

# Chain Transitive Sets and Limiting Systems

Xiaoqiang Zhao

Memorial University of Newfoundland, Canada

*E-mail:* [zhao@mun.ca](mailto:zhao@mun.ca)

<http://www.math.mun.ca/~zhao>

# Outline

1 Motivations

2 Chain transitive sets

3 An application

# Limiting systems

**Example 1.1** Let  $D$  be a closed subset of  $\mathbb{R}^n$ . We consider the nonautonomous ordinary differential system:

$$\begin{aligned}\frac{dx}{dt} &= f(t, x), \quad t \geq 0, \\ x(0) &= x_0 \in D.\end{aligned}\tag{1.1}$$

Assume that  $\lim_{t \rightarrow \infty} f(t, x) = f_0(x)$  uniformly for  $x$  in any bounded subset of  $D$ . Then we have a **limiting autonomous system**:

$$\begin{aligned}\frac{dx}{dt} &= f_0(x), \quad t \geq 0, \\ x(0) &= x_0 \in D.\end{aligned}\tag{1.2}$$

**Problem:** Under what conditions can we lift the long-time properties of solutions of the limiting system (1.2) to the nonautonomous system (1.1)?

# A counterexample

Consider the following planar system (Thieme [JMB, 1992]):

$$\begin{aligned}\frac{dr}{dt} &= r(1 - r) \\ \frac{d\theta}{dt} &= \beta r |\sin \theta| + \alpha e^{-\gamma t},\end{aligned}\tag{1.3}$$

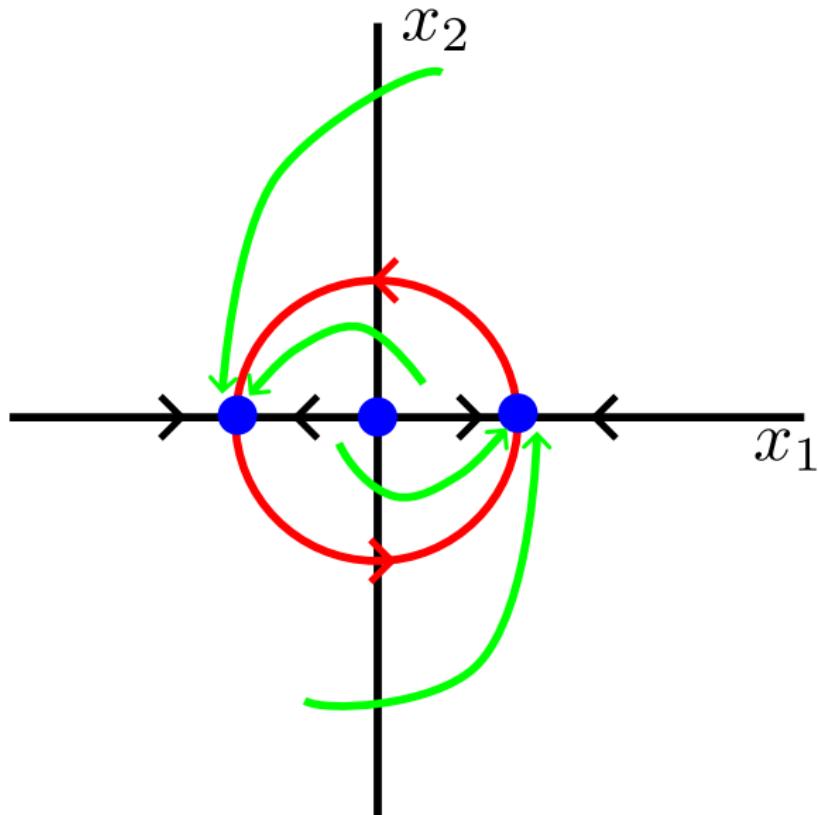
where  $\alpha > 0, \beta > \gamma > 0$ ,  $x_1 = r \cos \theta$ , and  $x_2 = r \sin \theta$ . Clearly, system (1.3) has a [limiting autonomous system](#):

$$\begin{aligned}\frac{dr}{dt} &= r(1 - r) \\ \frac{d\theta}{dt} &= \beta r |\sin \theta|.\end{aligned}\tag{1.4}$$

