the cell selection
strategies used with explicit and implicit time-stepping, and in section 3.4, we outline
a method for moving vectors representing solutions or residuals between grids, which
is required for restriction, prolongation, and time-stepping on spatial grids which vary
in time.

3.1. Motivating examples. To illustrate the need for adaptive coarsening we
solve the linear advection equation for (x, t) \in [ - 2, 2]\times [0, 4] using explicit and implicit
schemes with MGRIT, using FCF-relaxation, factor-two temporal coarsening, and
either no spatial coarsening (No SC) or uniform factor-two spatial coarsening (SC-
2), which employs full weighting restriction and linear interpolation. The stopping
condition is based on the size of the \ell 2 norm of the residual vector, which uses a
halting tolerance of 10 - 10 scaled by the domain size: tol = (2.5\times 10 - 11)

\surd 
NtNx.

We impose the initial condition u0(x) = sin(0.5\pi x) and consider the constant
wave speeds

A1. a(x, t) = 1.0 and
A2. a(x, t) = 0.1,

for which (7) and (8) reduce to simple upwinding. Iteration counts for these tests are
presented in Table 1. The table compares MGRIT without spatial coarsening (No SC)
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Table 1
Linear advection results (number of iterations required for convergence) for Cases A1 and

A2. No SC: no spatial coarsening; SC-2: factor-two uniform spatial coarsening. Asterisks denote
tests which failed to converge due to instability (Explicit - No SC) or exceeded 100 iterations due
to poor MG convergence. The boxes in the ``Explicit"" column indicate runs where instability is
expected (since explicit methods require spatial coarsening for stability). The box in the bottom block
row indicates runs where uniform spatial coarsening leads to a severe growth in iteration numbers
(compared to the a = 1 case), since adaptive spatial coarsening is required when the advection speed
a is small.

Implicit Explicit

Nx \times Nt 27 \times 27 29 \times 29 211 \times 211 27 \times 28 29 \times 210 211 \times 212

a = 1.0

No SC
2-level 14 15 15 50 100* 100*

F-cycle 14 17 22 100* 100* 100*

SC-2
2-level 15 15 16 30 31 31

F-cycle 15 20 28 34 41 54

a = 0.1

No SC
2-level 8 8 8 7 7 7

F-cycle 8 9 10 8 34 100*

SC-2
2-level 64 92 92 100* 100* 100*

F-cycle 64 94 95 100* 100* 100*

with MGRIT using uniform spatial coarsening with a coarsening factor of 2 (SC-2),
for implicit and explicit time integration.

We first observe that, with No SC, the 2-level and F-cycle variants of MGRIT
converge in a modest number of iterations, except in the explicit case (boxes in the
right column of the table), where propagation on coarse levels is unstable unless spatial
coarsening is employed (or unless the fine-level Courant number \lambda \delta t/\delta x is very small).
With the grids employed in the table, for case a = 1.0 the Courant number for No SC
is 2\ell  - 1 on level \ell , where \ell = 0 is the finest grid, indicating that explicit time-stepping
will be unstable on all coarse levels. For case a = 0.1, the Courant number for No SC
is 0.05(2\ell ); hence time-stepping is stable on the first four coarse grids. Thus, while
the F-cycles with No SC become worse as the problem size grows, the 2-level method
still works well.

Next, the table shows that the instabilities that plague explicit time integration
without spatial coarsening are remedied by considering spatial coarsening.

Uniform spatial coarsening by a factor of 2 (SC-2) works well for a = 1.0. For the
explicit case, it removes the instability, and for the implicit case, it results in cheaper
cycles without increasing the iteration counts too much. Further examples in section
4 will show that this may lead to speedup for the implicit case.

However, the situation is different for the case a = 0.1. Here, uniform spatial
coarsening by a factor of 2 (SC-2) removes the instability for the explicit case, since
the Courant number for SC-2 remains fixed at 0.05; hence time-stepping is certainly
stable on all levels. However, for both implicit and explicit time integration, the
number of multigrid iterations required for convergence is very high due to the weak
spatial connections in (7) and (8) caused by the small wave speed. The fundamental
reason for this convergence degradation can be illustrated easily, for example, for the
case of linear advection with constant wave speed a > 0 and forward Euler time
discretization, in which case method (7) reduces to

ui+1
j +

\biggl( 
a\delta t

\delta x
 - 1

\biggr) 
ui
j  - 

a\delta t

\delta x
ui
j - 1 = 0.

When a\delta t/\delta x = \epsilon \ll 1, the connection in the temporal direction is of size O(1),
whereas the connection in the spatial direction is O(\epsilon ). This means that relaxation can
be effective in removing high-frequency error in the temporal direction, but not in the
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spatial direction. Also, when spatial coarsening is employed, the coarse-grid correction
cannot correct the high-frequency error that remains in the spatial direction after
relaxation, since the coarsened spatial grid cannot represent high-frequency spatial
error. As a consequence, the high-frequency spatial error cannot be removed either
by relaxation or by coarse-grid correction, and multigrid convergence stalls. This is
analogous to the case of multigrid using Gauss--Seidel or weighted Jacobi applied to
strongly anisotropic elliptic problems [5].

We observe similar behavior when solving the inviscid Burgers equation via MGRIT,
though in this case the convergence of MGRIT with spatial coarsening depends on
the choice of initial condition. If u0(x) is bounded sufficiently far away from zero, we
observe results for SC-2 similar to those for case A1, and if u0(x) is sufficiently close
or equal to zero on part of the domain, we observe convergence issues for MGRIT
with spatial coarsening similar to those in case A2.

Our goal is to develop MGRIT methods that employ spatial coarsening to make
explicit time integration stable for explicit methods, and to make implicit cycles com-
putationally less expensive. The motivating results in Table 1 indicate that uniform
spatial coarsening does not lead to an efficient MGRIT method when wave speeds are
small. For this reason, we develop an adaptive spatial coarsening strategy in the next
subsections.

3.2. Adaptive coarsening criteria. The one-dimensional (1D) factor-two re-
striction strategy for a periodic domain is illustrated for four levels and sixteen cells
in Figure 3. The numerical labels on each level serve as global cell indices, recording
which fine-grid reference points are used on coarser levels. Rather than aggregating
pairs of adjacent cells when moving from level \ell to \ell + 1, we instead remove every
second cell, with remaining cells expanding to cover the removed cells' portion of the
domain.

` = 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1515 0

` = 1
0 2 4 6 8 10 12 14 0

` = 2
0 4 8 12 0

` = 3
0 8 0

Fig. 3. Factor-two coarsening in one dimension with periodic boundary conditions (BCs). The
)( symbols represent cell boundaries.

