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Abstract

The theory of asymptotic speeds of spread and monotone traveling waves is es-

tablished for a class of monotone discrete and continuous-time semiflows and is

applied to a functional differential equation with diffusion, a time-delayed lat-

tice population model and a reaction-diffusion equation in an infinite cylinder.
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1 Introduction

Since the pioneering work of Fisher [14] and Kolmogorov, Petrovskii, and

Piskunov [18], there have been extensive investigations on traveling wave solutions

and asymptotic (long time) behavior in terms of spreading speeds for various evolu-

tion systems. Traveling waves were studied for nonlinear reaction-diffusion equa-

tions modeling physical and biological phenomena (see, e.g., books [26, 27, 42]

and references therein), for integral and integrodifferential population models (see,

e.g., [4, 7, 11, 13, 35]), for lattice differential systems (see, e.g., [5, 8, 9, 10, 23, 49,

53]), and for time-delayed reaction-diffusion equations (see, e.g., [34, 37, 40, 50]).

The concept of asymptotic speeds of spread was introduced by Aronson and

Weinberger [1, 2, 3] for reaction-diffusion equations and applied by Aronson [1] to

an integrodifferential equation. It was extended to a larger class of integral equa-

tions by Diekmann [12] and Thieme [38, 39] independently. In [44, 45], Wein-

berger proved the existence of asymptotic speeds of spread for a discrete-time re-

cursion with a translation-invariant order-preserving operator. Radcliffe and Rass

[29, 30, 31] studied traveling waves and asymptotic speeds of spread for a class of

epidemic systems of integral equations (see also their book [32]). In [21, 22], Lui

also generalized the results in [45] to systems of recursions.

Recently Weinberger, Lewis, and Li [19, 20, 47] extended the theory of spread-

ing speeds and monotone traveling waves in [21, 45] in such a way that they can

be applied to invasion processes of certain models for cooperation or competition

among multiple species, and Weinberger [46] has also developed the theory in [21,
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45] to the order-preserving operators with a periodic habitat. Moreover, Thieme

and Zhao [40] have generalized the earlier theory in [1, 4, 7, 11, 12, 13, 38, 39]

to a class of nonlinear integral equations that is large enough to cover many time-

delayed reaction-diffusion population models.

However, the theory for discrete-time recursions cannot be applied to auto-

nomous time-delayed reaction-diffusion equations and lattice systems. This is be-

cause the solution map Qt associated with such an equation is defined on the set of

bounded and continuous functions from [−τ, 0] × H to R
k , where H is the spatial

habitat and τ is the time delay, and Qt is not compact for t ∈ (0, τ ) with respect to

the compact open topology.

We also note that the theory developed in [40] applies only to scalar time-

delayed reaction-diffusion equations and to certain types of reaction-diffusion sys-

tems with or without time delays that can be reduced to the scalar integral equations

(see [40, 43]). Moreover, both discrete-time recursions and continuous-time inte-

gral equations approaches cannot be employed to study the spreading speeds and

traveling waves for parabolic equations in infinite cylinders. We should point out

that the spreading speed c∗ and the existence of traveling waves with wave speed

c > c∗ were established in [48] for a nonlocal time-delayed lattice system, and

traveling waves were studied in [6, 24, 33, 41] for some parabolic equations in

cylinders.

The purpose of this paper is to establish the theory of asymptotic speeds of

spread and monotone traveling waves for monotone discrete and continuous-time

semiflows with monostable nonlinearities so that it applies to the aforementioned

evolution systems with time delays and reaction-diffusion equations in cylinders.

Our methods and arguments are highly motivated by the earlier works in [21, 45].

However, this generalization is nontrivial and needs some new ideas and techniques

such as the equicontinuity of the iterated sequences of functions, linear opera-

tors defined on an extended function space, the discrete-time maps approach to

continuous-time semiflows, and the monotonicity and continuity of wave profiles

for continuous-time semiflows with discrete spatial habitats.

Note that in the statement of the general theorem on spreading speeds, it is often

assumed that the initial data u0(x) ≥ σ on a ball of radius rσ . We prove that rσ can

be chosen to be independent of the positive real number σ in the case where the

monotone map Q either is subhomogeneous or can be approximated from below

by a sequence of linear operators. Under a weaker compactness assumption on

monotone discrete and continuous-time semiflows, we establish the existence of

minimal wave speeds for monotone traveling waves and show that they coincide

with the asymptotic speeds of spread.

The organization of this paper is as follows: In Section 2 we show the exis-

tence of asymptotic speeds of spread for monotone discrete and continuous-time

semiflows. In Section 3 we give the estimates of spreading speeds by the linear

operators approach. Section 4 establishes the existence of traveling waves above
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the spreading speeds and their nonexistence below the spreading speeds. In Sec-

tion 5 we apply the theory in Sections 2 through 4 to a functional differential equa-

tion with diffusion, a nonlocal and time-delayed lattice population model, and a

reaction-diffusion equation in a cylinder.

2 Asymptotic Speeds of Spread

Let τ be a nonnegative real number and C be the set of all bounded and contin-

uous functions from [−τ, 0] ×H to R
k , where H = R or Z. Clearly, any vector in

R
k and any element in the space C̄ := C([−τ, 0], R

k) can be regarded as a function

in C.

For u = (u1, . . . , uk) and v = (v1, . . . , vk) ∈ C, we write u ≥ v (u � v)

provided ui (θ, x) ≥ vi (θ, x) (ui (θ, x) > vi (θ, x)) ∀i = 1, . . . , k, θ ∈ [−τ, 0], and

x ∈ H; and u > v provided u ≥ v but u �= v. For any two vectors a and b in R
k or

two functions a, b ∈ C̄, we can define a ≥ (>,�) b similarly. For any r ∈ C̄ with

r � 0, we define Cr := {u ∈ C : r ≥ u ≥ 0} and C̄r := {u ∈ C̄ : r ≥ u ≥ 0}.
In this paper, we always equip C̄ with the maximum norm ‖ · ‖ and the positive

cone C̄+ = {φ ∈ C̄ : φ(θ) ≥ 0 ∀θ ∈ [−τ, 0]} so that C̄ is an ordered Banach space.

We also equip C with the compact open topology, that is, vn → v in C means

that the sequence of functions vn(θ, x) converges to v(θ, x) uniformly for (θ, x) in

every compact set. Moreover, we can define the metric function d( · , · ) in C with

respect to this topology by

d(u, v) =
∞∑

k=0

max
|x |≤k,θ∈[−τ,0]

|u(θ, x) − v(θ, x)|
2k

∀u, v ∈ C

so that (C, d) is a metric space.

Define the reflection operator R by R[u](θ, x) = u(θ,−x). Given y ∈ H,

define the translation operator Ty by Ty[u](θ, x) = u(θ, x − y).

Let β ∈ C̄ with β � 0 and Q = (Q1, . . . , Qk) : Cβ → Cβ . We impose the

following hypotheses on Q:

(A1) Q[R[u]] = R[Q[u]], Ty[Q[u]] = Q[Ty[u]] ∀y ∈ H.

(A2) Q : Cβ → Cβ is continuous with respect to the compact open topology.

(A3) One of the following two properties holds:

(a) {Q[u]( · , x) : u ∈ Cβ, x ∈ H} is a precompact subset of C̄.

(b) There exists a nonnegative number ς < τ such that Q[u](θ, x) =
u(θ + ς, x) for −τ ≤ θ < −ς , the operator

S[u](θ, x) :=
{

u(0, x), −τ ≤ θ < −ς,

Q[u](θ, x), −ς ≤ θ ≤ 0,

is continuous on Cβ , and {S[u]( · , x) : u ∈ Cβ, x ∈ H} is a precompact

subset of C̄.
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(A4) Q : Cβ → Cβ is monotone (order preserving) in the sense that Q[u] ≥
Q[v] whenever u ≥ v in Cβ .

By the Arzela-Ascoli theorem, it is easy to see that (A3)(a) is equivalent to

the statement that {Q[u]( · , x) : u ∈ Cβ, x ∈ H} is a family of equicontinuous

functions of θ ∈ [−τ, 0]. Similarly, if (A3)(b) holds, then {S[u]( · , x) : u ∈
Cβ, x ∈ H} is a family of equicontinuous functions of θ ∈ [−τ, 0]. Note that

hypothesis (A1) implies that Q[v] ∈ C̄β whenever v ∈ C̄β . Thus, Q is also a map

from C̄β to C̄β .

(A5) Q : C̄β → C̄β admits exactly two fixed points 0 and β, and for any positive

number ε, there is α ∈ C̄β with ‖α‖ < ε such that Q[α] � α.

Clearly, hypotheses (A3) and (A5) imply that for any γ ∈ C̄β with 0 � γ � β,

Qn[γ ] → β as n → +∞. We remark that hypothesis (A3) is motivated by time-

delayed reaction-diffusion systems. For such a system, let Qς be the solution map

at time ς . If ς is less than the delay τ , then Qς satisfies property (A3)(b) (see, e.g.,

[16, sec. 3.6]).

Throughout this paper, we assume that Q satisfies hypotheses (A1)–(A5). Let

C̃ be the set of all continuous functions from [−τ, 0] × R to R
k . In the case where

H = Z, we define an operator Q̃ on the set C̃β by

Q̃[v](θ, s) := Q[v( · , · + s)](θ, 0) ∀θ ∈ [−τ, 0], s ∈ R.

It is easy to see that Q̃ satisfies hypotheses (A1), (A3), (A4), and (A5) with H = R.

The following lemma shows that Q̃ also satisfies (A2):

LEMMA 2.1 Q̃ is continuous on C̃β with respect to the compact open topology.

PROOF: Given v ∈ C̃β . For any s ∈ R, we define vs ∈ Cβ by vs(θ, x) =
v(θ, x + s) for θ ∈ [−τ, 0], x ∈ H. We first prove the following claim:

Claim. Let [a, b] be a given bounded interval in R. For any ε > 0, there exist δ =
δ(ε) > 0 and N = N (ε) > 0 such that if for some s ∈ [a, b], |u(θ, x)−vs(θ, x)| <

δ ∀x ∈ [−N , N ]H, θ ∈ [−τ, 0], then we have |Q[u](θ, 0) − Q[vs](θ, 0)| < ε

∀θ ∈ [−τ, 0], where [−N , N ]H = {x ∈ H : −N ≤ x ≤ N }.
Indeed, for any s0 ∈ [a, b], since Q is continuous at vs0

, there exist δs0
> 0 and

Ns0
> 0 such that

|Q[u](θ, 0) − Q[vs0
](θ, 0)| <

ε

2
provided |u(θ, x) − vs0

(θ, x)| < δs0
∀x ∈ [−Ns0

, Ns0
]H. It is easy to see that vs is

a continuous map from R to Cβ . Thus, there exists ms0
> 0 such that

|vs(θ, x) − vs0
(θ, x)| <

δs0

2
∀x ∈ [−Ns0

, Ns0
]H, θ ∈ [−τ, 0],

provided that |s − s0| < ms0
. It then follows that

|Q[vs](θ, 0) − Q[vs0
](θ, 0)| <

ε

2
∀θ ∈ [−τ, 0]
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provided that |s − s0| < ms0
. By the compactness of [a, b], there exists a finite

sequence {s1, . . . , sk} such that [a, b] ⊂ ⋃k
i=1 B(si , msi

). Let δ = min{δsi
/2 :

1 ≤ i ≤ k} and N = max{Nsi
: 1 ≤ i ≤ k}. Assume that for some s ∈ [a, b],

|u(θ, x) − vs(θ, x)| < δ ∀x ∈ [−N , N ]H, θ ∈ [−τ, 0]. Then s ∈ B(si , msi
) for

some i , and hence

|Q[vs](θ, 0) − Q[vsi
](θ, 0)| <

ε

2
.

Since

|u(θ, x) − vsi
(θ, x)| ≤ |u(θ, x) − vs(θ, x)| + |vs(θ, x) − vsi

(θ, x)|

< δ + δsi

2
≤ δsi

for all x ∈ [−Nsi
, Nsi

]H, θ ∈ [−τ, 0], we have

|Q[u](θ, 0) − Q[vsi
](θ, 0)| <

ε

2
.

Thus, we obtain

|Q[u](θ, 0) − Q[vs](θ, 0)| ≤ |Q[u](θ, 0) − Q[vsi
](θ, 0)|

+ |Q[vsi
](θ, 0) − Q[vs](θ, 0)

<
ε

2
+ ε

2
= ε.

This proves the claim above.

Let vn → v in C̃β . Given a bounded interval [a, b] ⊂ R and ε > 0, let δ and

N be defined as in the above claim. Since limn→∞ vn(θ, x + s) = v(θ, x + s)

uniformly for x ∈ [−N , N ]H, θ ∈ [−τ, 0], and s ∈ [a, b], there exists n0 =
n0(ε) > 0 such that for all n ≥ n0, we have

|vn
s (θ, x) − vs(θ, x)| < δ ∀x ∈ [−N , N ]H, θ ∈ [−τ, 0], s ∈ [a, b].

By the claim above, it follows that for all n ≥ n0, we have

|Q̃[vn](θ, s) − Q̃[v](θ, s)| = |Q[vn
s ](θ, 0) − Q[vs](θ, 0)| < ε

for all θ ∈ [−τ, 0] and s ∈ [a, b]. This implies that Q̃[vn](θ, s) converges to

Q̃[v](θ, s) uniformly for θ ∈ [−τ, 0], s ∈ [a, b]. Consequently, Q̃[vn] converges

to Q̃[v] with respect to the compact open topology. �

Remark 2.2. In Lemma 2.1, R can be replaced by any set B ⊂ R such that H ⊂ B

and x − y, x + y ∈ B whenever x, y ∈ B. Moreover, for any v = v(θ, s),

θ ∈ [−τ, 0], and s ∈ B, we can also define the extension Q̃ of Q provided v is

continuous in θ .