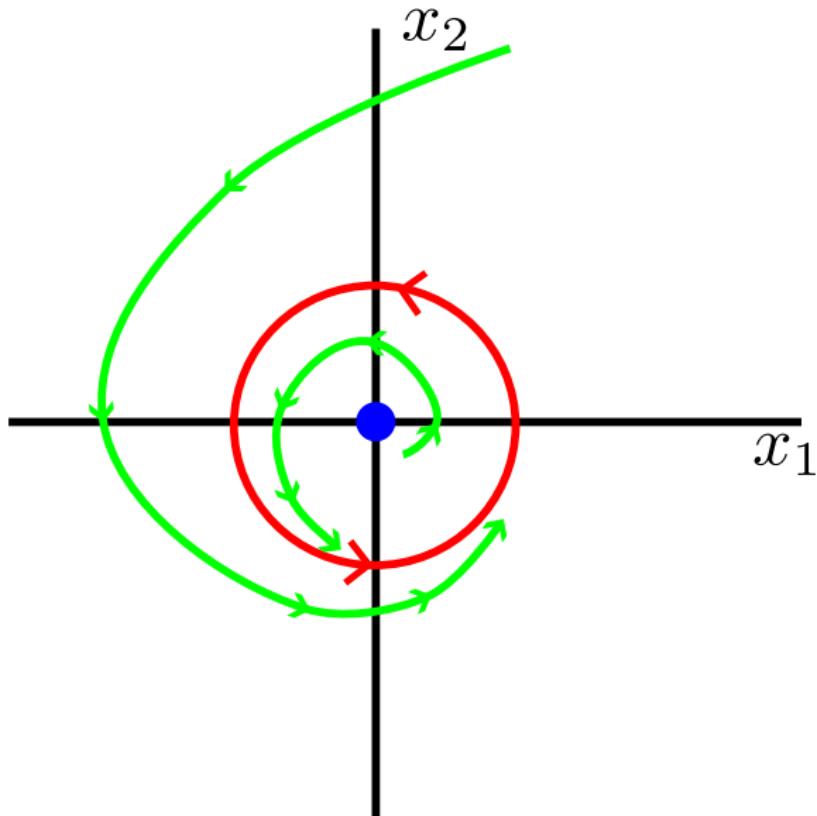
It is easy to see that any forward orbit of system (1.4) converges to one of three equilibria  $(0, 0)$ ,  $(1, 0)$  and  $(-1, 0)$  as  $t \rightarrow \infty$ .

**Exercise 1.1** Show that any nontrivial solution of system (1.3) converges to the circle  $r = 1$  as  $t \rightarrow \infty$ .

## Phase portrait of autonomous system (1.4)



## Dynamics of nonautonomous system (1.3)



# Asymptotically autonomous semiflows

To solve the above problem, one may use the theory of asymptotically autonomous semiflows:

[H. R. Thieme](#), Convergence results and Poincaré–Bendixson trichotomy for asymptotically autonomous differential equations, *J. Math. Biology*, 30(1992), 755–763.

[K. Mischaikow, H. L. Smith and H. R. Thieme](#), Asymptotically autonomous semiflows: chain recurrence and Liapunov functions, *Trans. Amer. Math. Soc.*, 347(1995), 1669–1685.

Note that in this theory, the [domain](#) of the asymptotically autonomous system is assumed to be the [same as](#) that of the limiting autonomous system.

# A chemostat model

**Example 1.2** Consider the single species growth model in a chemostat:

$$\begin{aligned}\frac{dS}{dt} &= D(S^0 - S) - xP(S) \\ \frac{dx}{dt} &= xP(S) - Dx \\ (S(0), x(0)) &= (S_0, x_0) \in \mathbb{R}_+^2.\end{aligned}\tag{1.5}$$

Here  $D$  is the dilution (or washout) rate,  $S^0$  is the inout nutrient concentration,  $P(S)$  is the per capita nutrient uptake function. In particular, we take  $P(S) = \frac{mS}{a+S}$ , where  $m$  is maximal growth rate, and  $a$  is the Michaelis-Menten (or half-saturation) constant. Both  $a$  and  $m$  can be measured experimentally.

It is easy to see that  $\mathbb{R}_+^2$  is positively invariant for system (1.5).