Considering the discretizations (7)--(10) and the results of the previous section, we
see that a wave speed \lambda (u, x, t) near zero can result in weak couplings in the spatial
direction, meaning high-frequency errors are not reduced effectively by relaxation.
Thus, the error after relaxation cannot be represented properly on coarse spatial grids,
drastically reducing the efficiency of a multigrid iteration. Thus, if the wave speed
within cell \Omega j is relatively small, we wish to retain \Omega j for the next level, as coarsening
in this region will not benefit the solution process. Experiments (not included here)
suggest that it is unnecessary to fix the width of \Omega j ; it is sufficient to ensure \Omega j is
not removed. To determine if \Omega j is to be kept, we propose the following condition:

(12) If min
x\in \Omega j

| \lambda (u, x, t)| \delta t
\delta xj

< tol\ast : keep \Omega j ; else: coarsen normally.
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Since \lambda (u, x, t)\delta t/\delta xj appears in the coefficients of (7)--(10), this is an appropriate
measure to identify small matrix elements that indicate weak coupling and may lead
to degraded multigrid performance if spatial coarsening is used. This approach has
similarities to algebraic multigrid [27], where coarsening is operator dependent, based
on the strength of different nodal connections. To implement this in XBraid, we create
a grid\.info structure that contains

1. int *fidx: array of global cell indices,
2. double *xref: array of cell reference points xj .

The values in fidx are global cell indices: for example, level 2 in Figure 4 contains
six cells, which have local indices \{ 0, . . . , 5\} and global indices \{ 0, 3, 4, 8, 9, 12\} . An
array of grid\.info structures serves as a grid hierarchy for a given time point ti.
Descriptions of the cell selection strategies employed for implicit and explicit time-
stepping are described in the following subsections.

` = 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1515 0

` = 1
0 2 3 4 6 8 9 10 12 14 0

` = 2
0 3 4 8 9 12 0

` = 3
0 3 8 9 0

Fig. 4. Adaptive coarsening in one dimension with periodic BCs.

An example of this coarsening process is shown in Figure 4 for the same fine grid
as in Figure 3 at a fixed time point, where (12) happened to be satisfied on all levels in
cells 3 and 9. The labeled reference points are used to compute cell boundaries as per
the definition of vertex-centered grids. It is worth noting that this strategy is easily
adapted to nonperiodic spatial domains by ensuring that the final cell is retained on
all levels. An easy way of doing so is to take Nx = 2k + 1 for some k \in \BbbN , which
ensures that the final cell is always part of the uniformly coarsened grid, and hence
will also always be part of the adaptively coarsened grid.

In Figures 5--7 we show adaptive grid hierarchies generated by three rounds of
coarsening, starting from a fine 64 \times 64 space-time grid. In all three cases the black
vertices indicate reference points for cells only present on level 0, red dots indicate
reference points for cells present on levels 0 through 1, blue dots indicate cells present
on levels 0 through 2, and green dots indicate cells present on levels 0 through 3. It
will be shown in section 4 that these grids lead to good MGRIT convergence, and
thus adaptive coarsening solves the problem of small local wave speeds.

The first two grids are based on solving the linear advection equation with implicit
time-stepping over [ - 2, 2] \times [0, 4] for a(x, t) =  - sin2(\pi (x  - t)) and a(x, t) = 1

2 (1  - 
sin(2\pi t)) sin(\pi x), respectively (these are cases A4 and A5 defined in section 4.1).
Due to the periodicity of a(x, t) the grid in each quadrant is identical, so we may
restrict our discussion to the bottom-right quadrant of each grid, corresponding to
(x, t) \in [0, 2]\times [0, 2]. In Figure 5 we see that adaptation results in additional cells being
kept along the lines t = x+ b for b \in \BbbZ , corresponding to the solution of a(x, t) = 0.
Similarly, in Figure 6 we see adaptivity keeping cells along vertical lines defined by
integer values of x and horizontal lines defined by multiples of 0.4 for t. Further, we
see that by coarsening in time we can eliminate the lines near t = 0.4 and t = 1.6
where no coarsening has taken place, resulting in cheaper coarse-grid problems with
no significant deterioration in the convergence of MGRIT.
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Fig. 5. Linear advection, a(x, t) =  - sin2(\pi (x  - t)) (Case A4): space-time meshes obtained
from adaptive spatial coarsening over four levels, starting with Nx = Nt = 64. The color map
indicates the value of a(x, t). Temporal coarsening in MGRIT proceeds in a uniform way, but
spatial coarsening is inhibited where | a| is small.

The grid in Figure 7 is based on the solution of Burgers' equation over the domain
(x, t) \in [ - 4, 4]\times [0, 8] with the initial condition

B1. u0(x) = 0.25 - sin(\pi x/16).
Due to the initial lack of periodicity in the local wave speed (which is the solution
u(x, t), pictured in Figure 8) we show the grid for the entire domain. Once more we
see that adaptivity results in more grid cells being retained in regions where the wave
speed is near zero, and the location and size of these regions change in response to
the evolution of the solution.

3.3. Cell selection strategies. The following algorithms are intended as proof
of concept for first-order time-stepping routines applied to the linear advection equa-
tion and Burgers' equation: further modifications may be required to handle other
equations or time-stepping routines. For linear PDEs such as variable coefficient linear
advection, the adaptive grid hierarchies generated will not change between MGRIT
iterations, so the grids and associated transfer operators need only be computed once
and then stored for reuse. In contrast, for nonlinear PDEs such as Burgers' equation
the grids can change as the solution approximation is refined, and hence the adaptive
grid hierarchy and the transfer operators will need to be recomputed until a certain
MGRIT residual tolerance is reached.

3.3.1. Implicit time-stepping. In our adaptive coarsening strategy we begin
with the grid hierarchy generated by uniform factor-two coarsening, meaning that
on level \ell all cells with global indices that are multiples of 2\ell are retained. For



PARALLEL-IN-TIME WITH ADAPTIVE SPATIAL COARSENING A549

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6. Linear advection, a(x, t) =  - sin(2.5\pi t) sin(\pi x) (Case A5): space-time meshes obtained
from adaptive spatial coarsening over four levels, starting with Nx = Nt = 64. The color map
indicates the value of a(x, t). Temporal coarsening in MGRIT proceeds in a uniform way, but
spatial coarsening is inhibited where | a| is small.

implicit time-stepping we then use condition (12) to identify other cells which should
be retained due to small local Courant numbers. Note that, for implicit time-stepping,
we do not need to worry about violating a stability constraint when retaining spatial
cells while increasing \delta t. Thus when restricting from level \ell to \ell + 1, we keep \Omega \ell 

j if

(i) fidx[j] mod 2\ell = 0 or
(ii) (12) holds.

For implicit time-stepping we specify the tolerance in the second condition to be
tol\ast = 0.25. This cell selection strategy is local in scope, so it can be used in both
serial and parallel implementations.

