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Introduction
Motivation examples

Example 1. Global stability of a positive equilibrium.
Example 2. Global stability of a positive periodic solution.
Example 3. The interacting species are uniformly persistent.

Example 4. The condition that W(M;) N Xy =0 (1 <i<k)is
necessary but not sufficient for uniform persistence.
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Introduction
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Uniform Persistence
Abstract persistence

Let X be a complete metric space, and Xy be an open subset of
X. Let ®(t) be an autonomous semiflow on X. Define

0Xo:= X\ Xo, My:={xe€dXy: ®(t)xr € 90Xy, Vt > 0}.

Assume that

(C1) @(t)(Xo) C Xo, Vt >0, and ®(t) has a global attractor in X.

(C2) There exists a finite sequence M = {Mj, ..., My} of disjoint,
compact, and isolated invariant sets in Xy such that

(a) Ugenryw(w) C UK M; (i.e.Vx € My, w(x) C M; for some i);

(b) No subset of M forms a cycle in 0Xy;
(c) Each M; is isolated in X;
(d) Ws(M;)N Xy =0 foreach 1 <1i <k (i.e., no orbit in Xy

converges to any M; ).

Then 30 > 0 such that 1itm inf d(®(t)x,0Xo) > 6 for all x € X.
—00
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Uniform Persistence
Functional differential equations

Let ®(¢) be the solution semiflow of a scalar FDE model, that is,
O(t)p = w (), Vo € X := C([—1,0],R;). Let Xo =X \ {0} and
0Xo = {0}. Assume that ®(¢) is uniformly persistent with respect
to Xo (i.e., abstract persistence). Then we have

n < liminfd(®(t)$,0Xo0)
= hmlnf max_u(¢)(6)
oe[—,0]

= liminf max u(t+0,¢)

t—oo fe[—1,0]

= liminf max wu(s,¢), Vo € Xy,

t—=oo selt—,t]

which is different from our desired practical persistence in the sense
that there exists 77 > 0 such that liminf; o u(t, ) > 7, Vo € Xj.
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Uniform Persistence

Reaction-diffusion equations

Let ®(t) be the solution semiflow of a scalar reaction-diffusion
model subject to the Robin type boundary condition, that is,
D(t)p = u(t, -, d), Vo € X := C(Q,R,). Let Xg = X \ {0} and
0Xo = {0}. Assume that ®(¢) is uniformly persistent with respect
to Xy (i.e., abstract persistence). Then we have

IN

n lim inf d(®(#)¢, 0Xo)

= liminf maxu(t, z, ¢), Vo € Xy,

which is different from our desired practical persistence in the
sense that there exists 77 > 0 such that
liminf; o min g u(t,r) > 7, V¢ € Xo.
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Uniform Persistence
Generalized distance function

Smith and Zhao, Robust persistence for semidynamical systems,
Nonlinear Analysis, TMA, 47(2001), 6169-6179.

Definition

A lower semicontinuous function p: X — R is called a
generalized distance function for the semiflow ®(¢) : X — X if for
every € (XoNp~1(0)) Up~1(0,00), we have

p(®(t)z) >0, Vt > 0.

Note that if p(z) = d(z,0Xp), then p~1(0) = 9X, and
p~(0,00) = Xo (why?).

Recall that p~!(I) := {x € X : p(x) € I} for any subset I of R.
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Uniform Persistence
Practical persistence

Smith and Zhao, Robust persistence for semidynamical systems,
Nonlinear Analysis, TMA, 47(2001), 6169-6179.

Let p be a generalized distance function for the semiflow
®(t) : X — X. Assume that

(P1) ®(t) has a global attractor in X;

(P2) There exists a finite sequence M = {Mj, ..., My} of disjoint,
compact, and isolated invariant sets in Xy with the following
properties:

(2) Ugenr,w(w) C UL M;;

(b) No subset of M forms a cycle in 0Xg;

(c) Each M; is isolated in X ;

(d) We(M;)Np~t(0,00) =0 foreach 1 <i < k.

Then 3n > 0 such that litlginfp(CI)(t)x) >n for all x € Xj.
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Uniform Persistence
Example 1

Let » > 0 and C := C([—r,0],R™). Consider evolutionary systems
of delayed differential equations

du(t)
a ), 20 (2.1)
ug = ¢ € C.