In view of Lemma 2.1, we assume, without loss of generality, that H = R in

the rest of this section. We start with the discrete-time semiflow on Cβ :

un+1 = Q[un], n ≥ 0, u0 ∈ Cβ.
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By an induction argument, it is easy to prove the following comparison princi-

ple (see, e.g., [21, prop. 2.1]).

PROPOSITION 2.3 Let R1 or R2 be an order-preserving operator. Suppose the

sequence {vn} satisfies vn+1 ≥ R1[vn] and the sequence {wn} satisfies wn+1 ≤
R2[wn] for all n. Suppose also that R1[u] ≥ R2[u] for all functions u and that

v0 ≥ w0. Then vn ≥ wn for all n.

Let α ∈ C̄β with 0 � α � β, and assume that φ = (φ1, . . . , φk) ∈ Cβ has the

following properties:

(B1) φi (θ, · ) is a nonincreasing function for any fixed θ ∈ [−τ, 0] and 1 ≤
i ≤ k.

(B2) φi (θ, x) = 0 for any θ ∈ [−τ, 0], x ≥ 0, and 1 ≤ i ≤ k.

(B3) φ(θ,−∞) = α(θ) for any θ ∈ [−τ, 0].
Then we have the following result:

LEMMA 2.4 {φ( · , x) : x ∈ H} is a family of equicontinuous functions of θ ∈
[−τ, 0].

PROOF: Define ψ(θ, η) = φ(θ, tan η). Then ψ is a continuous function on

[−τ, 0] × (−π
2
, π

2
) and is nonincreasing in η ∈ (−π

2
, π

2
). Since φ satisfies (B2)

and (B3), Dini’s theorem implies that ψ has a natural continuous extension to the

compact set [−τ, 0] × [−π
2
, π

2
]. Thus, the equicontinuity of {φ( · , x) : x ∈ H} =

{ψ( · , η) : η ∈ (−π
2
, π

2
)} follows from the uniform continuity of ψ on [−τ, 0] ×

[−π
2
, π

2
]. �

Given a real number c, we define the operator Rc = (R1
c , . . . , Rk

c ) by

Rc[a](θ, s) = max{φ(θ, s), T−c[Q[a]](θ, s)}
and a sequence of vector-valued functions an(c; θ, s) of (θ, s) ∈ [−τ, 0] × R by

the recursion

(2.1) a0(c; θ, s) = φ(θ, s), an+1(c; θ, s) = Rc[an(c; · )](θ, s).

Before we prove the main results in this section, we need a series of lemmas.

LEMMA 2.5 The following statements are valid:

(i) Rc is order preserving.

(ii) an(c; θ, s) is between 0 and β, nondecreasing in n, nonincreasing in s and

c, and continuous in (c, s, θ).

(iii) an(c; ·,−∞) exists, an(c; ·,−∞) ≥ Qn[α], and an(c; ·,∞) = 0 for

each n.

(iv) limn→∞ an(c; θ, s) = a(c; θ, s) exists and the limit is uniform in θ , a is

nonincreasing in s and c, and a(c; · ,−∞) = β(·).
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PROOF: Statements (i), (ii), and (iii) are obvious. We prove only (iv). First, we

claim that {an(c; · , s) : n ≥ 0, c, s ∈ R} is a family of equicontinuous functions. If

(A3)(a) holds, the claim is obvious. Now consider the case where (A3)(b) holds. In

fact, we have shown that {a0( · , s) = φ( · , s) : s ∈ R} is a family of equicontinuous

functions. This means that given any ε > 0, there is some δ0 > 0 such that if

|θ1 − θ2| < δ0, then |a0(θ1, s) − a0(θ2, s)| < ε for any s ∈ R. Consider Q[a0].
By hypothesis (A3), {S[Cβ](θ, x) : x ∈ R} is family of equicontinuous functions

in θ ∈ [−τ, 0]; that is, there is δ > 0 such that for any v ∈ Cβ , s ∈ R, and

θ1, θ2 ∈ [−τ, 0] with |θ1 − θ2| < δ, we have |S[v](θ1, s) − S[v](θ2, s)| < ε.

We first consider

Q[a0](θ, x) =
{

a0(θ + ς, x), −τ ≤ θ < −ς,

S[a0](θ, x), −ς ≤ θ ≤ 0.

It follows that for any x ∈ R, Q[a0](θ1, x) − Q[a0](θ2, x) < ε whenever −ς ≤
θ1, θ2 ≤ 0 and |θ1 − θ2| < δ or −τ ≤ θ1, θ2 ≤ −ς and |θ1 − θ2| < δ0. Since

a1 = max{a0, T−c[Q[a0]]},
we have |a1(θ1, x) − a1(θ2, x)| < ε whenever −ς ≤ θ1, θ2 ≤ 0 and |θ1 − θ2| <

δ1 := min{δ, δ0} or −τ ≤ θ1, θ2 ≤ −ς and |θ1 − θ2| < δ0. This implies

that |a1(θ1, x) − a2(θ2, x)| < 2ε whenever −τ ≤ θ1, θ2 ≤ 0 and |θ1 − θ2| <

min{δ1, δ0} = δ1.

Next we consider

Q[a1](θ, x) =
{

a1(θ + ς, x), −τ ≤ θ < −ς,

S[a1](θ, x), −ς ≤ θ ≤ 0.

It follows that Q[a1](θ1, x) − Q[a1](θ2, x) < ε whenever −ς ≤ θ1, θ2 ≤ 0 and

|θ1 − θ2| < δ, or −2ς ≤ θ1, θ2 ≤ −ς and |θ1 − θ2| < δ1, or −τ ≤ θ1, θ2 ≤ −2ς

and |θ1 − θ2| < δ0. Since a2 = max{a0, T−c[Q[a1]]}, we see that |a2(θ1, x) −
a2(θ2, x)| < ε whenever −ς ≤ θ1, θ2 ≤ 0 and |θ1 − θ2| < δ1, or −2ς ≤ θ1, θ2 ≤
−ς and |θ1 − θ2| < min{δ1, δ0} = δ1, or −τ ≤ θ1, θ2 ≤ −2ς and |θ1 − θ2| < δ0.

It then follows that |a2(θ1, x) − a2(θ2, x)| < 2ε whenever −τ ≤ θ1, θ2 ≤ 0 and

|θ1 − θ2| < min{δ1, δ0} = δ1.

Repeating this procedure, we can show that for any x ∈ R and n ≥ 1,

|an(θ1, x) − an(θ2, x)| < 2ε whenever −τ ≤ θ1, θ2 ≤ 0 and |θ1 − θ2| < δ1.

This proves our claim, and hence statement (iv). �

LEMMA 2.6 a(c; · ,∞) = β if and only if there is some n such that an(c; · , 0) �
φ( · ,−∞) = α.

PROOF: The only if part is obvious since an increases to a, which is identically

β. This implies that an(c; · , 0) increases to β uniformly. Since β � α, we have

an(c; · , 0) � φ( · ,−∞) = α.
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Now consider the if part. Clearly, an(c; · , 0) � α implies that for sufficiently

small t > 0, an(c; · , t) � α. Thus, T−t [an(c; · )] ≥ a0(c; · ). We claim that

T−t [an+i (c; ·)] ≥ ai (c; · ) for all i ≥ 1. Note that{
T−t [an+1(c; · )] ≥ T−t [an(c; · )] ≥ a0(c; · )
T−t [an+1(c; · )] ≥ T−c−t [Q[an(c; · )]] ≥ T−c[Q[a0(c; · )]].

Thus, our claim holds for i = 1. By an induction argument, we can prove that the

claim holds for all i . In other words, we have an+i (c; · , s+t) ≥ ai (c; · , s) ∀s ∈ H.

Letting i → ∞, we obtain a(c; · , s + t) ≥ a(c; · , s) ∀s ∈ H, which implies that

a(c; · , s) ≡ a(c; · ,−∞) = β, and hence a(c; · ,∞) = β. �

Define

(2.2) c∗ := sup{c : a(c; · ,∞) = β}.
It is easy to show that c∗ > −∞ by Lemma 2.6, but c∗ may be infinity. Moreover,

if a(c0; · ,∞) = β for some c0, then a(c0; · , 0) = β � α. This implies that there

is some n such that an(c0; · , 0) � α. Since an is continuous in c in a neighborhood

of c0, an(c; · , 0) � α. Hence, we have the following result:

LEMMA 2.7 a(c; θ, s) ≡ β(θ) if and only if c < c∗.

LEMMA 2.8 Let α̂ ∈ C̄β with 0 � α̂ � β, and let φ̂ satisfy (B1)–(B3) with

α replaced by α̂. Define ân recursively by (2.1) with φ replaced by φ̂. Denote

â = limn→∞ ân. Then â(c; · ,∞) = a(c; · ,∞).

PROOF: Since β � α and Qn[α̂] → β as n → ∞, there exists n0 such that

Qn[α̂] � α for n ≥ n0. From Lemma 2.5(iii), there exists t = t (c) > 0 such that

ân(c; · ,−t) � α for n ≥ n0. Since ân and φ are nonincreasing in s, we have

(2.3) Tt [ân(c; · )] ≥ a0(c; · ), n ≥ n0.

Consider the sequence Tt [ân0+l(c; · )] for l ≥ 0. We claim that

(2.4) Tt [ân0+l+1(c; · )] ≥ Tt [Rc[ân0
(c; · )]], l ≥ 0.

Indeed, we observe that because of (2.3), the right-hand side of inequality (2.4) is

not greater than

max{Tt [ân0
(c; · )], Tt−c[Q[ân0+l(c; ·)]]},

which in turn is not greater than Tt [ân0+l+1(c; · )]. From our claim and Proposition

2.3, we have

Tt [ân0+l(c; · )] ≥ al(c; · ) ∀l ≥ 0.

Letting l → ∞ and then s → ∞, we have â(c; · ,∞) ≥ a(c; · ,∞). Exchanging

the positions of φ and φ̂ and repeating the proof above, we obtain the opposite

inequality. This completes the proof. �

By the definition of c∗, we can obtain the following lemma easily:
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LEMMA 2.9 Let 0 � β1 ≤ β2 in C̄, Qi satisfy (A1)–(A5) with β replaced by βi ,

and c∗
i be defined as in (2.2) for Qi , i = 1, 2. If Q1[u] ≤ Q2[u] for all u ∈ Cβ1

,

then c∗
1 ≤ c∗

2 .

LEMMA 2.10 a(c; · ,∞) is continuous, Q[a(c; · ,∞)] = a(c; · ,∞), and a(c;
· ,∞) = 0 for c ≥ c∗.

PROOF: By Lemma 2.5(iv), {a(c; · , s) : s ∈ H} is equicontinuous. Then

a(c; · ,∞) = lim
s→∞

a(c; · , s)

is continuous, and limt→∞ T−t [a] = a(c; · ,∞) with respect to the compact open

topology.

Note that an(c; θ, s) ≤ a(c; θ, s). Let ã(θ, s) be a continuous function on

[−τ, 0] × H that is nonincreasing in s. Moreover, suppose ã( · ,∞) = a(c; · ,∞)

and ã(θ, s) ≥ a(c; θ, s). Then an(c; θ, s) ≤ ã(θ, s). For any s > 0, we have

an+1(c; θ, s) ≤ Q[T−c[ã]](θ, s).

Letting n → ∞, we then obtain a(c; θ, s) ≤ Q[T−c[ã]](θ, s) and

a(c; θ,∞) ≤ lim
s→∞

Q[T−c[ã]](θ, s) = Q[a(c; · ,∞)](θ) ∀θ ∈ [−τ, 0].
Assume, for the sake of contradiction, that Q[a(c; · ,∞)] > a(c; · ,∞). Then

there exist i0 with 1 ≤ i0 ≤ k and θ0 ∈ [−τ, 0] such that Qi0
[a(c; · ,∞)](θ0) >

ai0(c; θ0,∞). Denote by Si the support of ai (c; θ,∞) and by Ṡi the interior of Si

in [−τ, 0] for 1 ≤ i ≤ k. By continuity, there are a compact set S′
i ⊂ Ṡi and a

vector-valued function δ ∈ C̄ with S′
i being the support of the i th component of δ

such that

(a) 0 < δ < a(c; · ,∞),

(b) if Si �= ∅, then δi (θ) < ai (c; θ, ∞) on S′
i , and

(c) ai0(c; θ0,∞) < Qi0
[δ](θ0).

For each positive integer l, a(c; · , l) ≥ a(c; · ,∞) ≥ δ and an(c; θ, l) →
a(c; θ, l) uniformly for θ ∈ [−τ, 0] as n → ∞. Since ai (c; θ, l) ≥ ai (c; θ, ∞) >

δi (θ) ∀θ ∈ S′
i , 1 ≤ i ≤ k, we can choose a sufficiently small ε > 0 such that

ai (c; θ, l) > δi (θ) + ε ∀θ ∈ S′
i , 1 ≤ i ≤ k. Note that an(c; θ, l) → a(c; θ, l)

uniformly for θ ∈ [−τ, 0]. It follows that there is some nl such that ai
nl
(c; θ, l) ≥

δi (θ) on S′
i for any 1 ≤ i ≤ k. Clearly, ai

nl
(c; θ, l) ≥ δi (θ) = 0 on [−τ, 0] \ S′

i .

