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Limiting systems

Example 1.1 Let D be a closed subset of Rn. We consider the
nonautonomous ordinary differential system:

dx

dt
= f(t, x), t ≥ 0,

x(0) = x0 ∈ D.
(1.1)

Assume that lim
t→∞

f(t, x) = f0(x) uniformly for x in any bounded

subset of D. Then we have a limiting autonomous system:

dx

dt
= f0(x), t ≥ 0,

x(0) = x0 ∈ D.
(1.2)

Problem: Under what conditions can we lift the long-time
properties of solutions of the limiting system (1.2) to the
nonautonomous system (1.1)?

3 / 20



Motivations Chain transitive sets An application

A counterexample

Consider the following planar system (Thieme [JMB, 1992]):

dr

dt
= r(1− r)

dθ

dt
= βr| sin θ|+ αe−γt,

(1.3)

where α > 0, β > γ > 0, x1 = r cos θ, and x2 = r sin θ. Clearly,
system (1.3) has a limiting autonomous system:

dr

dt
= r(1− r)

dθ

dt
= βr| sin θ|.

(1.4)

It is easy to see that any forward orbit of system (1.4) converges to
one of three equilibria (0, 0), (1, 0) and (−1, 0) as t→∞.
Exercise 1.1 Show that any nontrivial solution of system (1.3)
converges to the circle r = 1 as t→∞.
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Phase portrait of autonomous system (1.4)
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Dynamics of nonautonomous system (1.3)
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Asymptotically autonomous semiflows

To solve the above problem, one may use the theory of
asymptotically autonomous semiflows:

H. R. Thieme, Convergence results and Poincaré–Bendixson
trichotomy for asymptotically autonomous differential equations, J.
Math. Biology, 30(1992), 755–763.

K. Mischaikow, H. L. Smith and H. R. Thieme, Asymptotically
autonomous semiflows: chain recurrence and Liapunov functions,
Trans. Amer. Math. Soc., 347(1995), 1669–1685.

Note that in this theory, the domain of the asymptotically
autonomous system is assumed to be the same as that of the
limiting autonomous system.
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A chemostat model

Example 1.2 Consider the single species growth model in a
chemostat:

dS

dt
= D(S0 − S)− xP (S)

dx

dt
= xP (S)−Dx

(S(0), x(0)) = (S0, x0) ∈ R2
+.

(1.5)

Here D is the dilution (or washout) rate, S0 is the inout nutrient
concentration, P (S) is the per capita nutrient uptake function. In
particular, we take P (S) = mS

a+S , where m is maximal growth rate,
and a is the Michaelis-Menten (or half-saturation) constant. Both
a and m can be measured experimentally.

It is easy to see that R2
+ is positively invariant for system (1.5).

Let Σ = S + x. Then system (1.5) is equivalent to the following
one:
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An equivalent model

dΣ

dt
= DS0 −DΣ

dx

dt
= xP (Σ− x)−Dx

(Σ(0), x(0)) = (Σ0, x0) ∈ Ω := {(Σ, x) : Σ ≥ x ≥ 0}.

(1.6)

It then follows that Ω is positively invariant for system (1.6).
Clearly, x(t) satisfies the following nonautonomous equation:

dx

dt
= xP (Σ(t)− x)−Dx. (1.7)

Let Ω(t) := [0,Σ(t)], ∀t ≥ 0. It is easy to see that for any initial
value x(0) ∈ Ω(0), system (1.7) has a unique solution x(t) such
that x(t) ∈ Ω(t), ∀t ≥ 0. Since lim

t→∞
Σ(t) = S0, we have the

following limiting system:
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Omega limit sets

dx

dt
= xP (S0 − x)−Dx. (1.8)

Let ω = ω(Σ0, x0) be the omega limit set of the orbit (Σ(t), x(t))
through (Σ0, x0) for the solution semiflow Φt of system (1.6), that is,

ω(Σ0, x0) :=
{

(Σ, x) ∈ Ω : ∃tn →∞ s.t. lim
n→∞

(Σ(tn), x(tn)) = (Σ, x)
}
.

Since (Σ(t), x(t)) ∈ Ω, ∀t ≥ 0, we have Σ(t) ≥ x(t) ≥ 0, and hence,
ω = {S0} × ω̃ with ω̃ ⊂ [0, S0].

Let Qt be the solution semiflow of (1.8) on [0, S0]. Since Φt(ω) = ω for
all t ≥ 0, we see that Φt(S

0, x̄) = (S0, Qt(x̄)), ∀(S0, x̄) ∈ ω, t ≥ 0. It
then follows that Qt(ω̃) = ω̃, ∀t ≥ 0. But ω̃ may not be the omega limit
set of a forward orbit of (1.8) in [0, S0].

Note that the nonautonomous system (1.7) has a time-dependent domain
Ω(t), while its limiting system (1.8) has the domain [0, S0]. Thus, we
cannot directly use the theory of asymptotically autonomous systems.
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Definition

Let (X, d) be a metric space with metric d, and Φ(t) : X → X,
t ≥ 0, be a continuous-time semiflow.

Definition 2.1 A nonempty invariant set A ⊂ X for the semiflow
Φ(t) (that is, Φ(t)A = A, ∀t ≥ 0) is said to be internally chain
transitive if for any a, b ∈ A and any ε > 0, t0 > 0, there is a finite
sequence

{x1 = a, x2, . . . , xm−1, xm = b; t1, . . . , tm−1}

with xi ∈ A and ti ≥ t0, 1 ≤ i ≤ m− 1, such that

d(Φ(ti, xi), xi+1) < ε, ∀1 ≤ i ≤ m− 1.

