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Motivations
A population growth model

Example 1. Consider a single species growth model
' =g(u), u(0)=wuy>0. (1.1)
Assume that ¢g(0) = 0. Linearizing (1.1) at u = 0, we obtain
' = ¢ (0)u = bu — au,

where b is the intrinsic birth rate, a is the mortality rate. Note that
é is the average life span. It follows that the basic reproduction
number is

1
Ro—b-1-1-0

a a
Clearly, u = 0 is linearly stable if Ry < 1, and linearly unstable if
Ry > 1.
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Motivations
An epidemic model

Example 2. For the transmission of a disease, let S be the
susceptible, I be the infected, and R be the recovered individuals,
respectively. Then we have the following Kermack-McKendrick SIR

model (1927):

dsS

E = —TSI

dl

— =781 —al

@~ ol (1.2)
dR

E =al

S(0) = Sy >0, 1(0) = I(0) >0, R(0) =0

where 7 is the contact rate, and a is the removal rate. Note that é
is the average infection period. It then follows that system (1.2)
admits the following threshold type dynamics.
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Motivations
Threshold dynamics

Case 1. If Sy < ¢, then both S(t) and I(t) are decreasing in
t € [0,00), and limy_00 S(t) = Soo > 0 and limy_, I(t) = 0.

it

Iy

L

Case 1: S§;<

=R

This implies that the disease will decrease to extinction.
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Case 2. If Sp > %, then there exists Ty > 0 such that S(Tp) = ¢,
and S(t) is decreasing in t € [0,00) and lim;_,o, S(t) = Soo > 0,
while I(t) is increasing in t € [0, Tp], decreasing in t € [Tp,c0), and
limy_o0 1(£) = 0.
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Case 2. Sy> %

This implies that the disease will spread for some period of time,
and then decrease to extinction.

Xiaogiang Zhao, Memorial University of Newfoundland



Motivations
Basic reproduction number

Initial reproduction number Rj is the total number of secondary
cases (infections) one average infective can produce if the number
of susceptibles remained at its initial size Sy. Thus, we have

1 rS

R():T’S()-1~f:70.

a a
K-M Theorem. If Ry < 1, then there is no epidemic outbreak; If
Ry > 1, then there is an epidemic outbreak.

Linearizing (1.2) at the disease-free equilibrium (Sp,0), we obtain
a linear equation for I:

dl

E:TSOI—aI::FI—VI:(F—V)I,
where F' = rSj is the infection rate, and V' = a gives an internal
evolution law % = —V I when there is no infection.
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ODE systems
Compartmental models

General approach: O. Diekmann, J. A. P. Heesterbeek and J. A. J.
Metz, J. Math. Biol., 28(1990), 365-382.

Compartmental models: P. van den Driessche and J. Watmough,
Math. Biosci., 180(2002), 29-48.

Linearizing a given compartmental model at the disease-free
equilibrium (S*,0), we obtain a liner system for infected variable I:

dI

— =FI-VI=(F-V)I

- (F-V)I,
where F' is the infection matrix, and the internal evolution law is
% = —V I when there is no infection. Usually, F' is nonnegative,

and —V is cooperative. Further, all eigenvalues of —V have
negative real parts (why?).
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ODE systems
Next generation matrix

Let ¥(0) = (¢1(0),- -+ , ¥ (0)) be the distribution of infected
individuals initially in the infected compartments, and

() = (YP1(t), - ,¥m(t)) be the distribution of these initially
infected individuals remaining infected after ¢ time units. Then

W) — vt = vt = 0(0), vt 2 0

It follows that the expected distribution of new infectives is

/OO Fap(t)dt = /Oo F e Vip(0)dt = FV—14(0).
0

0

Then 1(0) — FV~%4(0). Thus, FV ! is called the next
generation matrix, and we define its spectral radius as the basic
reproduction number (ratio), that is,

_ -1
Ry = p(FV ™).



ODE systems
Linear stability

Let s(A) be the stability modulus of a matrix A, that is,
s(A) = max{Re) : det(A\ — A) = 0}.

P. van den Driessche and J. Watmough [Math. Biosci., 2002]
proved the following result.

Theorem 2.1. Ry — 1 has the same sign as s(F — V).
This theorem shows that the sign of Ry — 1 determine the stability
of zero solution of % = (F—V)I. Thus, Ry is a threshold value

for the disease invasion.

Applications to various autonomous epidemic models...
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ODE systems
An example

Consider a vector-host model for Dengue fever (Feng and
Velasco-Hernandez, JMB, 1997):

dI

= BSV — (b+ )],

o = SV (b+7)

ﬂ:ﬁmMI—cV,

jg (2.1)
& =b— bS5+l = B.SV,

dM

¢~ M - By MI,

7 c—c I}

where [ is the number of infected hosts, V is the number of
infected vectors, S is the number of susceptible hosts, M is the
number of susceptible vectors, 5 and 5, are disease transmission
coefficients. The birth rates have been scaled to b > 0 for the host
and ¢ > 0 for the vector.
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ODE systems
Basic reproduction number

It is easy to see that (0,0,1,1)7 is the disease-free steady state.
Then we have

0 B b+~ 0
F = , V= .
Bm 0 0 C
It follows that
Ro = p(FV™h).

Exercise. Compute the above Ry.
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Further developments
Periodic ODE models

N. Bacaér and S. Guernaoui, J. Math. Biol., 53(2006), 421-436.
W. Wang and X.-Q. Zhao, J. Dyn. Diff. Equ., 20(2008), 699-717.

Consider the linear w-periodic ODE system (after linearization):
d
& Fiyu— vt (3.1)
dt

Let Y (¢, s) be the evolution matrix of the internal evolution

systems ‘C%L = —V(t)u, and let C,, be the space of continuous

w-periodic (vector-valued) functions.
Wang and Zhao (2008) introduced a linear operator L on C,, by

(Lo)(t) = /O T EWY (Lt — $)6(t — s)ds, Wt € R,

and defined Ry := r(L). It turns out that the sign of Ry — 1
determines the stability of zero solution of system (3.1).
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Further developments
Temporal and spatial heterogeneity

Periodic models (continued):
N. Bacaér and E. H. Ait Dads, J. Math. Biol., 65 (2012), 601-621.
H. Inaba, J. Math. Biol., 22(2012), 113-128.

Impulsive models:

Y. Yang and Y. Xiao, Nonlinear Analysis (RWA), 13(2012),
224-234.

Z. Bai and X.-Q. Zhao, J. Math. Biol., 80(2020), 1095-1117.
(Periodic impulsive systems with delay)

Infinite-dimensional population models:
H. Thieme, SIAM J. Appl. Math., 70 (2009), 188-211.

W. Wang and X.-Q. Zhao, SIAM J. Appl. Dyn. Syst.,
11(2012),1652-1673.
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Further developments
Temporal and spatial heterogeneity

Almost periodic models:

B.-G. Wang and X.-Q. Zhao, J. Dyn. Diff. Equ., 25(2013),
535-562.

L. Qiang, B.-G. Wang and X.-Q. Zhao, J. Diff. Equ., 269(2020),
4440-4476. (Almost periodic and time delayed systems)

Periodic and time-delayed models:
X.-Q. Zhao, J. Dyn. Diff. Equ., 29(2017), 67-82.

X. Liang, L. Zhang and X.-Q. Zhao, J. Dyn. Diff. Equ., 31(2019),
1247-1278. (Periodic abstract functional differential equations, and
a general algorithm for Ry)
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Further developments
Take-home exercise

You may watch 2011 movie “Contagion” from the internet.
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Further developments

Thank you!
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