Thus, we have anl
(c; θ, l) ≥ δ(θ) ∀θ ∈ [−τ, 0].

Let ψ(θ, s) be a continuous, nonincreasing-in-s, vector-valued function such

that ψ( · , s) = δ(·) for s ≤ −1 and ψ( · , s) = 0 for s ≥ 0. Then anl
(c; θ, s) ≥

ψ(θ, s − l), and hence

a(c; θ, s) ≥ anl+1(c; θ, s) ≥ Q[Tl−c[ψ]](θ, s).

Letting l → ∞ and then s → ∞, we have a(c; · ,∞) ≥ Q[δ], which contradicts

statement (c). Thus, Q[a(c; · ,∞)] = a(c; · ,∞). Since a(c; · ,∞) < β for

c ≥ c∗, we obtain a(c; · ,∞) = 0 by hypothesis (A5). �



10 X. LIANG AND X.-Q. ZHAO

THEOREM 2.11 Let u0 ∈ Cβ be such that 0 ≤ u0 � β and u0( · , x) = 0 for x

outside a bounded interval, and let un = Q[un−1] for n ≥ 1. Then for any c > c∗,

there holds limn→∞,|x |≥nc un(θ, x) = 0 uniformly for θ ∈ [−τ, 0].
PROOF: Suppose that u0( · , x) = 0 if x ≥ ρ − 1. Moreover, without loss of

generality, assume that u0( · , x) � α where α is defined in (A5). Let φ(θ, s) be

a continuous and nonincreasing-in-s vector-valued function such that φ(θ, s) =
α(θ) for s ≤ −1, and φ(θ, s) = 0 for s ≥ 0. We define an and c∗ as in (2.1) and

(2.2). Let

vn(θ, x) = an(c
∗; θ, x − nc∗ − ρ).

Then

u0(θ, x) ≤ φ(θ, x − ρ) = v0(θ, x).

By the definition of an , we see that vn+1 ≥ Q[vn] for all n. Hence, un ≤ vn by

Proposition 2.3. If x > nc, then

un(θ, x) ≤ an(c
∗; θ, x − nc∗ − ρ) ≤ an(c

∗; θ, nc − nc∗ − ρ)

≤ a(c∗; θ, nc − nc∗ − ρ).

This implies that limn→∞,x≥nc un(θ, x) = 0 uniformly for θ ∈ [−τ, 0].
Let ũ0 = R[u0]. Then we have

ũn = Qn[ũ0] = Qn[R[u0]] = R[Qn[u0]].
By a similar argument, it follows that limn→∞,x≥nc ũn(θ, x) = 0, and hence

limn→∞,x≤−nc un(θ, x) = 0 uniformly for θ ∈ [−τ, 0]. �

Let �(·): R+ → R+ be a smooth, nonincreasing function such that

(2.5) �(s) =
{

1, s ≤ 1
2
,

0, s ≥ 1.

For any real number B > 0, we define the map Q B on C by

Q B[u](θ, x) = Q

[
�

( | · |
B

)
T−x [u]

]
(θ, 0) ∀(θ, x) ∈ [−τ, 0] × H.

Then we have the following lemma about Q B .

LEMMA 2.12 The following statements hold:

(i) Q B satisfies hypotheses (A2)–(A4), Q B[0] = 0, and Q BR = RQ B,

Ty Q B = Q B Ty for any y ∈ H.

(ii) For each u, Q B[u] is nondecreasing in B and converges to Q[u] as B →
∞.

(iii) Q B[u](θ, x0) depends only on the values of u in the set [−τ, 0] × [x0 −
B, x0 + B].

LEMMA 2.13 For any ε ∈ C̄β with ε � 0, there is B such that Q B[α] � α and

limn→∞ Qn
B[α] → βB � β − ε, where α is defined as in hypothesis (A5).
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PROOF: By conclusion (ii) of Lemma 2.12, there is B0 > 0 such that Q B[α] ≥
α for B ≥ B0 since Q[α] � α. Since Qn[α] → β, there is some n0 such that

Qn0[α] � β − ε, and hence there is some B ′
0 such that Q

n0

B [α] � β − ε for

B ≥ B ′
0. Choose B ≥ max{B0, B ′

0}. Then Qn
B[α] ≥ Qn−1

B [α] and Qn
B[α] → βB ≥

Q
n0

B [α] � β − ε. �

Let φ satisfy (B1)–(B3) with φ( · , s) = α(·) for s ≤ −1. Define

R̃c[a](θ, s) = max{φ(θ, s), T−c[Q B[a]](θ, s)}
and

ã0(c; θ, s) = φ(θ, s), ãn+1(c; θ, s) = R̃c[an(c, · )](θ, s).

As argued in Lemma 2.5, we see that ãn(c, θ, s) is between 0 and βB , nondecreas-

ing in n, nonincreasing in s and c, and continuous in c, s, and θ . Moreover,

(2.6) ãn(c; θ, s) =
{

Qn
B[α](θ), s ≤ −1 − n(B + c),

0, s ≥ n(B − c).

Then ãn(c; · ,−∞) = Qn
B[α]. Fix c̄ ∈ (c, c∗). Note that the sequence an(c̄; θ, s) =

Rn
c̄ [φ](θ, s) → β(θ). By Lemma 2.6, there is an integer N such that aN (c̄; · , 0) �

α. Furthermore, we can choose B so large that ãN (c̄; · , 0) � α also. Therefore,

ãn+1(c̄; θ, s) = Q B[T−c̄[ãn(c̄; · )]](θ, s) ∀n ≥ N .

Define the sequence en by

en(θ, x) = ãm(c̄; θ, |x | − (n + A)c̄), n > 0,

where m > N , A > (1/c̄)(1 + m(B + c̄) + 2B). By the definition of en we have

(2.7) en(θ, x) =
{

Qm
B [α](θ), |x | ≤ (n + A)c̄ − 1 − m(B + c̄),

0, |x | ≥ (n + A)c̄ + m(B − c̄).

LEMMA 2.14 en+1 ≤ Q B[en] for n ≥ 0.

PROOF: For any x0 ∈ H, if |x0| ≤ (n + A)c̄ − 1 − m(B + c̄) − B, then for any

x with |x − x0| ≤ B, x ≤ (n + A)c̄ −1−m(B + c̄) and then en(θ, x) = Qm
B [α](θ).

This implies that Q[en](θ, x0) = Qm+1
B [α] ≥ Qm

B [α] = en(θ, x0).

Now suppose that |x0| > (n + A)c̄ − 1 − m(B + c̄) − B. Let x0 ≥ 0. Since

A > (1/c̄)(1 + m(B + c̄) + 2B), we see that x > 0 for any x with |x − x0| ≤ B.

Then

en(θ, x) = ãm(c̄; θ, x − (n + A)c̄) ≥ ãm−1(c̄; θ, x − (n + A)c̄).

It follows that

Q[en](θ, x0) = Q[ãm](θ, x0 − (n + A)c̄)

≥ Q[ãm−1](θ, x0 − (n + A)c̄)

= ãm(c̄; θ, x0 − (n + A)c̄ − c̄)

= en+1(θ, x0).
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The case where x0 < 0 can be proved in a similar way. �

THEOREM 2.15 For any c < c∗ and any σ ∈ C̄β with σ � 0, there exists

rσ > 0 such that if u0( · , x) ≥ σ(·) for x on an interval of length 2rσ , then

limn→∞,|x |≤nc un(θ, x) = β(θ) uniformly for θ ∈ [−τ, 0].
PROOF: Without loss of generality, we assume that the interval of length 2rσ is

[−rσ , rσ ]. Given c < c∗, we fix c̄ ∈ (c, c∗). For any ε ∈ C̄β with ε � 0, let the

integer m, the large number B, and the sequence en be defined as in Lemmas 2.13

and 2.14. Since Qn[σ ] → β as n → ∞, there is some l such that σn = Qn[σ ] �
Qm

B [α] for all n ≥ l. Let the support of e0 be contained in the interval with center at

the origin and radius R0. There is some rσ such that if u0( · , x) ≥ σ(·) for |x | ≤ rσ ,

then ul( · , x) ≥ Qm
B [α] for |x | ≤ R0. In particular, ul( · , x) ≥ e0( · , x). Since Q

and Q B are order preserving and Q[v] > Q B[v] for any v ∈ Cβ , Proposition

2.3 implies that ul+n ≥ en for all n ≥ 0. Thus, ul+n( · , x) ≥ Qm
B [α] if |x | ≤

(n + A)c̄ − 1 − m(B + c̄).

By Lemma 2.13, there is an integer n1 = n1(ε) such that Q
n1+m
B [α] � β − ε.

Since c < c̄, there is some integer N = N (c, n1(ε)) such that for any n ≥ N ,

if |x1| ≤ (l + n + n1)c, then |x1| ≤ (n + A)c̄ − 1 − m(B + c̄) − n1 B. Thus,

|x1 − x | ≤ n1 B implies |x | ≤ (n + A)c̄ − 1 − m(B + c̄). Therefore, for such x , we

have ul+n( · , x) ≥ Qm
B [α], and hence

ul+n+n1
(θ, x1) ≥ Q

n1

B [en](θ, x1) = Q
m+n1

B [α](θ)

� β(θ) − ε(θ) ∀θ ∈ [−τ, 0].
Since c̄ ∈ (c, c∗) is arbitrary, it follows that for any ε(θ) � 0, there is some

nε = l + N + n1 such that for any n ≥ nε and any x with |x | ≤ nc, we have

un( · , x) � β − ε. This completes the proof. �

We call c∗ the asymptotic speed of spread (in short, spreading speed) of a

discrete-time semiflow {Qn}∞n=0 on Cβ provided that Theorems 2.11 and 2.15 hold.

Moreover, a map Q : Cβ → Cβ is said to be subhomogeneous if Q[ρv] ≥ ρQ[v]
for all ρ ∈ [0, 1] and v ∈ Cβ .

COROLLARY 2.16 Suppose that all assumptions of Theorem 2.15 hold. If, in ad-

dition, Q is subhomogeneous on Cβ , then we can choose rσ in Theorem 2.15 to be

independent of σ � 0.

PROOF: Given c < c∗, we choose c′ ∈ (c, c∗). Fix σ0 ∈ C̄β with σ0 � 0.

Thus, there exists rσ0
> 0 such that if u0( · , x) ≥ σ0 for x ∈ [−rσ0

, rσ0
], then

limn→∞,|x |≤nc′ un(θ, x) = β(θ) uniformly for θ ∈ [−τ, 0].
For any v0 ∈ Cβ , if there is some σ ∈ C̄β with σ � 0 such that v0( · , x) ≥ σ

for x ∈ [−rσ0
, rσ0

], then there is some ρ ∈ (0, 1] such that v0( · , x) ≥ ρσ0 for

x ∈ [−rσ0
, rσ0

]. Since u0( · , x) = 1
ρ
v0( · , x) ≥ σ0 for x ∈ [−rσ0

, rσ0
], we have

limn→∞,|x |≤nc′ un(θ, x) = β(θ) uniformly for θ ∈ [−τ, 0].
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Note that vn = Qn[v0] ≥ ρQn[u0]. This implies that for any r > 0, there is

some n0 such that vn0
( · , x) ≥ ρβ/2 on [−r, r ]. Moreover, there is some rρβ/2 such

that if u0( · , x) ≥ ρβ/2 for x ∈ [−rρβ/2, rρβ/2], then limn→∞,|x |≤nc′ un(θ, x) =
β(θ) uniformly for θ ∈ [−τ, 0]. Let r = rρβ/2. It then follows that

lim
n→∞
|x |≤nc′

vn+n0
(θ, x) = β(θ)

uniformly for θ ∈ [−τ, 0]. Since for sufficiently large n, (n + n0)c < nc′, we have

limn→∞,|x |≤nc vn(θ, x) = β(θ) uniformly for θ ∈ [−τ, 0]. �

Finally, we extend our results on spreading speeds to continuous-time semi-

flows. Recall that a family of operators {Qt}∞t=0 is said to be a semiflow on Cβ

provided Qt has the following properties:

(1) Q0(v) = v ∀v ∈ Cβ .

(2) Qt1[Qt2[v]] = Qt1+t2[v] ∀t1, t2 ≥ 0, v ∈ Cβ .

(3) Q(t, v) := Qt(v) is continuous in (t, v) on [0,∞) × Cβ .

It is easy to see that property (3) holds if Q( · , v) is continuous on [0,+∞)

for each v ∈ Cβ and Q(t, · ) is uniformly continuous for t in bounded intervals

in the sense that for any v0 ∈ Cβ , bounded interval I , and ε > 0, there exists

δ = δ(v0, I, ε) > 0 such that if d(v, v0) < δ, then d(Qt [v], Qt [v0]) < ε for all

t ∈ I .

THEOREM 2.17 Let {Qt}∞t=0 be a semiflow on Cβ with Qt [0] = 0 and Qt [β] = β

for all t ≥ 0. Suppose that Q = Q1 satisfies all hypotheses (A1)–(A5), and Qt

satisfies (A1) for any t > 0. Let c∗ be the asymptotic speed of spread of Q1. Then

the following statements are valid:

(i) For any c > c∗, if v ∈ Cβ with 0 ≤ v � β and v( · , x) = 0 for x

outside a bounded interval, then limt→∞,|x |≥tc Qt [v](θ, x) = 0 uniformly

for θ ∈ [−τ, 0].
(ii) For any c < c∗ and σ ∈ C̄β with σ � 0, there is a positive number rσ

such that if v ∈ Cβ and v( · , x) � σ for x on an interval of length 2rσ ,

then limt→∞,|x |≤tc Qt [v](θ, x) = β(θ) uniformly for θ ∈ [−τ, 0]. If, in

addition, Q1 is subhomogeneous, then rσ can be chosen to be independent

of σ � 0.