Let  $\Sigma = S + x$ . Then system (1.5) is equivalent to the following one:

# An equivalent model

$$\begin{aligned}\frac{d\Sigma}{dt} &= DS^0 - D\Sigma \\ \frac{dx}{dt} &= xP(\Sigma - x) - Dx \quad (1.6) \\ (\Sigma(0), x(0)) &= (\Sigma_0, x_0) \in \Omega := \{(\Sigma, x) : \Sigma \geq x \geq 0\}.\end{aligned}$$

It then follows that  $\Omega$  is positively invariant for system (1.6). Clearly,  $x(t)$  satisfies the following nonautonomous equation:

$$\frac{dx}{dt} = xP(\Sigma(t) - x) - Dx. \quad (1.7)$$

Let  $\Omega(t) := [0, \Sigma(t)]$ ,  $\forall t \geq 0$ . It is easy to see that for any initial value  $x(0) \in \Omega(0)$ , system (1.7) has a unique solution  $x(t)$  such that  $x(t) \in \Omega(t)$ ,  $\forall t \geq 0$ . Since  $\lim_{t \rightarrow \infty} \Sigma(t) = S^0$ , we have the following limiting system:

# Omega limit sets

$$\frac{dx}{dt} = xP(S^0 - x) - Dx. \quad (1.8)$$

Let  $\omega = \omega(\Sigma_0, x_0)$  be the **omega limit set** of the orbit  $(\Sigma(t), x(t))$  through  $(\Sigma_0, x_0)$  for the solution semiflow  $\Phi_t$  of system (1.6), that is,

$$\omega(\Sigma_0, x_0) := \left\{ (\Sigma, x) \in \Omega : \exists t_n \rightarrow \infty \text{ s.t. } \lim_{n \rightarrow \infty} (\Sigma(t_n), x(t_n)) = (\Sigma, x) \right\}.$$

Since  $(\Sigma(t), x(t)) \in \Omega, \forall t \geq 0$ , we have  $\Sigma(t) \geq x(t) \geq 0$ , and hence,  $\omega = \{S^0\} \times \tilde{\omega}$  with  $\tilde{\omega} \subset [0, S^0]$ .

Let  $Q_t$  be the solution semiflow of (1.8) on  $[0, S^0]$ . Since  $\Phi_t(\omega) = \omega$  for all  $t \geq 0$ , we see that  $\Phi_t(S^0, \bar{x}) = (S^0, Q_t(\bar{x})), \forall (S^0, \bar{x}) \in \omega, t \geq 0$ . It then follows that  $Q_t(\tilde{\omega}) = \tilde{\omega}, \forall t \geq 0$ . But  $\tilde{\omega}$  may **not be the omega limit set** of a forward orbit of (1.8) in  $[0, S^0]$ .

Note that the **nonautonomous system (1.7)** has a time-dependent domain  $\Omega(t)$ , while its limiting system (1.8) has the domain  $[0, S^0]$ . Thus, we **cannot directly use the theory of asymptotically autonomous systems**.

# Definition

Let  $(X, d)$  be a metric space with metric  $d$ , and  $\Phi(t) : X \rightarrow X$ ,  $t \geq 0$ , be a **continuous-time semiflow**.

**Definition 2.1** A nonempty **invariant set**  $A \subset X$  for the semiflow  $\Phi(t)$  (that is,  $\Phi(t)A = A$ ,  $\forall t \geq 0$ ) is said to be **internally chain transitive** if for any  $a, b \in A$  and any  $\epsilon > 0, t_0 > 0$ , there is a finite sequence

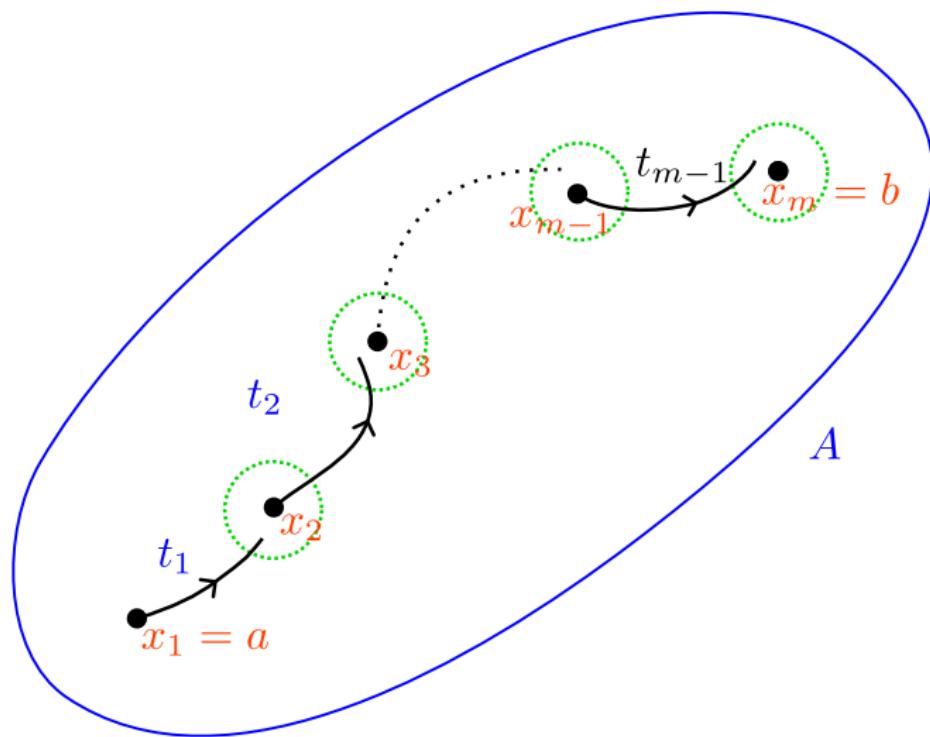
$$\{x_1 = a, x_2, \dots, x_{m-1}, x_m = b; t_1, \dots, t_{m-1}\}$$