3.3.2. Explicit time-stepping---Linear advection. To use explicit time-step-
ping when solving the linear advection equation we must ensure | a(x, t)| \delta t/\delta xj < 1
for numerical stability, which necessitates computing the local Courant number for all
cells not part of the uniform coarsening grid hierarchy on each level. We need to find
the right balance between removing cells as required for stability, and keeping cells
to maintain good multigrid convergence corresponding to (12). If we consider each
cell independently, we may inadvertently end up deleting more cells than necessary
for stability, leading to poorer MGRIT convergence. Instead, we collectively consider
all cells between each subsequent pair of cells that belong to the uniform grid on the
current level and decide which of these nonuniform grid cells must be removed for
stability and which should be kept for better convergence.
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Fig. 7. Burgers' equation, u0(x) = 0.25 - 0.75 sin(\pi x/16) (Case B1): space-time mesh obtained
from adaptive spatial coarsening over four levels, starting with Nx = Nt = 64. The color map
indicates the value of u(x, t). Temporal coarsening in MGRIT proceeds in a uniform way, but
spatial coarsening is inhibited where | a| is small.

If there is only one cell between two uniform grid cells, we compute

test - =
| a(xj - 1/2, t)| \delta t

\delta xj - 1/2
and test+ =

| a(xj+1/2, t)| \delta t
\delta xj+1/2

and keep the cell if doing so is beneficial for convergence and is not detrimental for
stability:

min(test - , test+) < tol\ast and max(test - , test+) < max\ast ,

where we use max\ast = 0.95 to be strictly less than the CFL limit of 1 and set tol\ast to
be 0.25 if \ell = 0, 0.4 if \ell = 1, and 0.49 for \ell \geq 2. The values for tol\ast were tuned by
repeated experimentation and are based on the observation that we can afford, from
a computational cost perspective, to keep more spatial cells on coarser grids; hence
we can raise the value below which we require a cell to be kept. Otherwise, for each
of the cell interfaces we compute

test[j] =
| a(xj+1/2, t)| \delta t

\delta xj+1/2

and based on the value of test[j] the interface is labeled as K (keep), N (neutral), or
D (delete). Specifically, if test[j] < tol\ast , we label this as K, if test[j] < max\ast , we label
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this as N, and otherwise we label it as D. If the sequence of labels matches a case
below, we take the corresponding action.

(i) X--D--D--\cdot \cdot \cdot --D--X: delete every second cell between D-interfaces (X = K or
N).

(ii) N--D--N: delete both cells.
(iii) K--D--N: delete the right cell.
(iv) N--D--K: delete the left cell.
(v) K--D--K: further consideration is required.

In the last case we compute

test - =
| a(0.5(xj+1 + xj - 1), t)| \delta t

\delta xj
and test+ =

| a(0.5(xj + xj+2), t)| \delta t
\delta xj+1

which are the coarse-grid local Courant numbers which would result from deleting
the left or right cells, respectively. We then perform a sequence of comparisons which
is designed to remove both cells if the predicted coarse-grid values are both greater
than max\ast , delete the opposite cell if only one of the test values is greater than max\ast ,
and otherwise keep the cell with the largest Courant value to maintain good MGRIT
convergence.

(i) if min(test - , test+) > max\ast 
Delete both cells,

(ii) else if test - > max\ast 
Delete right cell,

(iii) else if test+ > max\ast 
Delete left cell,

(iv) else if min(test - , test+) > tol\ast and test - > test+
Delete right cell,

(v) else if min(test - , test+) > tol\ast and test - \leq test+
Delete left cell,

(vi) else if test - > tol\ast and test+ < tol\ast 
Delete right cell,

(vii) else if test - < tol\ast and test+ > tol\ast 
Delete left cell,

(viii) else if max(test - , test+) < tol\ast and test - > test+
Delete right cell,

(ix) else if max(test - , test+) < tol\ast and test - \leq test+
Delete left cell.

This process is repeated until no D-labeled interfaces remain. If there are multiple
adjacent N-interfaces, we next delete every second cell defined by these interfaces. At
the end of this process we are left with the cells that are to be kept to ensure effective
MGRIT coarse-grid corrections while maintaining stability.

To adapt this process to allow spatial parallelism we only have to make adjust-
ments to account for how the grid is partitioned over the set of processors. If the
first (respectively, last) cell on a given processor is not part of the uniform coarsening
grid, then we assume that the final cell on the previous processor (respectively, first
cell on the next processor) belongs to the uniform coarsening grid, and perform the
previously described sequence of tests.

3.3.3. Explicit time-stepping---Burgers' equation. For Burgers' equation
we use a more stringent version of the strategy for linear advection because of the
greater likelihood of stability-related issues arising in the nonlinear case. As before we
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keep all cells which are part of the uniform grid, and make use of (12) to determine
which of the remaining cells will be retained to improve convergence.

If there is only one cell between two uniform grid cells, we compute

test - =
max(| uj - 1| , | uj | )\delta t

\delta xj - 1/2
and test+ =

max(| uj | , | uj+1| )\delta t
\delta xj+1/2

and keep the cell if
max(test - , test+) < tol\ast ,

where we set tol\ast to be 0.25 if \ell = 0, 0.35 if \ell = 1, and 0.45 for \ell \geq 2. Otherwise, for
each of the cell interfaces we compute

test[j] =
| uj | \delta t
\delta xj+1/2

,

and if test[ j ] < tol\ast we label this as K, otherwise labeling it as D. If there are multiple
adjacent D-interfaces we delete every second cell that they define, and for isolated D-
interfaces we compute

test+ =
| uj+1| \delta t
\delta xj+1

and test - =
| uj | \delta t
\delta xj

and perform the following sequence of tests.
(i) if min(test - , test+) > tol\ast 

Delete both cells,
(ii) else if test - > tol\ast and test+ < tol\ast 

Delete right cell,
(iii) else if test - < tol\ast and test+ > tol\ast 

Delete left cell,
(iv) else if max(test - , test+) < tol\ast and test - > test+

Delete right cell,
(v) else if max(test - , test+) < tol\ast and test - \leq test+

Delete left cell.
This process is repeated until no D-labeled interfaces remain, at which point the
remaining cells are those to be kept to ensure effective MGRIT coarse-grid corrections.

3.4. Movement between grids. In addition to restriction and prolongation of
solutions between levels, we also need to transfer solution approximations between
time points on a fixed level. For adaptive grid refinement, the grid on a given level
may vary with time. This means that a representation of ui must be computed on
the spatial grid for time ti+1 before ui+1 can be computed by time marching.

To map an arbitrary vector v from grid A to grid B we use the following strategy.
For each cell \Omega B

j on grid B, we first identify the cells on grid A that contain its left

boundary (\Omega A
\alpha ) and right boundary (\Omega A

\omega ). We compute the cell average vBj on \Omega B
j as

a weighted average of the cell values from \alpha to \omega , scaled by the width of \Omega B
j :

vBj =
1

| \Omega B
j | 

\omega \sum 
k=\alpha 

| \Omega B
j \cap \Omega A

k | vAk .