PROOF: First, it is easy to see that for any vn → 0, Qt [vn] → 0 uniformly

for t ∈ [0, 1]. In other words, for any ε > 0 and any bounded interval I , there

exists δ > 0 and a sufficiently large positive number r such that if v(θ, x) < δ for

x ∈ [−r, r ] and θ ∈ [−τ, 0], then |Qt [v](θ, x)| < ε for any x ∈ I , θ ∈ [−τ, 0],
and t ∈ [0, 1]. In particular, for any ε > 0, we can find a sufficiently large positive

number r such that for any x0 ∈ R, if v(θ, x) < δ for x ∈ [−r + x0, r + x0],
θ ∈ [−τ, 0], then |Qt [v](θ, x0)| < ε for any θ ∈ [−τ, 0], t ∈ [0, 1].

For any v ∈ Cβ with 0 ≤ v � β and v = 0 outside a bounded subset of

[−τ, 0] × R and any c > c∗, we have limn→∞,|x |≥nc Qn[v](θ, x) = 0 uniformly
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for θ ∈ [−τ, 0]. Hence, for the δ fixed above, we can find an integer N such that

if n ≥ N , then |Qn[v](θ, x)| < δ for any θ ∈ [−τ, 0] and |x | ≥ nc. Therefore,

|Qt [v](θ, x)| < ε for any n ≥ N , t ∈ [n, n + 1], θ ∈ [−τ, 0], |x | ≥ nc + r .

For any ρ > 0, there is an integer N ′ such that if n ≥ N ′ and t ∈ [n, n + 1],
then t (c + ρ) > nc + r . Thus, |Qt [v](θ, x)| < ε for any t ≥ max(N , N ′) and

|x | ≥ t (c + ρ). Since c > c∗ and ρ > 0 are arbitrary, conclusion (i) holds.

Conclusion (ii) can be proved in a similar way. �

3 Estimates of Spreading Speeds

In this section, we discuss the spreading speeds for linear operators and then

use them to estimate the spreading speeds for nonlinear maps and continuous semi-

flows.

Let M : C → C be a linear operator with the following properties:

(C1) M is continuous with respect to the compact open topology.

(C2) M is a positive operator; that is, M[v] ≥ 0 whenever v > 0.

(C3) M satisfies (A3) with Cβ replaced by any uniformly bounded subset of C.

(C4) M[R[u]] = R[M[u]], Ty[M[u]] = M[Ty[u]] ∀u ∈ C, y ∈ H.

(C5) M can be extended to a linear operator on the linear space C̃ of all functions

v ∈ C([−τ, 0] × H, R
k) having the form

v(θ, x) = v1(θ, x)eµ1x + v2(θ, x)eµ2x , v1, v2 ∈ C, µ1, µ2 ∈ R,

such that if vn, v ∈ C̃ and vn(θ, x) → v(θ, x) uniformly on any bounded

set, then M[vn](θ, x) → M[v](θ, x) uniformly on any bounded set.

As we remarked on (A1) in Section 2, hypothesis (C4) implies that M[v] ∈ C̄

whenever v ∈ C̄, and hence M is also a linear operator on C̄.

Define the linear map Bµ : C̄ → C̄ by

Bµ[α](θ) = M[αe−µx ](θ, 0) ∀θ ∈ [−τ, 0].
In particular, B0 = M on C̄. If αn, α ∈ C̄ and αn → α as n → ∞, then

αn(θ)e−µx → α(θ)e−µx uniformly on any bounded subset of [−τ, 0] × H. Thus,

Bµ[αn] = M[αne−µx ]( · , 0) → M[αe−µx ]( · , 0) = Bµ[α], and hence Bµ is con-

tinuous. Moreover, Bµ is a positive operator on C̄.

In this section, we assume that

(C6) For any µ ≥ 0, Bµ is a positive operator, and there is n0 such that

Bn0
µ = Bµ ◦ · · · ◦ Bµ︸ ︷︷ ︸

n0

is a compact and strongly positive linear operator on C̄.

LEMMA 3.1 Let B be a bounded and positive linear operator on the ordered Ba-

nach space (X, P) with the positive cone P having nonempty interior Int(P). If

there is a positive integer n such that Bn is compact and strongly positive on X (i.e.,
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Bn(P \ {0}) ⊂ Int(P)), then the spectral radius λ of B is a simple eigenvalue of B

having a strongly positive eigenvector, and the modulus of any other eigenvalue is

less than λ.

PROOF: Let r be the spectral radius of Bn . By the classical Krein-Rutman

theorem, it follows that r > 0, and r is the unique eigenvalue of Bn having a

positive eigenvector. Moreover, r is a simple eigenvalue of Bn . Let v � 0 be an

eigenvector of Bn associated with r . From the positivity of B and the property

of r , it is easy to see that v′ := B[v] > 0. Then 0 � Bn[v′] = Bn[B[v]] =
B[Bn[v]] = rv′, and hence v′ is a strongly positive eigenvector of Bn associated

with r . Thus, B[v] = v′ = λv for some λ > 0, which implies that λ is a positive

eigenvalue of B with eigenvector v � 0. Since Bn[v] = λnv, it follows from the

aforementioned property of r that λn = r , and hence λ = r1/n is the spectral radius

of B. Given an eigenvalue µ of B, let v̂ �= 0 be an eigenvector associated with µ.

Then B[v̂] = µv̂, and hence Bn[v̂] = µn v̂. Consequently, either |µ| < r1/n , or

µ = r1/n and v̂ is a multiple of v. This completes the proof. �

Let λ(µ) be the principal eigenvalue of Bµ and ζµ(·) = ζ(µ, · ) be a strongly

positive eigenfunction associated with λ(µ).

LEMMA 3.2 For any integer n, Bµ and λ(µ) are n times differentiable in µ. More-

over, we can choose appropriate ζµ such that ζµ is also n times differentiable in µ.

PROOF: For any α ∈ C̄ with ‖α‖ = 1. Fix µ0 ≥ 0, and for any µ > µ0, set

h(µ, x) = e−µx − e−µ0x

µ − µ0

− xe−µ0x .

For any x , there is some µ′ ∈ (µ0, µ) such that (e−µx − e−µ0x)/(µ−µ0) = xe−µ′x

and hence

h(µ, x) = xe−µ′x − xe−µ0x .

Thus, h(µ, x) ≤ 0 for x ≥ 0, and h(µ, x) ≥ 0 for x ≤ 0. Define

h+(µ, x) =
{

0, x ≥ 0,

h(µ, x), x ≤ 0,

and h−(µ, x) = h(µ, x)−h+(µ, x). Then h+(µ, x) and h−(µ, x) → 0 as µ → µ0

uniformly for x in any bounded subset of R. Define the linear operator L on C̄ by

L[α](θ) = M[αxeµ0x ](θ, 0) ∀θ ∈ [−τ, 0].
Then L is a continuous operator. For any α ∈ C̄ with −1 ≤ α ≤ 1, we have

Bµ[α] − Bµ0
[α]

µ − µ0

− L[α]

= M[αh(µ, x)]( · , 0)
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= M[αh+(µ, x)]( · , 0) + M[αh−(µ, x)]( · , 0)

≤ M[h+(µ, x)]( · , 0) − M[h−(µ, x)]( · , 0) → 0 as µ → µ0.

Similarly,

Bµ[α] − Bµ0
[α]

µ − µ0

− L[α]
≥ −M[h+(µ, x)]( · , 0) + M[h−(µ, x)]( · , 0) → 0 as µ → µ0.

This implies

lim
µ→µ0

Bµ[α] − Bµ0
[α]

µ − µ0

= L[α]

uniformly for all α with |α| ≤ 1. For µ < µ0, we have the same conclusion. Hence

Bµ is differentiable in µ. By a similar argument, we can prove that Bµ is n times

differentiable in µ for any n.

By Lemma 3.1, it follows that the spectral radius λ(µ) of Bµ is a simple eigen-

value of Bµ and the modulus of any other eigenvalue is less than λ(µ). Thus, the

other two conclusions follow from the results in [17, sec. 7.1]. �

Note that the principal eigenvalue λ of Bµ can be characterized as

(3.1) λ = min
ξ�0

max
i,θ

(Bµ[ξ ])i (θ)

ξi (θ)
= max

ξ�0
min

i,θ

(Bµ[ξ ])i (θ)

ξi (θ)
.

Define M̄ : Cζ0
→ Cζ0

by

M̄[u] = min{ζ0, M[u]}.
In what follows, we prove that M̄ has the asymptotic speed of spread c̄∗ provided

the following condition is satisfied:

(C7) The principal eigenvalue λ(0) of B0 is larger than 1.

LEMMA 3.3 M̄ : C̄ζ0
→ C̄ζ0

admits exactly two fixed points 0 and ζ0.

PROOF: It is obvious that M̄ maps C̄ζ0
into C̄ζ0

. Assume, for the sake of contra-

diction, that M̄ has a fixed point v ∈ C̄ζ0
such that 0 < v < ζ0. Since ζ0 � 0, we

can choose a real number ρ ∈ (0, 1) such that Mn[ρv] ≤ ζ0 for all 0 ≤ n ≤ n0. It

then follows that v = M̄n0[v] ≥ M̄n0[ρv] = Mn0[ρv] = B
n0

0 [ρv] � 0, and hence

v ≥ ρ ′ζ0 for some real number ρ ′ ∈ (0, 1). Define m := inf{n ≥ 1 : (λ(0))nρ ′ ≥
1}. Clearly, condition (C7) implies that m is a finite positive integer. Note that

Mn[ρ ′ζ0] = (λ(0))nρ ′ζ0 for all n ≥ 0. Since Mn[ρ ′ζ0] < ζ0 for all 0 ≤ n ≤ m −1,

we have M̄m[ρ ′ζ0] = min{ζ0, Mm[ρ ′ζ0]} = ζ0. Thus, we obtain v = M̄m[v] = ζ0,

a contradiction. �
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It is easy to see that M̄ satisfies (A1), (A2), (A4), and (A5) with β = ζ0. We

can also define the operator Rc and the sequence an with Q replaced by M̄ . In this

case, we have

Rc[a](θ, s) = max{φ(θ, s), T−c[M̄[a]](θ, s)}
= max{φ(θ, s), min{ζ0, T−c[M[a]](θ, s)}}.(3.2)

As argued in the proof of Lemma 2.5, we can show that {an(c; · , s) : n ≥ 0, c, s ∈
R} is a family of equicontinuous functions by using (3.2) and hypothesis (C3) for

M . Moreover, all the conclusions for Q can be proved for M̄ by a similar argument.

By Theorems 2.11 and 2.15, it then follows that M̄ has a spreading speed c̄∗. It is

also easy to see that c̄∗ is independent of the choice of the eigenfunction associated

with λ(0). For convenience, we call c̄∗ the spreading speed of M .

For any ρ ∈ [0, 1], we have

M̄[ρv] = min{ζ0, M[ρv]} = min{ζ0, ρM[v]}
≥ min{ρζ0, ρM[v]} = ρ min{ζ0, M[v]} = ρ M̄[v];

that is, M̄ is subhomogeneous. By Corollary 2.16, we have the following result:

COROLLARY 3.4 For any c < c̄∗, there exists r > 0 such that if there is some

σ ∈ C̄β with σ � 0 and u0( · , x) ≥ σ for x on an interval of length 2r , then

lim
n→∞|x |≤nc

M̄n[u0](θ, x) = ζ0(θ)

uniformly for θ ∈ [−τ, 0].
THEOREM 3.5 Let c∗ be the spreading speed of Q. Assume that there is a sequence

of linear operators Mn satisfying (C1)–(C7) such that the spreading speed c∗
n of Mn

converges to c∗ as n → ∞ and that for each n there is σn ∈ C̄β with σn > 0 such

that Mn[v] ≤ Q[v] for any v ∈ Cβ with v ≤ σn. Then we can choose rσ in

Theorem 2.15 to be independent of σ � 0.

PROOF: Since c∗
n → c∗ as n → ∞, there is an integer m such that c∗

m > c.

Choose a principal eigenvector ζ0 of Mm in C̄ such that 0 � ζ0 ≤ σm , and let

M := Mm . We claim that for any v ∈ Cβ with v ≤ ζ0 and Qn[v] ≥ M̄n[v] ∀n ≥ 1.

Indeed, Q[v] ≥ M̄[v]. Assume that Qn[v] ≥ M̄n[v] for some n. Then

Qn+1[v] = Q[Qn[v]]
≥ Q[min{ζ0, Qn[v]}] ≥ M̄[min{ζ0, Qn[v]}]

≥ M̄[min{ζ0, M̄n[v]}] = M̄[M̄n[v]] = M̄n+1[v].
By induction, our claim holds for all n ≥ 1.

By Theorem 2.15, it follows that there is some rζ0/2 such that v(θ, x) ≥ ζ0(θ)/2

for θ ∈ [−τ, 0], x ∈ [−rζ0/2, rζ0/2], and hence

lim
n→∞|x |≤nc

Qn[v](θ, x) = β(θ)
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uniformly for θ ∈ [−τ, 0]. By Corollary 3.4, there is some r > 0 such that if there

is some σ ∈ C̄β with σ � 0 and u0( · , x) ≥ σ for x ∈ [−r, r ], then there is some

n0 such that

Qn0[u0](θ, x) ≥ M̄n0[u0](θ, x) ≥ ζ0(θ)

2
∀θ ∈ [−τ, 0], x ∈ [−rζ0/2, rζ0/2].