with  $x_i \in A$  and  $t_i \geq t_0, 1 \leq i \leq m-1$ , such that

$$d(\Phi(t_i, x_i), x_{i+1}) < \epsilon, \quad \forall 1 \leq i \leq m-1.$$

The sequence  $\{x_1, \dots, x_m; t_1, \dots, t_{m-1}\}$  is called an  **$(\epsilon, t_0)$ -chain** in  $A$  connecting  $a$  and  $b$ .

# Chain transitivity



# An example for CTS

**Lemma 2.1** *Let  $\Phi(t) : X \rightarrow X$ ,  $t \geq 0$ , be a continuous-time semiflow. Then the omega (alpha) limit set of any precompact positive (negative) orbit is internally chain transitive.*

**Question:** Can a heteroclinic orbit be an omega limit set of a precompact positive orbit?

**Exercise 2.1** Show that the set  $\tilde{\omega}$  in Example 1.2 is a chain transitive set for the solution semiflow of the limiting system (1.8) on  $[0, S^0]$ .

# Strong attractivity and convergence

Recall that **the stable set** of an invariant set  $A$  for a semiflow  $Q(t)$  is defined as

$$W^s(A) := \left\{ x \in X : \lim_{t \rightarrow \infty} d(Q(t)x, A) = 0 \right\}.$$

**Theorem 2.1** (Hirsch, Smith and Zhao, 2001, JDDE) *Let  $A$  be an **attractor** and  $C$  a compact internally chain transitive set for the autonomous semiflow  $Q(t) : X \rightarrow X$ . If  $C \cap W^s(A) \neq \emptyset$ , then  $C \subset A$ .*

**Theorem 2.2** (Hirsch, Smith and Zhao, 2001, JDDE) *Assume that each **equilibrium** of the autonomous semiflow  $Q(t) : X \rightarrow X$  is an **isolated invariant set**, that there is **no cyclic chain of equilibria**, and that every precompact orbit converges to some equilibrium of  $Q(t)$ . Then any compact internally chain transitive set is an **equilibrium** of  $Q(t)$ .*

# Discrete-time semiflows

**Definition 2.2** Let  $(X, d)$  be a metric space with metric  $d$ , and  $M : X \rightarrow X$  be a *continuous map*. A nonempty invariant set  $A \subset X$  for  $M$  (i.e.,  $M(A) = A$ ) is said to be *internally chain transitive* if for any  $a, b \in A$  and any  $\epsilon > 0$ , there is a finite sequence  $\{x_1 = a, x_2, \dots, x_{m-1}, x_m = b\}$  with  $x_i \in A$  such that

$$d(M(x_i), x_{i+1}) < \epsilon, \quad \forall 1 \leq i \leq m-1.$$

The sequence  $\{x_1, \dots, x_m\}$  is called an  *$\epsilon$ -chain* in  $A$  connecting  $a$  and  $b$ .

**Remark 2.1** (Hirsch, Smith and Zhao, 2001, JDDE) *Lemma 2.1, Theorems 2.1 and 2.2 are also valid for the discrete-time semiflow  $\{M^n\}_{n \geq 0}$ .*

Note that  $M^n x$ ,  $n \geq 0$  corresponds to  $Q(t)x$ ,  $t \geq 0$ .

# The single species growth model

Now we return to model (1.5) and its equivalent system (1.6).

It is easy to obtain the global dynamics of **system (1.8)** on  $[0, S^0]$ .