For periodic boundary conditions, the first cell on both source and target grids may
appear as a pair of disconnected intervals: one at the start and one at the end of the
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domain. To simplify this case, we treat the disconnected portions as separate cells
before merging their results.

For factor-two coarsening, this reduces to full weighting restriction and linear
interpolation prolongation, which were our initial choices; and if no spatial coarsening
is carried out this reduces to v\ell +1

j = v\ell j . In all cases this approach is conservative.

4. Serial numerical results. Numerical results within this section were gener-
ated using the XBraid parallel-in-time software package [2], and the CHOLMOD [8]
and UMFPACK [11] packages from SuiteSparse for sparse matrix multiplication and
factorization, respectively.

Table 2
Linear advection: implicit and explicit time-stepping results for cases A3, A4, and A5. No SC:

no spatial coarsening; SC-2: factor-two uniform spatial coarsening, SC-A: adaptive spatial coars-
ening. Asterisks denote tests which exceeded 100 iterations due to poor MG convergence. Explicit
results for No SC are not shown since these simulations are unstable on coarse levels. For case A3,
adaptive spatial coarsening (SC-A) cures the MG convergence problems that uniform spatial coars-
ening (SC-2) experiences due to small wavespeeds; see also Table 1. (This occurs similarly for cases
A4 and A5, where the SC-2 results are not shown to save space.) Run-times in seconds are indi-
cated in brackets for the largest problem sizes where relevant. For the implicit F-cycle runs, the bold
run-times show that adaptive spatial coarsening (SC-A) has the potential to speed up implicit multi-
level MGRIT runs without spatial coarsening (No SC). For explicit MGRIT runs, spatial coarsening
is required for stability, and speedup with respect to sequential time-stepping will be demonstrated
in section 5. Section 5 will also demonstrate speedup with respect to sequential time-stepping for
implicit MGRIT runs.

Implicit Explicit

Problem Nx \times Nt 27 \times 27 29 \times 29 211 \times 211 27 \times 28 29 \times 210 211 \times 212

A3

No SC
2-level 12 14 14 (8.2) --- --- ---

F-cycle 12 16 20 (56.1) --- --- ---

SC-2
2-level 64 83 85 (46.3) 100* 100* 100*

F-cycle 64 85 87 (95.9) 100* 100* 100*

SC-A
2-level 26 28 29 (16.5) 30 31 32 (17.3)

F-cycle 27 28 30 (37.5) 32 35 37 (50.7)

A4

No SC
2-level 12 13 13 (15.1) --- --- ---

F-cycle 12 15 18 (60.9) --- --- ---

SC-A
2-level 16 17 22 (20.2) 21 27 30 (21.0)

F-cycle 16 20 28 (51.6) 21 28 33 (67.1)

A5

No SC
2-level 13 12 13 (15.0) --- --- ---

F-cycle 13 14 17 (51.0) --- --- ---

SC-A
2-level 19 20 26 (23.0) 26 27 30 (19.0)

F-cycle 20 22 28 (49.7) 27 28 31 (59.4)

4.1. Linear advection. We first revisit the linear advection equation with ini-
tial condition u0(x) = sin(0.5\pi x) solved over [ - 2, 2]\times [0, 4] and consider three different
variable wave speeds:

A3. a(x) =  - (0.1 + 0.9 cos2(0.25\pi (x+ 2))) (a varies in space only),
A4. a(x, t) =  - sin2(\pi (x - t)), and
A5. a(x, t) =  - sin(2.5\pi t) sin(\pi x).

We refer to these as cases A3, A4, and A5, respectively, and note cases A4 and A5
were previously used to produce the example grids in Figures 5 and 6. For each of
these cases, the wave speed vanishes at certain locations in the simulation domain,
so we expect that uniform spatial coarsening will not be effective. We solve these
problems using MGRIT with factor-two temporal coarsening and one of (i) no spatial
coarsening, (ii) factor-two spatial coarsening (for case A3 only), or (iii) adaptive spatial
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coarsening. All tests again use a halting tolerance of tol = (2.5\times 10 - 11)
\surd 
NtNx. Table

2 summarizes the results for MGRIT using implicit and explicit time integration.
For each of the cases A3, A4, and A5, explicit results with No SC are not shown

since these simulations are unstable on coarse levels. For case A3, uniform spatial
coarsening (SC-2) results in high iteration counts due to the presence of weak spatial
connections. Adaptive spatial coarsening (SC-A) dramatically improves the iteration
counts over SC-2, enabling efficient MGRIT runs with stable coarse propagation in
the explicit case, and enabling cheaper MGRIT cycles in the implicit case, without
increasing the iteration counts too much. SC-A is superior to SC-2 in the same way
also for cases A4 and A5 (SC-2 results not shown to declutter the table). For cases
A4 and A5, for both types of time integration the additional complexity of having
grid hierarchies that vary in time results in a more costly set-up phase and a greater
per-iteration cost when compared to spatial variation only.

Note that, when comparing the entries of Table 2, we are not concerned with
the increased serial time to solution for F-cycles over 2-level cycles, because F-cycles
parallelize better since they can be executed in parallel on all but the coarsest level,
whereas in 2-level methods the second level needs to be executed sequentially and,
thus, forms a sequential bottleneck. We are instead looking for algorithmic scalability
of the F-cycles in terms of iteration count, which we see for both implicit and explicit
discretizations for all of cases A3, A4, and A5. The run-times (only shown for the
largest grid sizes to reduce clutter in the tables) show that implicit MGRIT with
adaptive spatial coarsening has the potential to speed up F-cycles compared to No
SC. For explicit MGRIT runs, spatial coarsening is required for stability, and parallel
speedup with respect to sequential time-stepping will be demonstrated in section
5. Section 5 will also demonstrate parallel speedup with respect to sequential time-
stepping for implicit MGRIT runs.

The SC-A iterations in Table 2 show a moderate increase as a function of problem
size. The near scalability for both implicit and explicit results is promising for very
large parallel machines, where gains can be expected over sequential time-stepping due
to the vastly increased parallelism in MGRIT. Future work will explore eliminating
the growth in iteration count for SC-A compared to No SC, while maintaining a
similar time per iteration, thus bringing the iteration counts closer to those for No SC
implicit time-stepping. Such a result would yield significant savings for both implicit
and explicit schemes.

Table 3
Results for implicit 2-level MGRIT without spatial coarsening for Nx \times Nt = 213 \times 213 with

varying temporal coarsening factors.