Under appropriate assumptions on f : C'— R™, system (2.1) has a
unique solution u(t, ¢) on [0, c0) for each
¢ € X :=C([-r,0,RY). Let ()¢ = u¢(¢), and define

p(@) = min {6:(0)}, 6= (d1,....0m) € X.

Thus, p: X — R, is continuous. In the case where m =1, we
have p(¢) = ¢(0), and hence,

p(2(t)9) = p(ur(¢)) = ut(¢)(0) = u(t + 0, ¢) = u(t, ¢).



Uniform Persistence
Example 2

Consider reaction—diffusion systems

861? =d;Au; + fi(z,ug, ..., upy) in Qx(0,00),

Bu; =0 on 99Q x (0,00),

(2.2)

where d; > 0, and Bu = 0 denotes either Robin type (R) or
Dirichlet boundary condition (D). Let X = C(Q,R"") in case (R),
and X = C}(Q,R7) in case (D). Under appropriate assumptions
on f=(f1,..., fm), system (2.2) has a unique solution u(t, z, ¢)
on [0, 00) satisfying u(0, -, ®) = ¢ for each ¢ € X, and defines a
continuous-time semiflow ®(t) on X by ®(¢)¢ = u(t,-, d).

In case (R), we define a continuous function

p(¢) == min {mindn(:c)}, Vo = (¢1,...,¢m) € X.

1<i<im ( xeQ
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Uniform Persistence

For example, letting m = 1, we have p(¢) = min g ¢(z), and
hence, p(®(t)¢) = p(u(t,-, ¢)) = min, g u(t,z, ). This implies
that

u(t,z,¢) > p(®(t)p), Vt>0,z¢e.

In case (D), we choose e € Int(C} (2, R7)) and define

p(¢) :=sup{f € Ry : ¢(z) > fe(x), Vo € Q, },
ng: (¢17---7¢m) c X.

It follows that the above p-function is lower semi-continuous
(why?). Clearly, ¢(z) > p(¢)e(z), Vo € Q, ¢ € X. Thus,

ut,z,6) = [B(D)¢](x) > p(@(t)d)e(z), Vit >0,z €T

Note that [ ui(t, x, ¢)dx > p(P(t)¢) [ ei(x)dx, V1 < i < m.
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Coexistence States
Existence of coexistence states

Let (t) : X — X,t > 0, be a continuous-time semiflow.

Definition 3.1 g € X is called a coexistence state if
O(t)zg = x0, t > 0.

Theorem 3.1 (Zhao, CAMQ), 1995) Assume that
(1) ®(¢) is point dissipative on X;

(2) ®(t) is compact for each ¢t > 0;

(3) ®(t) is uniformly persistent.

Then ®(t) has a coexistence state in Xj.

Note that Hutson(1990) and Hofbauer(1990) proved a similar
result for autonomous ODE (finite dimension). For more general

results under the weak compactness assumption, see Magal and
Zhao (SIMA, 2005) (also Zhao's 2017 book).
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Coexistence States
Existence of coexistence states

Let S": X — X,n > 0, be a discrete-time semiflow.

Definition 3.2 1z € X is called a coexistence state if
S(xo) = xo.

Theorem 3.2 (Zhao, CAMQ), 1995) Assume that
(1) S is point dissipative on X;

(2) S is compact;

(3) S is uniformly persistent.

Then S has a coexistence state in Xj.

Note that if S is the Poincaré map of a periodic system, then the
solution with the coexistence state of S as its initial value is a
periodic solution in Xy. (e.g., positive periodic solution)
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Coexistence States
A dynamical approach to some static problems

For example, the positive solutions of an elliptic equation

dAu+ f(u) = 0, z€Q
Bu = 0, z €090

are clearly the steady state solutions of the following parabolic
equation

% = dAu+ f(u),z€Q,t>0

Bu = 0,z€00,t>0.

By Theorem 3.1, the uniform persistence of the solution semiflow
generated by the parabolic equation implies the existence of a
positive solution of the elliptic equation.
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Coexistence States
Three application examples

Example 1. The predator-prey population model:

U2

Re(A®)(e1)) > 0

€0 €1 Uy
M = {60, 61}



Coexistence States

Example 2. Two species competition model:

U2

1 Re(A@)(e1)) >0

— > -«
€0 €1 Uuq

M = {605 €1, 62}
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Coexistence States

Example 3. An ODE model with an unstable heteroclinic orbit:

U

<
«

€0 €1 Ui
M = {T'}, T is unstable
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Coexistence States

Thank you!
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