**Lemma 3.1** Assume that  $P'(s) > 0$ ,  $\forall s \geq 0$ . Then the following statements are valid:

- (a) If  $P(S^0) \leq D$ , then  $x = 0$  is globally asymptotically stable for system (1.8) in  $[0, S^0]$ .
- (b) If  $P(S^0) > D$ , then system (1.8) has a positive equilibrium  $x^* \in (0, S^0)$  and  $x = x^*$  is globally asymptotically stable for system (1.8) in  $(0, S^0]$ .

# The global dynamics for model (1.5)

For the chemostat model (1.5), we have the following threshold type result.

**Theorem 3.1** Assume that  $P'(s) > 0$ ,  $\forall s \geq 0$ , and let  $(S(t), x(t))$  be the solution of system (1.5). Then the following statements are valid:

- (i) If  $P(S^0) \leq D$ , then  $\lim_{t \rightarrow \infty} (S(t), x(t)) = (S^0, 0)$  for all  $S(0) \geq 0$  and  $x(0) \geq 0$ .
- (ii) If  $P(S^0) > D$ , then there exists  $x^* \in (0, S^0)$  with  $P(S^0 - x^*) = D$  such that  $\lim_{t \rightarrow \infty} (S(t), x(t)) = (S^0 - x^*, x^*)$  for all  $S(0) \geq 0$  and  $x(0) > 0$ .

# Proof of Theorem 3.1

Let  $\Phi(t)$  be the solution semiflow of system (1.6) on  $\Omega$ , and  $Q(t)$  be the solution semiflow of system (1.8) on  $[0, S^0]$ . Let  $\omega$  and  $\tilde{\omega}$  be defined as in Example 1.2. By Exercise 2.1,  $\tilde{\omega}$  is an **internally chain transitive set for  $Q(t)$  on  $[0, S^0]$** .

In the case where  $P(S^0) \leq D$ , we see from Lemma 3.1 that  $W^s(0) = [0, S^0]$ , and hence,  $\tilde{\omega} \cap W^s(0) \neq \emptyset$ . By Theorem 2.1, it then follows that  $\tilde{\omega} = \{0\}$ , and hence,  $\omega = (S^0, 0)$ . This implies that  $\lim_{t \rightarrow \infty} (\Sigma(t), x(t)) = (S^0, 0)$ , and hence,

$$\lim_{t \rightarrow \infty} S(t) = \lim_{t \rightarrow \infty} (\Sigma(t) - x(t)) = S^0.$$

In the case where  $P(S^0) > D$ , we see from Lemma 3.1 that  $W^s(x^*) = (0, S^0]$ . Since  $x(0) > 0$ , we have  $x(t) > 0$ ,  $\forall t \geq 0$  (**why?**). Now we show that  $\tilde{\omega} \cap W^s(x^*) \neq \emptyset$ . Assume, by contradiction, that  $\tilde{\omega} \cap W^s(x^*) = \emptyset$ . Then  $\tilde{\omega} = \{0\}$ , and hence,  $\omega = (S^0, 0)$ . Thus, we have  $\lim_{t \rightarrow \infty} (\Sigma(t), x(t)) = (S^0, 0)$ .

Since  $\lim_{t \rightarrow \infty} (P(\Sigma(t)) - x(t)) - D = P(S^0) - D > 0$ , there exists  $T > 0$  such that

$$P(\Sigma(t) - x(t)) - D > \frac{1}{2} (P(S^0) - D) > 0, \quad \forall t \geq T.$$

Then we have

$$x'(t) \geq x(t) \cdot \frac{1}{2} (P(S^0) - D), \quad \forall t \geq T.$$

This implies that  $x(t) \rightarrow \infty$  as  $t \rightarrow \infty$ , a contradiction. Thus,  $\tilde{\omega} \cap W^s(x^*) \neq \emptyset$ . By Theorem 2.1, it follows that  $\tilde{\omega} = x^*$ , and hence,  $\omega = (S^0, x^*)$ . Thus, we have  $\lim_{t \rightarrow \infty} (\Sigma(t), x(t)) = (S^0, x^*)$ , and  $\lim_{t \rightarrow \infty} S(t) = \lim_{t \rightarrow \infty} (\Sigma(t) - x(t)) = S^0 - x^*$ .

**Exercise 3.1** Use Theorem 2.2 to prove the conclusion (ii) in Theorem 3.1.

# References

- M. W. Hirsch, H. L. Smith and Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, *J. Dynamics and Differential Equations*, 13(2001), 107–131.
- Zhao, *Dynamical Systems in Population Biology*, second edition, Springer, New York, 2017.