Coarsening factor m

2 4 8 16

Iter 14 25 44 81

Time 346.4 343.6 412.3 588.1

In the parallel results to be presented in section 5, we will compare MGRIT F-
cycles with the 2-level method. To obtain parallel speedup for a 2-level method, it is
crucial that the coarse-level solve is much cheaper than the fine-level solve, because
the fine-level solve is performed in parallel, while the coarse-level solve needs to be
done sequentially and forms a sequential bottleneck. In the setting of our 2-level
method, this means that we should try to increase the coarsening factor as much as
possible to make the coarse solve cheaper, but the results in Table 3 indicate that, for
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our hyperbolic problems, increasing the coarsening factor results in very fast growth
of the number of 2-level iterations required for convergence. This is contrary to the
case of parabolic PDEs, where the coarsening factor can be taken much larger with-
out incurring substantially increased iteration counts [13]. The increasing iteration
count as in Table 3 is a manifestation of the difficulties that have been observed in
obtaining speedup for parallel-in-time methods for hyperbolic PDEs [19, 10, 28]. For
multilevel MGRIT in parallel, on the contrary, small coarsening factors are not a
problem, since all coarse solves (except for the coarsest level) are executed in parallel,
and the coarse solves don't form a sequential bottleneck. This is a major advantage
of MGRIT over 2-level methods: MGRIT can employ very gradual changes between
successively coarsened grids (e.g., a coarsening factor of 2) because the solves on all
levels are parallel, and this tends to result in much lower iteration counts than for
2-level methods with sufficiently large coarsening factors to reduce the sequential bot-
tleneck. In this way, while a multilevel MGRIT iteration is more expensive than a
2-level iteration, multilevel MGRIT can be an efficient parallel method that com-
bines low iteration counts with full parallel scalability, due to the absence of a level-2
sequential bottleneck. This will be demonstrated in the parallel results of section 5.

Guided by the results in Table 3, we will in our parallel 2-level results in section
5 use a coarsening factor of m = 4, which results in a cheaper coarse-grid solver than
for m = 2, while still maintaining a relatively small number of iterations, resulting in
the best run-time in Table 3. For MGRIT F-cycles we will retain a coarsening factor
of m = 2, which gives the lowest MGRIT iteration count.

4.2. Burgers' equation. We solve Burgers' equation for case B1 (defined in
section 3.2) on the spatial domain [ - 4, 4]. As u\prime 

0(x) < 0 at some point in the domain,
the wave will break and a shock will occur. The time at which characteristics cross
and a shock forms is called the breaking time, Tb, and for the inviscid Burgers equation
this time is given exactly as [24]

Tb =  - 1

min(u\prime 
0(x))

.

For this particular example we see that the breaking time is Tb = 16/\pi \approx 5.09, which
matches the solution for the problem illustrated in Figure 8. Based on this observation
we solve this problem on both [ - 4, 4]\times [0, 4] and [ - 4, 4]\times [0, 8] to consider solutions
with and without shock. Test results for the half- and full-domain problems are
recorded in Table 4.

For MGRIT using implicit time-stepping the adaptive coarsening method fails to
outperform no spatial coarsening in the short domain results due to approximately
doubling the iterations required for convergence. Better performance for large grid
sizes is observed in the long domain results, due to a relative increase in the no
spatial coarsening iteration count and a better time per iteration for the adaptive
results (only 46\% of the no spatial coarsening time per iteration for the largest test,
compared to 59\% in the short domain case). Furthermore, the current implementation
of the Galerkin definition requires a return to the previous fine grid for each iteration,
resulting in an increased time per iteration for adaptive spatial coarsening. This is
generally an issue in FAS-style algorithms, which we intend to be a focus of future
research.

For explicit time-stepping we first note that the results for both the half- and
full-domain tests are very similar, with the main difference being that those in the
right half of Table 4 correspond to using twice as many time steps as those in the
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Fig. 8. Burgers' equation, case B1: numerical solution on [ - 4, 4]\times [0, 8].

Table 4
Burgers' equation results (iteration counts, and run-times in seconds for the largest grid sizes).

No SC: no spatial coarsening; SC-D: adaptive spatial coarsening with rediscretized coarse-grid op-
erator; SC-G: adaptive spatial coarsening with Galerkin coarse-grid operator.

Without shock: t \in [0, 4] With shock: t \in [0, 8]

Nx \times Nt 27 \times 27 29 \times 29 211 \times 211 27 \times 27 29 \times 29 211 \times 211

Implicit

Max CFL \approx 0.96

No SC
2-level 10 11 11 (296.2) 12 13 14 (444.0)

F-cycle 11 12 16 (1496) 12 15 20 (2846)

SC-G
2-level 25 28 29 (733.5) 26 28 29 (906.0)

F-cycle 26 28 31 (1714) 26 28 30 (1961)

Nx \times Nt 27 \times 27 29 \times 29 211 \times 211 27 \times 28 29 \times 210 211 \times 212

Explicit

Max CFL \approx 0.48
SC-D

2-level 29 32 32 (19.4) 31 33 33 (36.9)

F-cycle 30 36 42 (60.6) 32 37 49 (143.0)

Nx \times Nt 27 \times 28 29 \times 210 211 \times 212 27 \times 29 29 \times 211 211 \times 213

Explicit

Max CFL \approx 0.24
SC-D

2-level 19 21 22 (28.4) 20 22 22 (52.8)

F-cycle 19 21 27 (97.3) 20 21 31 (217.5)

left half of Table 4 (to maintain the same fine-grid \Delta t in both cases), which results
in times that are approximately doubled. Much like in the case of linear advection,
spatial coarsening is necessary for stability. Adaptive coarsening also greatly improves
convergence, but, like in the case of linear advection, we observe modest growth
in iteration count with problem size and number of levels in the multigrid cycle.
Yet, these results are significant, as we have a convergent method for the inviscid
Burgers equation with a shock wave, a difficult problem for parallel-in-time methods,
and furthermore the presence of the shock does not lead to convergence degradation
compared to the smooth solution.

The higher per-iteration cost observed for the case of implicit MGRIT F-cycles
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without spatial coarsening over the longer time interval is due to a strong increase
in the number of Newton iterations required for each time step once the shock has
formed (from 2--4 preshock, to 5--20 postshock, with greater numbers required on
coarser levels). On the other hand, no significant increase in Newton iterations is
observed in the spatial coarsening case (3--5 iterations consistent across levels).

