Chain Transitive Sets and Limiting Systems

Xiaogiang Zhao
Memorial University of Newfoundland, Canada

E-mail: zhao@mun.ca
http://www.math.mun.ca/~zhao


http://www.math.mun.ca/~zhao

@ Motivations
@ Chain transitive sets

© An application

)

20



Motivations
Limiting systems

Example 1.1 Let D be a closed subset of R™. We consider the
nonautonomous ordinary differential system:

dx

— = f(t t>0

o~ 6, 120 (1.1)
z(0) =z € D.

Assume that tlim f(t,x) = fo(x) uniformly for = in any bounded
— 00

subset of D. Then we have a limiting autonomous system:

dx
l’(O) =ux9 € D.

Problem: Under what conditions can we lift the long-time
properties of solutions of the limiting system (1.2) to the
nonautonomous system (1.1)7



Motivations
A counterexample

Consider the following planar system (Thieme [JMB, 1992]):

r_ r(l—r)
df '
i Br|sin 6] + ae™ ",

where a > 0,6 > v > 0, 1 = rcos#, and x5 = rsind. Clearly,
system (1.3) has a limiting autonomous system:

dr

%:T(I—T)

(1.4)
d—a—ﬁ | sin 6|
dt = Or|S .

It is easy to see that any forward orbit of system (1.4) converges to
one of three equilibria (0,0), (1,0) and (—1,0) as t — oo.
Exercise 1.1 Show that any nontrivial solution of system (1.3)
converges to the circle r =1 as ¢t — oo.
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Phase portrait of autonomous system (1.4)
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Motivations

Dynamics of nonautonomous system (1.3)
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Motivations
Asymptotically autonomous semiflows

To solve the above problem, one may use the theory of
asymptotically autonomous semiflows:

H. R. Thieme, Convergence results and Poincaré—Bendixson
trichotomy for asymptotically autonomous differential equations, J.
Math. Biology, 30(1992), 755-763.

K. Mischaikow, H. L. Smith and H. R. Thieme, Asymptotically

autonomous semiflows: chain recurrence and Liapunov functions,
Trans. Amer. Math. Soc., 347(1995), 1669-1685.

Note that in this theory, the domain of the asymptotically
autonomous system is assumed to be the same as that of the
limiting autonomous system.



Motivations
A chemostat model

Example 1.2 Consider the single species growth model in a

chemostat:
%‘f — D(S° - §) — 2P(S)
dz _ _ (1.5)
pri zP(S) — Dx

(8(0),2(0)) = (So, 20) € RY.

Here D is the dilution (or washout) rate, S is the inout nutrient

concentration, P(S) is the per capita nutrient uptake function. In
particular, we take P(S) = % where m is maximal growth rate,
and a is the Michaelis-Menten (or half-saturation) constant. Both

a and m can be measured experimentally.
It is easy to see that R? is positively invariant for system (1.5).

Let ¥ = S+ z. Then system (1.5) is equivalent to the following
one:



Motivations
An equivalent model

9 _ pgo_ py

dt

d

d =zP(X¥—z)— Dz (1.6)

dt
(2(0),z(0)) = (Xo,x0) € Q:={(3,x): ¥ >z >0}.

It then follows that (2 is positively invariant for system (1.6).
Clearly, x(t) satisfies the following nonautonomous equation:

dz
— =zP(X(t) —x) — Dz. (1.7)

dt
Let Q(t) := [0,%(¢)], YVt > 0. It is easy to see that for any initial
value z(0) € Q(0), system (1.7) has a unique solution z(t) such
that =(t) € Q(t), V¢ > 0. Since tlim Y(t) = SY, we have the

—00

following limiting system:



Motivations
Omega limit sets

d
& _ 2P(8° - z) — Da. (1.8)
dt
Let w = w(Xg, o) be the omega limit set of the orbit (3(t), z(t))
through (g, o) for the solution semiflow ®; of system (1.6), that is,

w(So, 20) = {(E,x) €Q: 3ty — oo st lim (E(ty), z(tn)) = (E,x)}.
n— oo

Since (X(1),x(t)) € 2, Vt > 0, we have X(t) > z(t) > 0, and hence,

w= {5} x w with © C [0, 5Y].

Let Q; be the solution semiflow of (1.8) on [0, S°]. Since ®;(w) = w for

all t >0, we see that ®,(5°,7) = (5°,Q¢(%)), V(5°,Z) €w, t > 0. It

then follows that Q:(w) = @, ¥Vt > 0. But @ may not be the omega limit

set of a forward orbit of (1.8) in [0, S°].

Note that the nonautonomous system (1.7) has a time-dependent domain

Q(t), while its limiting system (1.8) has the domain [0, S°]. Thus, we

cannot directly use the theory of asymptotically autonomous systems.
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Chain transitive sets
Definition

Let (X,d) be a metric space with metric d, and ®(¢) : X — X,
t > 0, be a continuous-time semiflow.

Definition 2.1 A nonempty invariant set A C X for the semiflow
O(t) (that is, ®(t)A = A, ¥Vt > 0) is said to be internally chain
transitive if for any a,b € A and any € > 0,tq > 0, there is a finite
sequence

{‘/1:1 =AyT2, -+, Tm—1,Tm = b7 tl?’ .. 7tm—1}
with x; € A and t; > tp,1 < i <m — 1, such that
d(q)(ti,ﬂfi),ﬂfi+1) <e ViI<i<m-—1.