Thus, we have limn→∞,|x |≤nc Qn+n0[u0](θ, x) = β(θ) uniformly for θ ∈ [−τ, 0].
For any c′ < c, when n is sufficiently large, we have (n + n0)c

′ < nc, and

hence limn→∞,|x |≤nc′ un(θ, x) = β(θ) uniformly for θ ∈ [−τ, 0]. Since c, c′ < c∗

are arbitrary, our theorem holds. �

The following remark is a simple application of Theorem 3.5 to continuous-

time semiflows.

Remark 3.6. Let the assumptions of Theorem 2.17 hold. If, in addition, Q1 satisfies

the conditions of Theorem 3.5, then rσ in Theorem 2.17(ii) can be chosen to be

independent of σ � 0.

LEMMA 3.7 λ(µ) is log convex on R.

PROOF: We use an argument similar to that in [21]. By the Riesz representa-

tion theorem, it follows that for any θ0 ∈ [−τ, 0], there exist bounded symmetric

nonnegative measures m
θ0

i j on [−τ, 0] × R such that for any v ∈ C,

Mi [v](θ0, x) =
k∑

j=1

∫ ∞

−∞
vj (θ, x − y)m

θ0

i j (dθ dy).

By the definition of λ(µ), we see that there exist positive eigenvectors ν, η ∈ C̄

such that

λ(µ1) = 1

νi (θ0)

( k∑
j=1

∫ ∞

−∞
νj (θ)eµ1 ym

θ0

i j (dθ dy)

)
,

λ(µ2) = 1

ηi (θ0)

( k∑
j=1

∫ ∞

−∞
ηj (θ)eµ2 ym

θ0

i j (dθ dy)

)
,

for any θ0 ∈ [−τ, 0], 1 ≤ i ≤ k. From the Hölder inequality, it follows that for

0 < t < 1 and each θ0 ∈ [−τ, 0], 1 ≤ i ≤ k, we have

λ(µ1)
tλ(µ2)

1−t

≥
k∑

j=1

∫ ∞

−∞

(
νj (θ)

νi (θ0)

)t

eµ1 yt

(
ηj (θ)

ηi (θ0)

)1−t

eµ2 y(1−t)m
θ0

i j (dθ dy)

=
k∑

j=1

∫ ∞

−∞

(
νj (θ)

νi (θ0)

)t(
ηj (θ)

ηi (θ0)

)1−t

eµ1 yt+µ2 y(1−t)m
θ0

i j (dθ dy).



SPREADING SPEEDS AND TRAVELING WAVES 19

Let ξ i (θ) = νi (θ)tηi (θ)1−t . Then

λ(µ1)
tλ(µ2)

1−t ≥ (Btµ1+(1−t)µ2
[ξ ])i (θ0)

ξi (θ0)

for all 1 ≤ i ≤ k, θ0 ∈ [−τ, 0]. Now (3.1) completes the proof. �

Let �(µ) = 1
µ

ln λ(µ) and �(µ) = λ′(µ)/λ(µ). It then follows that

� ′ ≥ 0, (µ�(µ))′ = �(µ),

�′(µ) = 1

µ
[�(µ) − �(µ)], (µ2�′)′ = µ� ′(µ) ≥ 0.

The proof of the subsequent lemma is straightforward.

LEMMA 3.8 The following statements are valid:

(i) �(µ) → ∞ as µ ↓ 0.

(ii) �(µ) is decreasing near 0.

(iii) �′(µ) changes sign at most once on (0,∞).

(iv) � is increasing and limµ→∞ �(µ) = limµ→∞ �(µ), where the limits may

be infinite.

We say that M has compact support provided there is some ρ such that for any

α ∈ C, M[α](θ, x) depends only on the value of α in [−τ, 0] × [x − ρ, ρ + x].
PROPOSITION 3.9 Let c̄∗ be the asymptotic speed of spread of M̄. Then c̄∗ ≤
infµ>0 �(µ). If, in addition, either M has compact support, or the infimum of �(µ)

is attained at some finite value µ∗ and �(+∞) > �(µ∗), then c̄∗ = infµ>0 �(µ).

PROOF: For each µ > 0, define w = min{ζ0, w̄}, where w̄ = ζµe−µs . Then

M̄[T−�(µ)[w]](θ, s) = M̄[T−�(µ)−s[w]](θ, 0)

≤ M[T−�(µ)−s[w]](θ, 0)

≤ M[T−�(µ)−s[w̄]](θ, 0) = ζµe−µs,

and hence M̄[T−�(µ)[w]] ≤ w. Let α be chosen as in (A5) with β replaced by

ζ0, and fix φ such that (B1)–(B3) hold. Moreover, we can define Rc with Q = M̄ .

Thus, we have Rc[w] ≤ w for any c ≥ �(µ). Since a0 = φ ≤ w, the monotonicity

of Rc implies that an ≤ w for n ≥ 1. Letting n → ∞, we then have a ≤ w, and

hence a(c; · ,∞) = 0 if c ≥ �(µ). Thus, c̄∗ ≤ infµ>0 �(µ).

Next we show that c̄∗ ≥ infµ>0 �(µ). First, consider the case where M has

compact support. Fix µ ∈ (0, µ∗) where the infimum of �(µ) is attained at µ∗,

and let

κ i
µ(θ) = κ i (µ, θ) := ∂ζ i (θ, µ)

∂µ

1

ζ i (θ, µ)
.
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For convenience, we write κ i (θ) = κ i
µ(θ). Define v = (v1, . . . , vk) with

vi (θ, s) =
{

εζ i
µ(θ)e−µs sin r(s − κ i (θ)), 0 ≤ s − κ i (θ) ≤ π

r
,

0 otherwise,

where ε and r are sufficiently small positive numbers. Let ξ = (ξ 1, . . . , ξ k) with

ξ i (θ, s) = ζ i
µ(θ)e−µs sin r(−s + κ i (θ)), and ω = (ω1, . . . , ωk) with ωi (θ, s) =

ζ i
µ(θ)e−µs cos r(−s + κ i (θ)). Then ω(θ, s) converges to ζµe−µs uniformly on any

compact subset of [−τ, 0] × R as r → 0.

Define zi by

zi (r, θ) = 1

r
tan−1 (M[ξ ])i (θ, 0)

(M[ω])i (θ, 0)
.

Then zi is a family of equicontinuous and uniformly bounded functions of θ if r is

regarded as a parameter in (0, 1]. Moreover, we have

lim
r↓0

zi (r, θ0) = lim
r↓0

(M[ξ ])i (θ0, 0)

r(M[ω])i (θ0, 0)

= lim
r↓0

k∑
j=1

∫ ∞
−∞ ζ j

µ(θ)eµy sin r(y + κ j (θ))m
θ0

i j (dθ dy)

r
k∑

j=1

∫ ∞
−∞ ζ

j
µ(θ)eµy cos r(y + κ j (θ))m

θ0

i j (dθ dy)

= lim
r↓0

k∑
j=1

∫ ∞
−∞ ζ j

µ(θ)eµy · sin r(y+κ j (θ))

r
m

θ0

i j (dθ dy)

k∑
j=1

∫ ∞
−∞ ζ

j
µ(θ)eµy cos r(y + κ j (θ))m

θ0

i j (dθ dy)

.

By the Lebesgue dominated convergence theorem,

lim
r↓0

zi (r, θ0) =

k∑
j=1

∫ ∞
−∞ ζ j

µ(θ)eµy(y + κ j (θ))m
θ0

i j (dθ dy)

k∑
j=1

∫ ∞
−∞ ζ

j
µ(θ)eµym

θ0

i j (dθ dy)

=

k∑
j=1

∫ ∞
−∞

∂(ζ
j
µ(θ)eµy)

∂µ
m

θ0

i j (dθ dy)

λ(µ)ζ i
µ(θ0)
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=
∂(

k∑
j=1

∫ ∞
−∞ ζ j

µ(θ)eµym
θ0

i j (dθ dy))/∂µ

λ(µ)ζ i
µ(θ0)

=
∂(λ(µ)ζ i

µ(θ0))

∂µ

λ(µ)ζ i
µ(θ0)

= �(µ) + κ i (θ0), 1 ≤ i ≤ k,

uniformly for θ0 ∈ [−τ, 0].
Choose r so small that r(ρ + |zi (r, θ0)| + |κ j (θ)|) < π for all 1 ≤ i, j ≤ k,

θ0, θ ∈ [−τ, 0]. If 0 ≤ s − κ i (θ0) ≤ π
r

and −ρ < x < ρ, then

−π

r
≤ x + s − κ i (θ0) + zi (r, θ0) − κ j (θ) ≤ 2π

r
.

Therefore

v j (θ, x + s − κ i (θ0) + zi (r, θ0))

≥ εζ j
µ(θ)e−µ(x+s−κ i (θ0)+zi (r,θ0)) · sin r(x + s − κ i (θ0) + zi (r, θ0) − κ j (θ))

for 1 ≤ j ≤ k. Let u = (u1, . . . , uk) with

ui (θ, s) = εζ i
µ(θ)e−µs sin r(s − κ i (θ)).

Thus, we have

(M[Tκ i (θ0)−zi (r,θ0)
[v]])i (θ0, s) ≥ (M[Tκ i (θ0)−zi (r,θ0)

[u]])i (θ0, s)

and hence

(M̄[Tκ i (θ0)−zi (r,θ0)
[v]])i (θ0, s) ≥ min{ζ i

0(θ0), (M[Tκ i (θ0)−zi (r,θ0)
[u]])i (θ0, s)}.

Moreover,

(M[Tκ i (θ0)−zi (r,θ0)
[u]])i (θ0, s)

= εe−µ(s−κ i (θ0)+zi (r,θ0))
{

M[ω](θ0, 0) sin r(s − κ i (θ0) + zi (r, θ0))

− M[ξ ](θ0, 0) cos r(s − κ i (θ0) + zi (r, θ0))
}

= εe−µ(s−κ i (θ0)+zi (r,θ0)) sin r(s − κ i (θ0))(sec r zi (r, θ0))M[ω](θ0, 0).

Since e−µzi (r,θ0)(sec r zi (r, θ0))M[ω](θ0, 0) converges to

eµ[�(µ)−�(µ)]e−µκ i (θ0)ζ i
µ(θ0, 0) > ζ i

µ(θ0, 0)e−µκ i (θ0)

as r ↓ 0 uniformly for θ0 ∈ [−τ, 0], we have

(M̄[Tκ i (θ0)−zi (r,θ0)
[v]])i (θ0, s) ≥ vi (θ0, s)

if r and ε are sufficiently small.

Let κ := max1≤i≤k,θ∈[−τ,0] κ i (θ) and define

ϕi (θ, s) =
{

vi (θ, s̄i (θ)), s ≤ s̄i (θ) − π
r

− κ,

vi (θ, s + π
r

+ κ), s ≥ s̄i (θ) − π
r

− κ,
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where s̄i (θ) is the maximum point of vi (θ, · ) on R. Then ϕ is continuous and

nonincreasing in s, and vanishes for s ≥ 0. It is easy to see that

M[ϕ( · ,−∞)] ≥ ϕ( · ,−∞)

and that ϕ satisfies (B1)–(B3) with Q = M̄ and β = ζ0. Moreover, ϕ also has the

property that ϕi (θ, s) = max{vi (θ, s − t) : t ≤ −π
r

− κ}. This implies that

M̄[Tκ i (θ0)−zi (r,θ0)
[ϕ]])i(θ0, s) ≥ M̄[Tκ i (θ0)−zi (r,θ0+t)[v]])i (θ0, s) ≥ vi (θ0, s − t)

for t ≤ −π
r

− κ . Therefore, we have

M̄[Tκ i (θ0)−zi (r,θ0)
[ϕ]])i (θ0, s) ≥ ϕi (θ, s) ∀s ∈ R

for 1 ≤ i ≤ k. Let z̄(r) = minθ,i (−κ i (θ) + zi (r, θ)). Then limr↓0 z̄(r) = �(µ)

and M̄[T−z̄[ϕ]]) ≥ ϕ. It is easy to show that z̄(r) ≤ c̄∗ for sufficiently small r , and

hence �(µ) ≤ c̄∗ for 0 < µ < µ∗. Thus, we have infµ>0 �(µ) = �(µ∗) ≤ c̄∗.
In the case where M has no compact support, we define

Ml[u](θ, y) = Q

[
T−y[u] · �

( |x |
l

)]
(θ, 0)

and

Bl
µ[α](θ) = Ml[αe−µx ](θ, 0) = M

[
αe−µx�

( |x |
l

)]
(θ, 0).

We claim that Bl
µ → Bµ as l → ∞. In fact, it is obvious that Bµ − Bl

µ is a positive

operator. For any α with ‖α‖ = 1, since −1 ≤ α(θ) ≤ 1, we have

−(Bµ − Bl
µ)[1](θ) ≤ (Bµ − Bl

µ)[α](θ) ≤ (Bµ − Bl
µ)[1](θ) ∀θ ∈ [−τ, 0].

This implies that ‖(Bµ − Bl
µ)[α]‖ ≤ ‖(Bµ − Bl

µ)[1]‖, and hence ‖Bµ − Bl
µ‖ =

‖(Bµ − Bl
µ)[1]‖. From the definition of M[e−µx ], we obtain that ‖Bµ − Bl

µ‖ =
‖(Bµ − Bl

µ)[1]‖ → 0 as l → ∞.