5. Parallel scaling results. In this section we present strong and weak parallel
scaling results for MGRIT applied to the variable coefficient linear advection equation
for (x, t) \in [ - 2, 2]\times [0, 4] and u0(x) = sin(0.5\pi x) using a(x, t) =  - sin2(\pi (x - t)) (case
A4). The results for a(x, t) =  - sin(2.5\pi t) sin(\pi x) (case A5) are also similar, and
hence are relegated to Supplementary Material sections SM3 and SM4. Results for
explicit time integration are presented in section 5.1, followed by results for implicit
time integration in section 5.2. We consider different combinations of spatial and
temporal parallelism, with spatial parallelism implemented using the software pack-
age Hypre [1] and temporal parallelism implemented using XBraid [2]. These tests
were implemented on Vulcan, an IBM Blue Gene/Q machine at Lawrence Livermore
National Laboratory consisting of 24,576 nodes, with sixteen 1.6GHz PowerPC A2
cores per node and a 5D Torus interconnect, utilizing up to 217 = 131072 cores across
8192 nodes.

5.1. Explicit time-stepping.

5.1.1. Strong scaling. For strong scaling tests we use a fine space-time mesh
specified by (Nx, Nt) = (2n, 2n+1) for n = 14, 15, or 16. The results for these cases
are presented using figures in the main text, with further details being provided using
tables in the Supplementary Materials. We compare MGRIT F-cycles with factor-two
temporal coarsening, adaptive spatial coarsening (coarsening n - 1 times), and space-
time parallelism to serial time-stepping with spatial parallelism. Forward Euler time-
stepping requires a matrix-vector multiplication, which is easily parallelized using
Hypre. For each problem size we set the minimum number of processors in each
dimension to be (px, pt) = (2a, 2b) for fixed a and b. Processors are allocated to
spatial and temporal dimensions in two ways:
(i) (px, pt) = (2a+k, 2b+k) for k = 0, 1, 2, . . . ,
(ii) (px, pt) = (2a, 2b+k) for k = 0, 1, 2, . . . .

When tabulating results in the supplementary materials we also consider
(iii) (px, pt) = (2a+k, 2b) for k = 0, 1, 2, . . . ,
(iv) (px, pt) = (2k, 2P - k) for k = a, a+ 1, . . . , P  - b,
where in case (iv) the total number of processors is fixed at 2P .

While algorithms for serial time-stepping with only spatial parallelism could be
optimized differently from algorithms for MGRIT, we choose to use the same frame-
work in both cases with the intent of providing fair, representative comparisons that
would remain consistent for more spatial dimensions and increased problem com-
plexity. Specifically, we use Hypre to form and store the sparse matrix used in the
matrix-vector product representing a time step.

Table 5
Best speedup achieved for explicit time-stepping strong scaling tests, (Nx, Nt) = (2n, 2n+1).

(a, b, n)

(2, 3, 14) (3, 4, 15) (4, 5, 16)

(px, pt)
(2a+k, 2b+k) 2.21 2.31 2.06

(2a, 2b+k) 1.97 2.85 4.15
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Fig. 9. Comparison of serial time-stepping with spatial parallelism to MGRIT with FCF-
relaxation and different combinations of space-time parallelism for three different problem sizes on
up to 131072 cores. These results correspond to Tables SM1--SM4 in the Supplementary Materials.
#: (Nx, Nt) = (214, 215), a = 2, b = 3.
\times : (Nx, Nt) = (215, 216), a = 3, b = 4.
\square : (Nx, Nt) = (216, 217), a = 4, b = 5. (Figure in color online.)

In Figure 9 we compare serial time-stepping and MGRIT using FCF-relaxations
for three different problem sizes: (Nx, Nt) = (2n, 2n+1) for n = 14, 15, 16. As the
basis of comparison we use strong scaling results for serial time-stepping with spa-
tial parallelism. The results for the three different fine grids considered are recorded
in Table SM1 of Supplementary Results SM1 and are shown as the black curves in
Figure 9. For smaller amounts of parallelism, doubling the problem size in both
dimensions roughly quadruples the time to solution, and at the limit of effective par-
allelism the time to solution approximately doubles as the problem size is increased.
The results in Figure 9 are similar for each problem size, where we see that, given
enough resources, we are able to improve upon the time-stepping run-times using
MGRIT. For a fixed number of processors, the best use of resources is to use the ma-
jority for temporal parallelism (green curve) rather than have proportional amounts
of temporal and spatial parallelism (red curve). However, when the green curves
begin to flatten out there is still potential for more scalability, as indicated by the
red curves, suggesting spatial parallelism should be increased when temporal paral-
lelism approaches the saturation point. The best speedup observed for the cases of
(px, pt) = (2a+k, 2b+k) (red curve) and (px, pt) = (2a, 2b+k) (green curve) compared to
time-stepping (black curve) is recorded in Table 5. Numerical values corresponding to
these plots are recorded in Tables SM2--SM4 of Supplementary Results section SM1.
These tables illustrate that the iteration count increases modestly with problem size
from 37 to 39 to 44, but we do obtain the largest overall parallel speedup for the
largest problem size.
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5.1.2. Weak scaling. For weak scaling we increase problem size and processor
count while keeping the ratios Nt : pt and Nx : px fixed at 210 : 1 and the space-time
domain fixed at [ - 2, 2]\times [0, 4]. In addition to maintaining the original initial condition
u0(x) = sin(\pi x/2) with fixed frequency as spatial resolution increases, we also consider
initial conditions u0(x) = sin(2\pi \xi x), where \xi is chosen so that the frequency increases
as the spatial grid is refined.

We start with a grid of size (Nx, Nt) = (210, 211) and either double both Nx

and Nt at each step (Table 6) or double Nt while leaving Nx fixed (Table 7); we
cannot increase Nx while leaving Nt fixed due to the CFL condition. If Nx and Nt

are increased simultaneously, while increasing core counts from 2 to 512, and problem
size from 2M to 512M degrees of freedom, we see only a factor-two increase in solution
time, indicating excellent weak parallel scaling of the MGRIT algorithm. If we increase
Nt while Nx remains fixed, we observe decreases in the iteration count and time to
solution due to the increasingly weak couplings in space bringing MGRIT closer to
an exact solver (when a(x, t) = 0 MGRIT with no spatial coarsening converges in one
iteration, and in this case the adaptive coarsening forces all spatial cells to be kept on
all levels). It is interesting to observe that the results for the different initial conditions
are extremely similar, suggesting that the scalability is robust for oscillatory solutions
with frequency increasing as a function of grid resolution (Table 6). The higher-
frequency tests in Table 7, for fixed resolution in space, show that convergence is not
hampered by increasing the frequency.

Table 6
Weak scaling for explicit MGRIT F-cycles with u0(x) = sin(2\pi \xi x) and increasing Nx and Nt.

Original Increased frequency

Trial log2(Nx) log2(Nt) log2(px) log2(pt) \xi Iter Time \xi Iter Time

1 10 11 0 1 1/4 31 170.08 1/4 31 169.28

2 11 12 1 2 1/4 33 220.90 1/2 33 220.62

3 12 13 2 3 1/4 34 232.30 1 34 231.88

4 13 14 3 4 1/4 36 291.86 2 36 291.64

5 14 15 4 5 1/4 37 334.94 4 37 334.82

Table 7
Weak scaling for explicit MGRIT F-cycles with u0(x) = sin(2\pi \xi x) and fixed Nx.