The sequence {x1,...,xm; t1,...,t,;m—1} is called an (e, ty)-chain
in A connecting a and b.

11/20



Chain transitive sets
Chain transitivity
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Chain transitive sets
An example for CTS

Lemma 2.1 Let ®(¢t) : X — X, t > 0, be a continuous-time
semiflow. Then the omega (alpha) limit set of any precompact
positive (negative) orbit is internally chain transitive.

Question: Can a heteroclinic orbit be an omega limit set of a
precompact positive orbit?

Exercise 2.1 Show that the set @ in Example 1.2 is a chain

transitive set for the solution semiflow of the limiting system (1.8)
on [0, 5Y].
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Chain transitive sets
Strong attractivity and convergence

Recall that the stable set of an invariant set A for a semiflow Q(t)
is defined as

We(A) = {;1: € X : lim d(Q(t)z, A) = 0} .

Theorem 2.1 (Hirsch, Smith and Zhao, 2001, JDDE) Let A be an
attractor and C' a compact internally chain transitive set for the
autonomous semiflow Q(t) : X — X. If CNW?$(A) # (0, then

C CA.

Theorem 2.2 (Hirsch, Smith and Zhao, 2001, JDDE) Assume
that each equilibrium of the autonomous semiflow Q(t) : X — X
is an isolated invariant set, that there is no cyclic chain of
equilibria, and that every precompact orbit converges to some
equilibrium of Q(t). Then any compact internally chain transitive

set is an equilibrium of Q(t).
14 /20



Chain transitive sets

Discrete-time semiflows

Definition 2.2 Let (X, d) be a metric space with metric d, and
M : X — X be a continuous map. A nonempty invariant set

A C X for M (ie., M(A) = A) is said to be internally chain
transitive if for any a,b € A and any € > 0, there is a finite
sequence {r1 = a,Ta,...,Tm—1,Tm = b} with x; € A such that

d(M(IL‘i),l‘iJrl) <e, ViI<i<m-—1.

The sequence {x1,...,xy} is called an e-chain in A connecting a
and b.

Remark 2.1 (Hirsch, Smith and Zhao, 2001, JDDE) Lemma 2.1,
Theorems 2.1 and 2.2 are also valid for the discrete-time semiflow

{M"},>0.

Note that Mz, n > 0 corresponds to Q(t)x, t > 0.
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An application
The single species growth model

Now we return to model (1.5) and its equivalent system (1.6).
It is easy to obtain the global dynamics of system (1.8) on [0, S"].

Lemma 3.1 Assume that P'(s) > 0, Vs > 0. Then the following

statements are valid:

(a) If P(SY) < D, then z = 0 is globally asymptotically stable for
system (1.8) in [0, S°].

(b) If P(S°) > D, then system (1.8) has a positive equilibrium
x* € (0,5%) and x = 2* is globally asymptotically stable for
system (1.8) in (0, 5°].
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An application

The global dynamics for model (1.5)

For the chemostat model (1.5), we have the following threshold
type result.

Theorem 3.1 Assume that P’(s) > 0, Vs > 0, and let (S(t),z(t))
be the solution of system (1.5). Then the following statements are

valid:
(i) If P(S°) < D, then tlig)lo(S(t),x(t)) = (S°,0) for all S(0) >0
and z(0) > 0.
(i) If P(SY) > D, then there exists x* € (0, S°) with
P(S° — 2*) = D such that tlgglo(S(t),x(t)) = (S0 — 2%, %)
for all S(0) > 0 and x(0) > 0.

17 /20



Proof of Theorem 3.1

Let ®(t) be the solution semiflow of system (1.6) on €, and Q(t)
be the solution semiflow of system (1.8) on [0, 5°]. Let w and @
be defined as in Example 1.2. By Exercise 2.1, @ is an internally
chain transitive set for Q(t) on [0, S°].

In the case where P(SY) < D, we see from Lemma 3.1 that
W#(0) = [0,5Y], and hence, @ N W?(0) # (). By Theorem 2.1, it
then follows that @ = {0}, and hence, w = (S°,0). This implies
that tll%o(z(t),:z:(t)) = (5%,0), and hence,

tlgélo S(t) = tl_iglo(E(t) —z(t)) = S°.

In the case where P(SY) > D, we see from Lemma 3.1 that
W#(z*) = (0,5°. Since z(0) > 0, we have x(t) > 0, Vt > 0
(why?). Now we show that @ N W*(z*) # (). Assume, by
contradiction, that @ N W*#(z*) = (). Then @ = {0}, and hence,
w = (5°,0). Thus, we have tli}rélo(il(t),x(t)) = (59,0).
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An application

Since lim (P(%(t) — x(t)) — D) = P(S°) — D > 0, there exists

T > 0 such that

P(%(t) —z(t)) — D > % (P(S°)-D) >0, Vt>T.

Then we have

2/ (t) > x(t)- - (P(S°) = D), Vt>T.

N =

This implies that x(t) — oo as t — oo, a contradiction. Thus,

O NW#(x*) # (. By Theorem 2.1, it follows that @ = z*, and

hence, w = (SY, z*). Thus, we have tlim (2(t), (1)) = (S°,2%),
— 00

. BERT _ _ c0 _ %
and tliglo S(t) = tliglo(E(t) z(t)) = SY — a*.

Exercise 3.1 Use Theorem 2.2 to prove the conclusion (ii) in
Theorem 3.1.
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An application
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