Let λl(µ) be the principal eigenvalue of Bl
µ, and �l(µ) = ln λl(µ)/µ. Then

λl(µ) → λ(µ), the principal eigenvalue of Bµ, uniformly for µ in any compact

subset of (0,+∞) and �l(µ) → �(µ) as l → ∞. Since � achieves its minimum

at some finite value µ∗ and �(∞) > �(µ∗), �l also achieves its minimum at some

finite value µ∗
l and µ∗

l → µ∗. Thus, liml→∞ inf �l(µ) = inf �(µ). Note that Ml

has compact support. By what we have proved, it follows that c̄∗ ≥ infµ>0 �(µ).

�

THEOREM 3.10 Let Q be an operator on Cβ satisfying (A1)–(A5) and c∗ be defined

as in Section 2. Assume that the linear operator M satisfies all hypotheses in

Proposition 3.9. Then the following statements are valid:

(i) If Q[u] ≤ M[u] for all u ∈ Cβ , then c∗ ≤ infµ>0 �(µ).

(ii) If there is some η ∈ C̄ with η � 0 such that Q[u] ≥ M[u] for any u ∈ Cη,

then c∗ ≥ infµ>0 �(µ).
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PROOF: To prove the first statement, we choose the principal eigenvector ζ0 of

B0 such that ζ0 � β. Let c̄∗ be the spreading speed of M̄ . By Lemma 2.9 and

Proposition 3.9, it follows that c∗ ≤ c̄∗ = infµ>0 �(µ). The second statement can

be proved by choosing ζ0 � β. �

4 Traveling Waves

In this section, we show that the spreading speeds for monotone discrete and

continuous-time semiflows coincide with the minimal wave speeds of their mono-

tone traveling waves under appropriate assumptions.

For any real number c, we define the set

Dc := {x − mc : x ∈ H, m ∈ N}.

We say that W (θ, x − nc) is a traveling wave of the map Q with the wave speed

c if W : [−τ, 0] × Dc → R
k and Qn[W ](θ, x) = W (θ, x − nc). We say that

W (θ, x − nc) connects β to 0 if W ( · ,−∞) = β and W ( · ,∞) = 0.

THEOREM 4.1 Let Q satisfy (A1)–(A5), and c∗ be its asymptotic speed of spread.

Then for any c < c∗, Q has no traveling wave W (θ, x − nc) connecting β to 0.

PROOF: By Theorem 2.15, it follows that there is r = rβ/2 such that for any

u ∈ Cβ and x0 ∈ H, if u( · , x) ≥ β

2
for any x ∈ [−r, r ], then

lim
n→∞

x=x0+nc

un(θ, x) = β(θ)

uniformly for θ ∈ [−τ, 0]. Assume for the sake of contradiction that W (θ, x − nc)

is a traveling wave connecting β to 0. Then W ( · ,−∞) = β implies that there is

a point −h ∈ H such that W ( · , x) ≥ β

2
for any x ≤ −h. By hypothesis (A1), we

see that V (θ, x) := W (θ, x − h − r) is also a traveling wave profile. Moreover,

V ( · , x) = W ( · , x − h − r) >
β

2
for x ∈ [−r, r ]. Since V ( · ,+∞) = 0, there is

x0 ∈ H such that V ( · , x0) < β. Hence, we have

lim
n→∞

T−nc[Qn[V ]](θ, x0) = lim
n→∞

x=x0+nc

Qn[V ](θ, x) = β(θ)

uniformly for θ ∈ [−τ, 0]. But T−nc[Qn[V ]]( · , x0) = V ( · , x0) < β, which is a

contradiction. �

In order to obtain the existence of the traveling wave with the wave speed c ≥
c∗, we need to strengthen hypothesis (A3) into the following one:
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(A6) One of the following two conditions holds:

(a) Q[Cβ] is precompact in Cβ .

(b) There exists a nonnegative number ς < τ such that Q[u](θ, x) =
u(θ + ς, x) for −τ ≤ θ < −ς , the operator

S[u](θ, x) :=
{

u(0, x), −τ ≤ θ < −ς,

Q[u](θ, x), −ς ≤ θ ≤ 0,

is continuous on Cβ , and S[Cβ] is precompact in Cβ .

We remark that if H is discrete, then hypothesis (A3) on Q implies hypothesis

(A6). Moreover, if (A6)(b) holds and there is an integer n such that nς ≥ τ , then

{Qn[u] : u ∈ Cβ} is precompact in Cβ .

THEOREM 4.2 Let Q satisfy (A1)–(A6), and let c∗ be its asymptotic speed of

spread. Then for any c ≥ c∗, Q has a traveling wave W (θ, x − nc) connect-

ing β to 0 such that W (θ, x) is nonincreasing in x. Moreover, if H = R, then

W (θ, x) is continuous in (θ, x).

PROOF: Let C̃β and Q̃ be defined as in Lemma 2.1, and let φ ∈ C̃β be fixed

such that (B1)–(B3) hold. For any number κ ∈ (0, 1], we define an operator Rc,κ

by

Rc,κ [a](θ, s) := max{κφ(θ, s), T−c[Q̃[a]](θ, s)},
and a sequence of vector-valued functions an(c, κ; θ, s) of θ ∈ [−τ, 0], s ∈ R, by

the recursion

(4.1) a0(c, κ; θ, s) = κφ(θ, s), an+1(c, κ; θ, s) = Rc,κ [an(c, κ; · )](θ, s).

Note that a(c, κ; θ, s) = limn→∞ an(c, κ; θ, s) exists pointwise.

Let c ≥ c∗ be given. We distinguish between two cases.

Case 1. H is discrete. By hypothesis (A3) of Q and Lemma 2.5, it follows that

{an(c, κ; θ, s) : s ∈ Dc, k ∈ (0, 1], n ≥ 0}
is a family of equicontinuous functions in θ . Hence, for each κ , a(c, κ; θ, s) is

continuous in θ and nonincreasing in s ∈ Dc ⊂ R. Moreover, {a(c, κ; θ, s) : s ∈
Dc, κ ∈ (0, 1]} is a family of equicontinuous functions in θ , and

(4.2) a(c, κ; θ, s) = max {κφ(θ, s), Q[a(c, κ; · , · + s + c)](θ, 0)} .

Fix θ0 ∈ [−τ, 0]. For any l ∈ H, we define the sequence

Kκ(l) := 1

2
[a(c, κ; θ0, l) + a(c, κ; θ0, l + 1)].

Since liml→−∞ a(c, κ; θ0, l) = β(θ0) and liml→∞ a(c, κ; θ0, l) = 0, there exists lκ
such that β(θ0)/4 ≤ Kκ(lκ) ≤ 3β(θ0)/4.

Now we consider the sequence a(c, κ; θ, s + lκ). Since Dc has countably many

points, we can find a subsequence κi → 0 such that

lim
κi →0

a(c, κi ; θ, s + lκi
) = W (c; θ, s) ∀s ∈ Dc,
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and the convergence is uniform for θ ∈ [−τ, 0]. From (4.2), we see that

W (c; θ, s − (n + 1)c) = Q[W (c; · , · + s − nc)](θ, 0)

∀θ ∈ [−τ, 0], s ∈ Dc, n ≥ 0.

Note that

W (c; · ,−∞) = lim
n→∞

W (c; · , s − nc) = lim
n→∞

Qn[W ]( · , s) = β ∀s ∈ H

and

W (c; · ,+∞) = lim
s→∞
s∈H

W (c; ·, s − c) = lim
s→∞
s∈H

Q[W ]( · , s)

= Q[W (c; · ,+∞)].
Since

W (θ0, 1) ≤ lim
κi →0

Kκi
(lκi

) ≤ 3β(θ0)

4

and W (c; θ, s) is nonincreasing in s, it follows that W (c; · ,+∞) = 0. Therefore,

W (c; θ, s − nc) is a traveling wave with speed c.

Case 2. H = R. In this case, we only show that {an(c, κ; θ, s) : n ≥ 1, κ ∈
(0, 1]} is a family of equicontinuous functions of (θ, s) in any bounded subset of

[−τ, 0]×H. The rest of the proof is similar to that in the case where H = Z. Note

that {a0(c, κ; θ, s) : κ ∈ (0, 1]} is a family of equicontinuous functions in (θ, s) on

[−τ, 0] × H; that is, for any ε > 0, there is δ0 > 0 such that

|a0(c, κ; θ1, s1) − a0(c, κ; θ2, s2)| < ε

whenever (θ1, s1), (θ2, s2) ∈ [−τ, 0]×H and |(θ1, s1)− (θ2, s2)| < δ0. By hypoth-

esis (A6), it follows that

Q[a0](θ, x) =
{

a0(θ + ς, x), −τ ≤ θ < −ς,

S[a0](θ, x), −ς ≤ θ ≤ 0,

and there is δ > 0 such that |S[v](c, κ; θ1, s1) − S[v](c, κ; θ2, s2)| < ε whenever

v ∈ Cβ , (θ1, s1), (θ2, s2) ∈ [−τ, 0] × H, and |(θ1, s1) − (θ2, s2)| < δ. This implies

that Q[a0](θ1, x1) − Q[a0](θ2, x2) < ε whenever −ς ≤ θ1, θ2 ≤ 0 and |(θ1, x1) −
(θ2, x2)| < δ, or −τ ≤ θ1, θ2 ≤ −ς and |(θ1, x1) − (θ2, x2)| < δ0.

Since a1 = max{a0, T−c[Q[a0]]}, we have |a1(θ1, x)−a1(θ2, x)| < ε whenever

−ς ≤ θ1, θ2 ≤ 0 and |(θ1, x1)−(θ2, x2)| < δ1 := min{δ, δ0}, or −τ ≤ θ1, θ2 ≤ −ς

and |(θ1, x1) − (θ2, x2)| < δ0. Thus, we obtain that |a1(θ1, x1) − a1(θ2, x2)| <

2ε whenever −τ ≤ θ1, θ2 ≤ 0 and |(θ1, x1) − (θ2, x2)| < min{δ1, δ0} = δ1.

By the same argument as in the proof of Lemma 2.5(iv), it then follows that

{an(c, κ; θ, s) : n ≥ 1, κ ∈ (0, 1]} is a family of equicontinuous functions of

(θ, s) in any bounded subset of [−τ, 0] × H. �
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In the rest of this section, we consider traveling waves for the continuous-time

semiflow {Qt}∞t=0 on Cβ . We say that W (θ, x − ct) is a traveling wave of {Qt}∞t=0

if W : [−τ, 0] × R → R
k and Qt [W ](θ, x) = W (θ, x − tc), and W (θ, x − ct)

connects β to 0 if W ( · ,−∞) = β and W ( · ,+∞) = 0.

The following result is a straightforward consequence of Theorem 4.1.

THEOREM 4.3 Suppose that Q = Q1 satisfies hypotheses (A1)–(A5), and let c∗

be the asymptotic speed of spread of Q1. Then for any 0 < c < c∗, {Qt}∞t=0 has no

traveling wave W (θ, x − ct) connecting β to 0.

THEOREM 4.4 Suppose that for any t > 0, Qt satisfies hypotheses (A1)–(A6), and

let c∗ be the asymptotic speed of spread of Q1. Then for any c ≥ c∗, {Qt}∞t=0 has

a traveling wave W (θ, x − ct) connecting β to 0 such that W (θ, s) is continuous

and nonincreasing in s ∈ R.

PROOF: By Theorem 2.17, it follows that for each t > 0, tc∗ is the asymptotic

speed of spread of the map Qt . Let c ≥ c∗ be fixed. In the case where H = R,

the proof is similar to that of [20, theorem 4.1]. Suppose that Wt(θ, x − ntc) is the

traveling wave of Qt . First, we prove the equicontinuity of {Wt}. Note that

Wt(θ, x) = T−ntc[Qnt [Wt ]](θ, x) = Qnt [T−ntc[Wt ]](θ, x).

For any t > 0, there is an integer n such that nt > 2τ , and

Wt(θ, x) = T−ntc[Qnt [Wt ]](θ, x) = Q2τ [Qnt−2τ [T−ntc[Wt ]]](θ, x).

By assumption (A6), Q2τ [Cβ] is a family of equicontinuous functions, and so is

{Wt : t > 0}. Moreover, we can choose Wt such that W i
t (θ0, 0) = β i (θ0). Thus,

there is a sequence of integers ri → ∞ such that W2−ri converges to W with respect

to the compact open topology. Since W2−ri is a traveling wave profile for all Qt for

which t is a multiple of 2−ri , Qt [W ](θ, x) = W (θ, x − ct) for every fraction t

whose denominator is a power of 2. Let t be an arbitrary positive number, and m

be any positive integer. Then t can be written as t = km2−m − rm , where km is a

positive integer and 0 ≤ rm < 2−m . Thus, we have

Qt [W ](θ, x) − W (θ, x − ct) = (Qt [W ](θ, x) − Qrm
[Qt [W ]](θ, x))

+ (W (θ, x − c(t + rm)) − W (x − ct)).

Note that rm → 0 as m → ∞. By the continuity of W and the fact that Qrm
[v] → v

for any v, it follows that Qt [W ](θ, x) = W (θ, x − ct) for any t ≥ 0. Moreover,

since W2−ri (θ, x) are nonincreasing in x , so is W . Since Qt [W ](θ, x) = W (θ, x −
ct), we obtain

Qt [W ](θ,−∞) = W (θ,−∞), Qt [W ](θ,+∞) = W (θ,+∞).