Original Increased frequency

Trial log2(Nx) log2(Nt) log2(px) log2(pt) \xi Iter Time \xi Iter Time

1 10 11 0 1 1/4 31 170.02 1 31 169.41

2 10 12 0 2 1/4 14 100.81 1 14 100.57

3 10 13 0 3 1/4 11 89.37 1 11 89.29

4 10 14 0 4 1/4 9 79.96 1 9 79.92

5 10 15 0 5 1/4 7 69.59 1 7 69.63

6 10 16 0 6 1/4 6 65.25 1 6 65.25

7 10 17 0 7 1/4 5 62.02 1 5 61.98

5.2. Implicit results.

5.2.1. Strong scaling. For implicit time-stepping we use a fine space-time mesh
with equal resolution in both dimensions specified by (Nx, Nt) = (214, 214) and set
the tolerance in our coarsening condition (12) to be tol\ast = 0.25. Serial time-stepping
with spatial parallelism is compared to MGRIT F-cycles with factor-two temporal
coarsening, either no spatial coarsening or adaptive spatial coarsening (coarsening
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n  - 1 times), and space-time parallelism. Backward Euler time-stepping requires
tridiagonal solves which are parallelized by using the Hypre 1D cyclic reduction solver.
Processors are allocated as in section 5.1 for the explicit case, except that we start
with a = b = 2.
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Fig. 10. Comparison of serial time-stepping with spatial parallelism to MGRIT using FCF-
relaxation with or without spatial coarsening for different combinations of space-time parallelism on
up to 65536 cores. These results correspond to Tables SM5--SM7 in the supplementary materials.
Two-level results with coarsening factor 4 are also shown for comparison.

Table 8
Best speedup achieved for implicit time-stepping strong scaling tests, (Nx, Nt) = (214, 214).

No SC SC

(px, pt)
(2k, 2k) 6.77 3.87

(24, 2k) 5.43 5.08

In Figure 10 we compare the results of serial implicit time-stepping to MGRIT
with FCF temporal relaxation and either with or without spatial coarsening. As the
basis of comparison we use strong scaling results for serial time-stepping with spatial
parallelism (black curves), as recorded in Table SM5 of Supplementary Results SM2.
Significant improvements on the serial time-stepping results are possible once enough
temporal parallelism has been introduced. Similar to the explicit case, we see that
for up to 214 processors the best results are obtained by investing the majority into
temporal parallelism, though further scalability is possible if spatial parallelism is
increased as temporal parallelism approaches the saturation point, which would offer
improved results for 212 or more processors. The difference between spatial coarsening
and no spatial coarsening is most pronounced in the cases where px = pt, with the
difference between the SC and no SC curves remaining nearly constant as the processor
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count increases. The best speedup for the No SC and SC cases is recorded in Table
8.

Figure 10 also shows 2-level results with coarsening factor 4. As expected from
the discussion in section 4.1, the 2-level parallel-in-time method scales substantially
less favorably than the multilevel MGRIT method, because the coarse-level solve
needs to be done sequentially and forms a sequential bottleneck. In contrast, the
multilevel MGRIT algorithm is parallel on all coarse levels, and does not have the
level-2 sequential bottleneck. Due to this bottleneck, the scalability of the 2-level
method levels off much sooner than for the multilevel method, and only the version
of the 2-level method that increases parallelism both in space and in time (diamond
curve) manages to eke out a small amount of speedup compared to sequential time-
stepping.

In the supplemental materials Figures SM1 and SM2, we give the parallel effi-
ciency analogue of Figures 9 and 10, where parallel efficiency is measured as T (1)/(P \cdot 
T (P )) \cdot 100, where T (P ) is the wall-clock time required for solution on P processors.
As determining T (1) (for sequential time-stepping without spatial parallelism) is im-
practical for these large problem sizes, we approximate it by assuming near-perfect
strong scaling for the case of spatial parallelism with small processor counts: we
take T (1) \approx T (P ) \cdot 1.9log2(P ), where we use the smallest P for which we have time-
stepping results. We observe similar efficiency cross-over points as in Figures 9 and
10, where, past a certain core count, multilevel MGRIT becomes more efficient than
time-stepping and the 2-level method.

Table 9
Time to solution (s) (and parallel efficiency (\%)) for explicit time-stepping strong scaling tests,

(Nx, Nt) = (216, 217). Times with asterisks are constant extrapolations from the last known value
(see also Figure SM1). Row 1 corresponds to the black curve from Figure 9 (serial time-stepping),
and rows 2 and 3 correspond to the red and green curves (MGRIT), respectively. The MGRIT
efficiency numbers reflect that MGRIT uses highly redundant computations to achieve scalability on
very large core counts.

log2(px \cdot pt)
9 11 13 15 17

(px, pt)

(2k+4, 1) 218 (39.4) 161 (13.3) 162* (3.1) 162* (0.7) 162* (0.2)

(2k+4, 2k+5) 4395 (2.0) 1360 (1.6) 465 (1.2) 178 (0.8) 78 (0.4)

(24, 2k+5) 4395 (2.0) 1148 (1.9) 295 (1.8) 87 (1.5) 39 (0.9)

Selected execution times from Figure 9 and efficiencies from Figure SM1 are
highlighted in Table 9. Since methods like parareal and MGRIT achieve run-time
speedup by employing computations that are highly redundant but are, at the same
time, amenable to parallel execution in a scalable manner, the parallel efficiencies of
these parallel-in-time methods are generally low, reflecting the number of redundant
computations that are needed to obtain an algorithm that can scale well when large
amounts of parallelism are used. Parareal and MGRIT really target strong-scaling
run-time speedups by exploiting parallelism in time, and, as shown in Figures 9 and
10, and in the complementary supplementary figures, Figures SM1 and SM2, the cost
for this speedup is the use of additional resources. Time-stepping methods saturate
and cannot efficiently use these additional resources to further reduce run-times, but
methods like parareal and MGRIT can, by employing redundant computations that
make the methods more scalable in parallel.

The multilevel strong scaling results in Figure 10 are significant because they are
the first to demonstrate parallel speedup over sequential time-stepping for the case
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of MGRIT applied to implicit discretizations of hyperbolic problems (where spatial
coarsening is not required for stability), and they are among the first to demonstrate
speedup in the implicit hyperbolic case for any parallel-in-time method. While our
implicit serial results in Table 2 indicated that adaptive spatial coarsening has the
potential to further speed up implicit MGRIT for hyperbolic PDEs, we do not ob-
serve speedup resulting from spatial coarsening in the parallel results of Figure 10,
compared with MGRIT without spatial coarsening. In Tables SM6 and SM7 of Sup-
plementary Results SM2 we tabulate the results from Figure 10. Comparing the SC
and No SC results, we see that the SC iteration counts are approximately 1.5 times as
large as the iteration counts for No SC (increasing from 26 to 40), indicating that if
this increase can be ameliorated by improving aspects of our MGRIT algorithm with
adaptive spatial coarsening for the implicit hyperbolic case, we could see significant
improvements in the SC time to solution compared to No SC also in parallel. Reduc-
ing this increase in iteration counts is a topic of further research. Nevertheless, we
demonstrate substantial speedups of up to 6 and more using the MGRIT approach
for implicit hyperbolic problems.