The sequence {x1, . . . , xm; t1, . . . , tm−1} is called an (ε, t0)-chain
in A connecting a and b.
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Chain transitivity
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An example for CTS

Lemma 2.1 Let Φ(t) : X → X, t ≥ 0, be a continuous-time
semiflow. Then the omega (alpha) limit set of any precompact
positive (negative) orbit is internally chain transitive.

Question: Can a heteroclinic orbit be an omega limit set of a
precompact positive orbit?

Exercise 2.1 Show that the set ω̃ in Example 1.2 is a chain
transitive set for the solution semiflow of the limiting system (1.8)
on [0, S0].
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Strong attractivity and convergence

Recall that the stable set of an invariant set A for a semiflow Q(t)
is defined as

W s(A) :=
{
x ∈ X : lim

t→∞
d(Q(t)x,A) = 0

}
.

Theorem 2.1 (Hirsch, Smith and Zhao, 2001, JDDE) Let A be an
attractor and C a compact internally chain transitive set for the
autonomous semiflow Q(t) : X → X. If C ∩W s(A) 6= ∅, then
C ⊂ A.

Theorem 2.2 (Hirsch, Smith and Zhao, 2001, JDDE) Assume
that each equilibrium of the autonomous semiflow Q(t) : X → X
is an isolated invariant set, that there is no cyclic chain of
equilibria, and that every precompact orbit converges to some
equilibrium of Q(t). Then any compact internally chain transitive
set is an equilibrium of Q(t).
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Discrete-time semiflows

Definition 2.2 Let (X, d) be a metric space with metric d, and
M : X → X be a continuous map. A nonempty invariant set
A ⊂ X for M (i.e., M(A) = A) is said to be internally chain
transitive if for any a, b ∈ A and any ε > 0, there is a finite
sequence {x1 = a, x2, . . . , xm−1, xm = b} with xi ∈ A such that

d(M(xi), xi+1) < ε, ∀1 ≤ i ≤ m− 1.

The sequence {x1, . . . , xm} is called an ε-chain in A connecting a
and b.

Remark 2.1 (Hirsch, Smith and Zhao, 2001, JDDE) Lemma 2.1,
Theorems 2.1 and 2.2 are also valid for the discrete-time semiflow
{Mn}n≥0.

Note that Mnx, n ≥ 0 corresponds to Q(t)x, t ≥ 0.
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The single species growth model

Now we return to model (1.5) and its equivalent system (1.6).

It is easy to obtain the global dynamics of system (1.8) on [0, S0].

Lemma 3.1 Assume that P ′(s) > 0, ∀s ≥ 0. Then the following
statements are valid:

(a) If P (S0) ≤ D, then x = 0 is globally asymptotically stable for
system (1.8) in [0, S0].

(b) If P (S0) > D, then system (1.8) has a positive equilibrium
x∗ ∈ (0, S0) and x = x∗ is globally asymptotically stable for
system (1.8) in (0, S0].
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The global dynamics for model (1.5)

For the chemostat model (1.5), we have the following threshold
type result.

Theorem 3.1 Assume that P ′(s) > 0, ∀s ≥ 0, and let (S(t), x(t))
be the solution of system (1.5). Then the following statements are
valid:

(i) If P (S0) ≤ D, then lim
t→∞

(S(t), x(t)) = (S0, 0) for all S(0) ≥ 0

and x(0) ≥ 0.

(ii) If P (S0) > D, then there exists x∗ ∈ (0, S0) with
P (S0 − x∗) = D such that lim

t→∞
(S(t), x(t)) = (S0 − x∗, x∗)

for all S(0) ≥ 0 and x(0) > 0.
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Proof of Theorem 3.1

Let Φ(t) be the solution semiflow of system (1.6) on Ω, and Q(t)
be the solution semiflow of system (1.8) on [0, S0]. Let ω and ω̃
be defined as in Example 1.2. By Exercise 2.1, ω̃ is an internally
chain transitive set for Q(t) on [0, S0].

In the case where P (S0) ≤ D, we see from Lemma 3.1 that
W s(0) = [0, S0], and hence, ω̃ ∩W s(0) 6= ∅. By Theorem 2.1, it
then follows that ω̃ = {0}, and hence, ω = (S0, 0). This implies
that lim

t→∞
(Σ(t), x(t)) = (S0, 0), and hence,

lim
t→∞

S(t) = lim
t→∞

(Σ(t)− x(t)) = S0.

In the case where P (S0) > D, we see from Lemma 3.1 that
W s(x∗) = (0, S0]. Since x(0) > 0, we have x(t) > 0, ∀t ≥ 0
(why?). Now we show that ω̃ ∩W s(x∗) 6= ∅. Assume, by
contradiction, that ω̃ ∩W s(x∗) = ∅. Then ω̃ = {0}, and hence,
ω = (S0, 0). Thus, we have lim

t→∞
(Σ(t), x(t)) = (S0, 0).
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Since lim
t→∞

(P (Σ(t)− x(t))−D) = P (S0)−D > 0, there exists

T > 0 such that

P (Σ(t)− x(t))−D >
1

2

(
P (S0)−D

)
> 0, ∀t ≥ T.

Then we have

x′(t) ≥ x(t) · 1

2

(
P (S0)−D

)
, ∀t ≥ T.

This implies that x(t)→∞ as t→∞, a contradiction. Thus,
ω̃ ∩W s(x∗) 6= ∅. By Theorem 2.1, it follows that ω̃ = x∗, and
hence, ω = (S0, x∗). Thus, we have lim

t→∞
(Σ(t), x(t)) = (S0, x∗),

and lim
t→∞

S(t) = lim
t→∞

(Σ(t)− x(t)) = S0 − x∗.

Exercise 3.1 Use Theorem 2.2 to prove the conclusion (ii) in
Theorem 3.1.
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