In view of

W i (θ0,−∞) ≥ W i (θ0, 0) = W i
t (θ0, 0) = β i (θ0) ≥ W (θ0,+∞),

we see that W ( · ,−∞) = β and W ( · ,+∞) = 0.
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Next we consider the case where H = Z. For any nonnegative integer r , let

tr = 2−r/c. Then each Qtr has a traveling wave Wr (θ, x − n · 2−r ) on the set

[−τ, 0]× Dr with Dr = {x −n2−r : x ∈ Z, n ∈ N}. Let D = ⋃∞
r=0 Dr . Since D is

a countable set and for each x ∈ D, x ∈ Dr for all sufficiently large r , we can find

a subsequence ri → ∞ such that Wri
(θ, x) converges to W (θ, x) uniformly for

θ ∈ [−τ, 0], and W �≡ β, 0, W ( · ,−∞) = β, W ( · ,+∞) = 0. Since Wri
(θ, x) is

nonincreasing in x , so is W . Note that if ri ≥ r , then Qntr [Wri
](θ, x) = Wri

(θ, x −
n2−r ), and

(4.3) Qntr [W ](θ, x) = W (θ, x − n2−r ) ∀x ∈ D, n ≥ 0, r ∈ Z.

For any x ∈ D, let Ux(θ, s) := Qx/c−s/c[W ](θ, x). We claim that Ux does not

depend on x . In fact, (4.3) implies that Qd/c[W ](θ, x + d) = W (θ, x). Thus, we

have

Ux+d(θ, s) = Q(x+d)/c−s/c[W ](θ, x + d)

= Qx/c−s/c[Qd/c[W ]](θ, x + d)

= T−d[Qx/c−s/c[Qd/c[W ]]](θ, x)

= Qx/c−s/c[T−d[Qd/c[W ]]](θ, x)

= Qx/c−s/c[W ](θ, x)

= Ux(θ, s)

for all d ∈ D. Define U (θ, s) := Ux(θ, s). Then

U (θ, x − ct) = Qt [W ](θ, x) = W (θ, x − ct) ∀x ∈ D, ct ∈ D.

Note that U (θ, x) = W (θ, x) ∀x ∈ D. Since D is dense in R and W is non-

increasing on D, it follows that U (θ, s) is also nonincreasing in s ∈ R. Hence,

W (θ, x −ct) = U (θ, x −ct) is a continuous traveling wave connecting β to 0. �

We conclude our presentation of the theory of spreading speeds and traveling

waves with a general remark, which will be used in the next section and may be of

its own interest.

Remark 4.5. All results in Sections 2 through 4 are still valid provided that the

interval [−τ, 0] is replaced with a compact metric space and that hypotheses (A3)

and (A6) are replaced with (A3)(a) and (A6)(a), respectively.

5 Applications

In this section, we apply the results in Sections 2 through 4 to a functional

differential equation with diffusion, a nonlocal and time-delayed lattice differential

system, and a reaction-diffusion equation in a cylinder.
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5.1 A Functional Differential Equation with Diffusion

Let τ > 0 be fixed and C̄ := C([−τ, 0], R). We consider a general autonomous

functional differential equation with diffusion on R

(5.1)
∂u(t, x)

∂t
= d

∂2u(t, x)

∂x2
+ f (ut( · , x)), t > 0, x ∈ R,

where d > 0, f : C̄ → R is a C1-functional, and for each x ∈ R, ut( · , x) denotes

the member of C̄ defined by

ut(θ, x) = u(t + θ, x) ∀θ ∈ [−τ, 0].
To get concrete examples of (5.1), we need to specify the functional f . For

example, letting f (φ) = F(φ(0), φ(−r1), φ(−r2), . . . , φ(−rm)) with all ri ≥ 0

and τ = max1≤i≤m{ri }, we obtain a local reaction-diffusion equation with finitely

many delays,

∂u(t, x)

∂t
= d

∂2u(t, x)

∂x2

+ F(u(t, x), u(t − r1, x), u(t − r2, x), . . . , u(t − rm, x));
(5.2)

letting f (φ) = F(φ(0)) + ∫ 0

−τ
K (s)G(φ(s))ds, we have a local reaction-diffusion

equation with distributed delays

∂u(t, x)

∂t
= d

∂2u(t, x)

∂x2
+ F(u(t, x)) +

∫ 0

−τ

K (s)G(u(t + s, x))ds

= d
∂2u(t, x)

∂x2
+ F(u(t, x)) +

∫ t

t−τ

K (s − t)G(u(s, x))ds.

(5.3)

For any u ∈ R, we write û for the element of C̄ satisfying û(θ) ≡ u, and define

the function f̂ : R → R by f̂ (u) = f (û). We need the following assumptions on

f to study the spreading speed and traveling waves for (5.1):

(F1) f̂ (0) = f̂ (β) = 0 for some constant β > 0, f̂ has no zero in (0, β), and

f̂ ′(0) > 0.

(F2) For each φ ∈ C̄β , the derivative L(φ) := d f (φ) of f can be represented as

L(φ)ψ = a(φ)ψ(0) +
∫ 0

−τ

ψ(θ)dθη(φ) := a(φ)ψ(0) + L̄(φ)ψ,

where η(φ) is a positive Borel measure on [−τ, 0], L̄(φ)ψ ≥ 0 whenever

ψ ≥ 0, and η(φ)([−τ,−τ + ε)) > 0 for all small ε > 0.

By [36, lemma 5.3.3], f is quasi-monotone on C̄β in the sense that f (φ) ≤
f (ψ) whenever φ ≤ ψ in C̄β and φ(0) = ψ(0). Using the semigroup generated

by the heat equation and [25, cor. 5] (see, e.g., the proof of [37, theorem 2.2]), we

can show that (5.1) generates a monotone semiflow Qt : Cβ → Cβ defined by

Qt(φ)(θ, x) = ut(θ, x, φ) ∀(θ, x) ∈ [−τ, 0] × R,
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where u(t, x, φ) is the unique solution of (5.1) satisfying u0( · , · , φ) = φ ∈ Cβ .

Let Q̂t be the restriction of Qt to C̄β . It is easy to see that Q̂t : C̄β → C̄β is the

solution semiflow generated by the following functional differential equation:

(5.4)
du(t)

dt
= f (ut), t ≥ 0,

with initial data u0 = φ ∈ C̄β . By [36, cor. 5.3.5], Q̂t is eventually strongly

monotone on C̄β . Moreover, the assumption that f̂ ′(0) > 0 implies that 0̂ is an

unstable equilibrium of (5.4) (see [36, cor. 5.5.2]). By the Dancer-Hess connecting-

orbit lemma (see, e.g., [52, p. 39]), the semiflow Q̂t admits a strongly monotone

full orbit connecting 0 to β. Thus, assumption (A5) holds for each map Qt , t > 0.

Define the linear operator L(t) : C → C, t ≥ 0, by the relation

L(t)φ(θ, x) =
{

φ(t + θ, x) − φ(0, x), t + θ < 0, x ∈ R,

0, t + θ ≥ 0, −τ ≤ θ ≤ 0, x ∈ R.

Clearly, L(t) = 0 for t ≥ τ . Define S(t) := Qt − L(t), t ≥ 0. By the smoothing

property of the semigroup associated with the heat equation, it then follows that

Qt satisfies (A6)(a) for t ≥ τ , and (A6)(b) with ς = t for t ∈ (0, τ ) (see also the

proof of [16, theorem 6.1]). Now it is easy to see that for each t > 0, the solution

map Qt of (5.1) satisfies all assumptions (A1)–(A6). By Theorems 2.17, 4.3, and

4.4, we then have the following result:

THEOREM 5.1 Let (F1) and (F2) hold, and let c∗ be the asymptotic speed of spread

of the solution map Q1 of (5.1) . Then the following statements are valid:

(i) For any c > c∗, if φ ∈ Cβ with 0 ≤ φ � β and φ( · , x) = 0 for x outside

a bounded interval, then limt→∞,|x |≥tc u(t, x, φ) = 0.

(ii) For any c < c∗ and σ ∈ C̄β with σ � 0, there is a positive number rσ such

that if φ ∈ Cβ and φ( · , x) � σ for x on an interval of length 2rσ , then

limt→∞,|x |≤tc u(t, x, φ) = β. If, in addition, f is subhomogeneous on Cβ ,

then rσ can be chosen to be independent of σ � 0.

(iii) For any c ≥ c∗, (5.1) has a traveling wave solution U (x − ct) such that

U (s) is continuous and nonincreasing in s ∈ R, U (−∞) = β, and

U (+∞) = 0. Moreover, for any c < c∗, (5.1) has no traveling wave

U (x − ct) connecting β to 0.

In order to estimate the spreading speed c∗, we impose the following additional

condition on f :

(F3) f (φ) ≤ Lφ := L(0̂)φ for all φ ∈ C̄β , and for any ε ∈ (0, 1), there exists

δ ∈ (0, β) such that f (φ) ≥ Lεφ := a(0̂)φ(0) + (1 − ε)L̄(0̂)φ for all

φ ∈ C̄δ.

Let v(t, φ) be the solution of the linear functional differential equation

(5.5)
dv(t)

dt
= dµ2v(t) + Lvt
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satisfying v0 = φ ∈ C̄. It is easy to see that u(t, x) = e−µxv(t, φ) is the solution

of the linear functional differential equation with diffusion

(5.6)
∂u

∂t
= d

∂2u(t, x)

∂x2
+ Lut( · , x).

Let Mt be the solution map associated with (5.6), and Bt
µ be defined by Mt

as in Section 3. By the above observation, it is easy to see that Bt
µ is just the

solution map of the linear functional differential equation (5.5) on C̄. Since (5.5)

is a cooperative and irreducible delay equation, it follows that its characteristic

equation admits a real root λ = λ(µ) that is greater than the real parts of all other

roots (see [36, theorem 5.5.1]). Define ψ ∈ C̄ by ψ(θ) := eλθ ∀θ ∈ [−τ, 0].
Clearly, v(t, ψ) = eλt ∀t ≥ 0. Then we have

Bt
µ(ψ) = v(t + ·, ψ) = eλtψ ∀t ≥ 0.

Thus, eλt is the principal eigenvalue of Bt
µ with positive eigenfunction ψ . Evidently

a similar analysis can be made for Lε . By Theorem 3.10, it then follows that

the spreading speed of the solution map Q1 is c∗ = infµ>0 λ(µ)/µ provided that

assumptions (F1)–(F3) hold.

We remark that the theory developed in Sections 2 through 4 can also be em-

ployed to study the spreading speeds and traveling waves for both systems of func-

tional differential equations with diffusions and nonlocal reaction-diffusion equa-

tions with time delays. For an integral-equations approach to scalar nonlocal and

delayed reaction-diffusion equations, we refer to [40].

5.2 A Nonlocal Lattice Differential System

We consider a nonlocal and time-delayed lattice differential system

(5.7)

dwj (t)

dt
= D[wj+1(t) + wj−1(t) − 2wj (t)] − dwj (t)

+ µ

2π

∞∑
k=−∞

βα( j − k)b(wk(t − r)), t > 0, j ∈ Z,

where

(5.8) βα(l) = 2e−ν

∫ π

0

cos(lω)eν cos ω dω

and D, d, µ, and ν = 2α are all positive real numbers. Moreover, the continuous

function b : R+ → R+ satisfies the following conditions:

(D1) b(0) = 0, b′(0) > d
µ

, and b(w) ≤ b′(0)w for w ∈ R+.

(D2) b(·) is strictly increasing on [0, K ] for some K > 0, and µb(w) = dw has

a unique solution w+ ∈ (0, K ].
System (5.7) was derived in [48] to model the growth of a single mature popu-

lation. By [48, lemma 2.1], we have the following conclusions:

(1) 1
2π

∑∞
l=−∞ βα(l) = 1 and βα(l) ≥ 0 for all l.
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(2) Let H = Z and τ = r , and let the set Cw+ be defined as in Section 2.

For any v ∈ Cw+ , system (5.7) has a unique global solution w(t, v) =
(wi (t))

∞
i=−∞ with wi (θ) := w(θ, i) = v(θ, i) ∀i ∈ Z, θ ∈ [−r, 0], and

0 ≤ wi (t) ≤ w+ ∀i ∈ Z, t ≥ 0.

(3) Let v and v̄ be two solutions of (5.7) with v̄i (θ) ≤ vi (θ) for all θ ∈ [−r, 0],
i ∈ Z. Then v̄i (t) ≤ vi (t) for all t > 0, i ∈ Z.

Note that if w is a solution of

(5.9)
dw(t)

dt
= −dw(t) + µb(w(t − r)),

then wi = w, i ∈ Z, is a solution of (5.7). Moreover, if v̄ and v are two solutions

of (5.9) with 0 ≤ v̄(θ) ≤ v(θ) ≤ w+ ∀θ ∈ [−r, 0] and v̄(θ0) < v(θ0) for some

θ0 ∈ [−r, 0], then v̄(t) < v(t) for t ≥ r (see [36, theorem 5.3.4]).

Let Qt be the solution map at time t ≥ 0 of system (5.7), that is,

Qt(v)(θ) = w(t + θ, v) ∀θ ∈ [−r, 0], v ∈ Cw+ .

Define the linear operator L(t) : Cw+ → Cw+ , t ≥ 0, by the relation

L(t)v(θ) =
{

v(t + θ) − v(0), t + θ < 0,

0, t + θ ≥ 0, −τ ≤ θ ≤ 0.

Clearly, L(t) = 0 for t ≥ τ . We further have the following result on Qt :

PROPOSITION 5.2 For each t > 0, Qt satisfies hypotheses (A1)–(A5). Moreover,

{Qt}∞t=0 is a semiflow on Cw+ .