Table 10
Weak scaling for implicit MGRIT F-cycles with u0(x) = sin(2\pi \xi x) and increasing Nx and Nt.

Original Increased frequency

Trial log2(Nx) log2(Nt) log2(px) log2(pt) \xi Iter Time \xi Iter Time

1 10 10 0 0 1/4 21 244.22 1/4 21 244.49

2 11 11 1 1 1/4 25 587.80 1/2 25 587.05

3 12 12 2 2 1/4 29 850.81 1 29 849.76

4 13 13 3 3 1/4 37 1230.55 2 37 1230.05

5 14 14 4 4 1/4 46 1465.35 4 46 1465.28

Table 11
Weak scaling for implicit MGRIT F-cycles with u0(x) = sin(2\pi \xi x) and fixed Nx.

Original Increased frequency

Trial log2(Nx) log2(Nt) log2(px) log2(pt) \xi Iter Time \xi Iter Time

1 10 10 0 0 1/4 21 244.22 1 21 244.38

2 10 11 0 1 1/4 25 313.50 1 25 312.96

3 10 12 0 2 1/4 13 209.91 1 13 209.72

4 10 13 0 3 1/4 10 177.37 1 10 177.20

5 10 14 0 4 1/4 9 166.02 1 9 165.93

6 10 15 0 5 1/4 7 138.55 1 7 138.44

7 10 16 0 6 1/4 6 125.33 1 6 125.29

8 10 17 0 7 1/4 5 112.91 1 5 112.92

9 10 18 0 8 1/4 4 101.24 1 4 101.25

5.2.2. Weak scaling. For weak scaling tests we again consider the original ini-
tial condition u0(x) = sin(\pi x/2) and the initial condition u0(x) = sin(2\pi \xi x) with fre-
quency growing as spatial resolution increases, keeping the ratios Nt : pt and Nx : px
fixed at 210 : 1 while solving over the fixed domain [ - 2, 2]\times [0, 4]. We start with a grid
of size (Nx, Nt) = (210, 210) and (i) double both dimensions at each step, (ii) double
Nt, leaving Nx fixed, or (iii) double Nx, leaving Nt fixed; results for these cases are
recorded in Tables 10, 11, and 12, respectively. The results for the first two cases
are similar to those for explicit time-stepping, though the results of Table 10 show a
nearly sixfold increase in the time-to-solution from the smallest to largest test cases,
compared to times approximately doubling in the explicit case. This is likely due to
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Table 12
Weak scaling for implicit MGRIT F-cycles with u0(x) = sin(2\pi \xi x) and fixed Nt.

Original Increased frequency

Trial log2(Nx) log2(Nt) log2(px) log2(pt) \xi Iter Time \xi Iter Time

1 10 10 0 0 1/4 21 243.96 1/4 21 243.80

2 11 10 1 0 1/4 22 444.45 1/2 22 444.17

3 12 10 2 0 1/4 24 585.94 1 24 586.29

4 13 10 3 0 1/4 24 630.92 2 24 630.87

5 14 10 4 0 1/4 25 703.53 4 25 703.59

6 15 10 5 0 1/4 25 758.26 8 27 813.10

7 16 10 6 0 1/4 25 812.73 16 30 958.41

8 17 10 7 0 1/4 22 727.93 32 26 914.58

9 18 10 8 0 1/4 22 784.93 64 24 928.37

the fact that the exact cyclic reduction linear solve used in implicit MGRIT has less
potential for spatial parallelism compared to the matrix-vector product required for
explicit MGRIT. The third case, unique to the implicit time-stepping context, shows
that increasing Nx while Nt remains fixed results in a nearly constant iteration count
and an increasing time to solution. Considering the results for all three cases, it ap-
pears that the growth in iteration count due to increasing problem size is primarily a
result of increasing Nt while maintaining a fixed ratio for \Delta t : \Delta x (as in Table 10).

6. Conclusions. In this paper we discuss an adaptive spatial coarsening strategy
for MGRIT applied to hyperbolic PDEs in one spatial dimension. We observe that
this adaptive coarsening strategy solves one of the two main problems involved in
implementing spatial coarsening for hyperbolic problems: weak spatial couplings due
to small wave speeds are no longer an issue. However, while the results are nearly
scalable as a function of problem size, there is an increase in iterations required for
MGRIT to converge when spatial coarsening is introduced, compared to no spatial
coarsening, which is the subject of ongoing research.

To the best of our knowledge, we obtain the first convergent parallel-in-time
method for the inviscid Burgers equation, and solutions with shocks do not exhibit
convergence deterioration. Parallel results on up to 131072 cores illustrate robustness
and scalability of the approach for very large problem sizes, and its potential to achieve
run-time speedups over sequential time-stepping when spatial parallelism alone sat-
urates. For explicit methods, this requires our adaptive spatial coarsening strategy
to retain stability on coarse levels. For implicit methods, we also demonstrate, for
the first time, speedup for the case of MGRIT applied to implicit discretizations of
hyperbolic problems, where spatial coarsening is not required for stability. Weak scal-
ing results show that the MGRIT scalability is robust for solutions with oscillation
frequency increasing as a function of grid resolution.

One area of future improvement is load balancing, as to ensure that processors
have approximately equal spatial cell counts on coarse grids as the adaptation pro-
ceeds. Ongoing research includes mode analysis to understand convergence deteriora-
tion and aims to improve iteration counts by considering adding waveform relaxation
on intermediate grids. As the adaptive coarsening strategy is extensible, in principle,
to two dimensions and three dimensions, and will also apply to higher-order methods,
future plans for solving hyperbolic problems with MGRIT involve implementing adap-
tive spatial coarsening for problems in two or more spatial dimensions, higher-order
methods, and systems of hyperbolic equations. Hyperbolic systems pose a challenge
due to multiple wave speeds that may be nonlinearly coupled. One approach that
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may be considered for linear hyperbolic systems is to apply the scalar approach to the
characteristic variables, but the nonlinear case will require more elaborate techniques.
It is also important to note that the diffusive nature of the first-order discretizations
used in this paper is likely beneficial for the efficient convergence of our MGRIT meth-
ods. For this reason, extending the methods proposed in this paper to higher-order
methods remains an important open research challenge.
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