PROOF: Define S(t) := Qt − L(t), t ≥ 0. It then follows that Qt satisfies

(A3)(a) for t ≥ τ and (A3)(b) with ς = t for t ∈ (0, τ ) (see, e.g., the proof of [16,

theorem 6.1]). We prove only the continuity of Qt(v) = Q(t, v) in (t, v) since all

the other conditions are easily verified. Let v(t) and v̄(t) be two solutions of (5.7)

with 0 ≤ v(t), v̄(t) ≤ w+. In order to prove the continuity of {Qt}∞t=0, we first

prove the following claim:

Claim. For any ε > 0 and t0 > 0, there exist δ > 0 and an integer N such that

|v0(t) − v̄0(t)| ≤ ε ∀t ∈ [0, t0] whenever |vi (t) − v̄i (t)| < δ for t ∈ [−r, 0],
−N ≤ i ≤ N .

We first consider the case where v(t) ≥ v̄(t) for t ∈ [−r, 0]. In this case, we

have v(t) ≥ v̄(t) for all t ≥ −r . Let w = v(t) − v̄(t). Then

dwj (t)

dt
= D[wj+1(t) + wj−1(t) − 2wj (t)] − dwj (t)

+ µ

2π

∞∑
k=−∞

βα( j − k)
(
b(vk(t − r)) − b(v̄k(t − r))

)
.
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Thus, there is L > 0 such that

dwj (t)

dt
≤ D[wj+1(t) + wj−1(t) − 2wj (t)] − dwj (t)

+ L

∞∑
k=−∞

βα( j − k)wk(t − r).

In what follows, we divide the proof into two cases: r > 0 and r = 0. If r > 0,

then for any ε > 0 , there are δ > 0 and an integer N such that if |wi (t)| < δ for

t ∈ [−r, 0],−N ≤ i ≤ N , then

L

∞∑
k=−∞

βα( j − k)wk(t − r) ≤ ε

for any t ∈ [0, r ], and hence

dwj (t)

dt
≤ D[wj+1(t) + wj−1(t) − 2wj (t)] − dwj (t) + ε ∀t ∈ [0, r ].

It follows that

wj (t) ≤ 1

2π
e−dt

∞∑
k=−∞

βDt( j − k)wk(0) − εe−dt

d
+ ε

d
∀t ∈ [0, r ].

By Dini’s theorem, for any ε there is an integer N such that

−N∑
k=−∞

βDt(k) +
∞∑

k=N

βDt(k) ≤ πε

w+ ∀t ∈ [0, r ].

Suppose that wi (t) = vi (t)− v̄i (t) < ε
2(2N+1)

∀t ∈ [−r, 0], −N ≤ i ≤ N . We then

have

1

2π
e−dt

∞∑
k=−∞

βDt(k)wk(0)

= 1

2π
e−dt

( −N∑
k=−∞

βDt(k)wk(0) +
N∑

k=−N

βDt(k)wk(0) +
∞∑

k=N

βDt(k)wk(0)

)

≤ 1

2π
e−dt

( −N∑
k=−∞

βDt(k)w+ + 2π

N∑
k=−N

wk(0) +
∞∑

k=N

βDt(k)w+
)

≤ ε.

Thus,

w0(t) ≤ ε + ε

d
− εe−dr

d
∀t ∈ [0, r ],

which implies that our claim holds in the case where r > 0, t0 = r , and v(t) ≥ v̄(t).



SPREADING SPEEDS AND TRAVELING WAVES 33

If r > 0, t0 = r , but v(t) �≥ v̄(t) for t ∈ [−r, 0], we let v̂(t), ṽ(t) be two

solutions of (5.7) with v̂(t) = max{v(t), v̄(t)} and ṽ(t) = min{v(t), v̄(t)} for

t ∈ [−r, 0]. Thus, ṽ(t) ≤ v(t), v̄(t) ≤ v̂(t) for t ≥ r . Hence, |vi (t) − v̄i (t)| ≤
|v̂i (t) − ṽi (t)| ∀i ∈ Z, t ≥ r . This proves the claim above.

For any t ∈ [nr, (n + 1)r ], we have Qt = Qt−nr Qnr . Thus, Qt is uniformly

continuous for t ∈ [nr, (n+1)r ], which implies that Qt is uniformly continuous for

t on any bounded interval. It follows that Qt(v) is continuous in (t, v) ∈ R+×Cw+ .

Next we consider the case where r = 0. By the discrete Fourier transform, as

applied to the linear equation

dwj (t)

dt
= D[wj+1(t) + wj−1(t) − 2wj (t)] − dwj (t)

+ L

∞∑
k=−∞

βα( j − k)wk(t)

with the initial value wk(0) (see, e.g., [48]), we obtain

wj (t) = 1

2π

∞∑
k=−∞

( ∫ π

−π

ei( j−k)ω+ f (ω)t dω

)
wk(0),

where

f (ω) = D(2 cos ω − 2) − d + L

∞∑
k=−∞

βα(k) cos(kω).

As argued for the case r > 0, we see that for any ε > 0 and t0 > 0, there exist

δ > 0 and an integer N such that if |wi (0)| < δ for −N ≤ i ≤ N , then w0(t) ≤ ε

on [0, t0]. Thus, Qt is uniformly continuous for t on any bounded interval, and

hence Qt(v) is continuous in (t, v) ∈ R+ × Cw+ . �

Consider the linearized equation of (5.7) at w = 0,

dwj (t)

dt
= D[wj+1(t) + wj−1(t) − 2wj (t)] − dwj (t)

+ µ

2π
b′(0)

∞∑
k=−∞

βα( j − k)wk(t − r).

(5.10)

Note that b′(0)w > b(w). It follows that if w is a solution of (5.10), then w is a

supersolution of (5.7). Let Mt be the solution map at time t of system (5.10). Then

Qt [u] ≤ Mt [u] for any u ∈ C. Moreover, Mt satisfies the assumptions on M in

Section 3.

Now, let us consider the linear system

dwj (t)

dt
= D[wj+1(t) + wj−1(t) − 2wj (t)] − dwj (t)

+ µ

2π
(1 − ε)b′(0)

∞∑
k=−∞

βα( j − k)wk(t − r)

(5.11)
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with parameter ε. For any ε > 0, there is a δ such that if 0 ≤ w < δ, then

b(w) > (1 − ε)b′(0)w. Let Mε
t be the solution map at time t of system (5.11). It

is easy to see that for any ε, there is δ′ > 0 such that if u ∈ C with ui (θ) < δ′ for

any i ∈ Z, θ ∈ [−r, 0], then Qt [u] ≥ Mε
t [u] for all t ∈ [0, 1].

For each φ ∈ C([−r, 0], R), let η(t, φ) be the unique solution of the linear

delay equation

dη(t)

dt
= [D(e−χ + eχ) − (d + 2D)]η(t)

+ µ

2π
b′(0)

∞∑
k=−∞

βα( j − k)e−χ( j−k)η(t − r)

(5.12)

with η(θ, φ) = φ(θ) ∀θ ∈ [−r, 0]. It is easy to see that w(t) = {wj (t)}∞j=−∞ with

wj (t) = e−χ jη(t, φ) is a solution of (5.10). Thus, we have

Bt
χ(φ)(θ) := Mt [φe−χ j ](θ, 0) = η(t + θ, φ) ∀θ ∈ [−r, 0],

which implies that Bt
χ is the solution map at time t of equation (5.12). Note that∑∞

k=−∞ βα( j − k)e−χ( j−k) = 2πe(cosh χ−1)ν (see [48]). Then (5.12) reduces to

(5.13)
dη(t)

dt
= [D(e−χ + eχ) − (d + 2D)]η(t) + µb′(0)e(cosh χ−1)νη(t − r).

Since (5.13) is a cooperative and irreducible delay equation, it follows that its char-

acteristic equation

(5.14) λ − [D(e−χ + eχ) − (d + 2D)] − µb′(0)e(cosh χ−1)ν−λr = 0

admits a real root λ = λ(χ) that is greater than the real parts of all other roots (see

[36, theorem 5.5.1]).

Define ψ ∈ C([−r, 0], R) by ψ(θ) := eλθ ∀θ ∈ [−r, 0]. Clearly η(t, ψ) = eλt

∀t ≥ 0. Then we have

Bt
χ(ψ) = η(t + ·, ψ) = eλtψ ∀t ≥ 0.

Thus, eλt is the principal eigenvalue of Bt
χ with the positive eigenfunction ψ . It is

easy to see that λ ≥ [D(e−χ + eχ) − (d + 2D)]. Then �(χ) := λ(χ)

χ
assumes its

minimum at some finite value χ∗. By Theorem 3.10, it follows that the spreading

speed for the continuous-time semiflow {Q}∞t=0 is c∗ = inf λ(χ)/χ . Let c = �(χ).

Then c∗ = �(χ∗) and dc
dχ

∣∣
χ=χ∗ = 0. Define

f (c, χ) := cχ − [D(e−χ + eχ) − (d + 2D)] − µb′(0)e(cosh χ−1)ν−cχr .

Consequently, (c∗, χ∗) can be determined as the solution to the system

f (c, χ) = 0,
∂ f

∂χ
(c, χ) = 0.
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It is easy to see that if w(t) is a solution of (5.7) with 0 ≤ wi (t) ≤ w+ for any

t ∈ [−r, 0], i ∈ Z, and there is some t0 ∈ [−r, 0] and i such that wi (t0) > 0, then

wi (t) > 0 for t > r and i ∈ Z.

As the consequences of Theorem 2.17 with Remark 3.6 and Theorems 4.3 and

4.4, we have the following results:

THEOREM 5.3 Let w(t) be a solution of (5.7) with 0 ≤ wi (t) < w+ for any

t ∈ [−r, 0], i ∈ Z. Then the following statements are valid:

(i) If wi (t) = 0 for t ∈ [−r, 0] and i is outside a bounded interval, then

limt→∞,|i |≥tc wi (t) = 0 for any c > c∗.

(ii) If w(t) �≡ 0 for t ∈ [−r, 0], then limt→∞,|i |≤tc wi (t) = w+ for any c < c∗.

THEOREM 5.4 Given any c ≥ c∗, (5.7) has a traveling wave solution wi (t) =
U (i −tc) such that U (s) is continuous and nonincreasing in s ∈ R, and U (−∞) =
w+ and U (+∞) = 0. Moreover, for any c < c∗, (5.7) has no traveling wave

U (i − tc) connecting w+ to 0.

Note that the spreading speed c∗ and the existence of traveling waves with wave

speed c > c∗ were established for system (5.7) in [48]. Our result includes the ex-

istence of the traveling wave with wave speed c∗ and the nonexistence of traveling

waves with wave speed 0 < c < c∗, which shows that the spreading speed c∗ is

just the minimal wave speed for monotone traveling waves.

We remark that monotone traveling waves in the monostable case have been

studied for the discrete Fisher’s equation [53], discrete quasi-linear equations (see,

e.g., [8, 9]), and lattice delay differential equations (see e.g., [49]). The asymp-

totic speeds of spread of these lattice equations can be established by appealing

to the theory developed in Sections 2 through 4. In particular, it can be shown

that the spreading speed coincides with the minimal wave speed under appropriate

conditions.

5.3 A Reaction-Diffusion Equation in a Cylinder

We consider a reaction-diffusion equation in a cylinder

(5.15)

{
∂u
∂t

= ∂2u

∂x2 + �yu + ug(y, u), x ∈ R, y = (y1, . . . , ym) ∈ �, t > 0,
∂u
∂ν

= 0 on R × ∂� × (0,+∞),

where � is a bounded domain in R
m with smooth boundary ∂�,

�y =
m∑

i=1

∂2

∂y2
i

,

and ν is the outer unit normal vector to ∂� × R. Assume that

(G) g ∈ C1(� × R+, R), ∂g

∂u
< 0 ∀(y, u) ∈ � × R+, and there is K > 0 such

that g(y, K ) ≤ 0 ∀y ∈ �.
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Let λ0 be the principal eigenvalue of the elliptic eigenvalue problem

(5.16)

{
λv = �yv + vg(y, 0), y ∈ �,
∂v
∂ν

= 0 on ∂�.

Assume that λ0 > 0. By [52, theorem 3.1.5], it then follows that the reaction-

diffusion equation

(5.17)

{
∂u
∂t

= �yu + ug(y, u), y ∈ �, t > 0,
∂u
∂ν

= 0 on ∂� × (0,+∞),

admits a unique positive steady state β(y). This implies that equation (5.15) has

two equilibrium solutions 0 and β(y), and there is no other x-independent equilib-

rium.

Let C be the set of all bounded and continuous functions from R × � to R. We

consider the linear equation

(5.18)

{
∂u
∂t

= ∂2u

∂x2 + �yu, x ∈ R, y ∈ �, t > 0,
∂u
∂ν

= 0 on R × ∂� × (0,+∞).

Let G(t, y, w) be the Green’s function of the equation (see, e.g., [15])

(5.19)

{
∂u
∂t

= �yu, y ∈ �, t > 0,
∂u
∂ν

= 0 on ∂� × (0,+∞).

Then it is easy to verify that

e− (x−z)2

4π t G(t, y, w)

is the Green’s function of equation (5.18). That is, the solution of (5.18) with initial

value u(0, · ) = φ(·) ∈ C can be expressed as

u(t, x, y, φ) = 1√
4π t

∫ +∞

−∞

∫
�

e− (x−z)2

4π t G(t, y, w)φ(z, w)dw dz.

Define T (t)φ = u(t, ·, φ) ∀φ ∈ C. It then follows that {T (t)}∞t=0 is a linear semi-

group on the space C with respect to the compact open topology. For any a, b ∈ C,

define [a, b]C := {φ ∈ C : a ≤ φ ≤ b}. For any t > 0 and a, b ∈ C, it is easy to

verify that T (t)[a, b]C is a family of equicontinuous functions.

Now we write (5.15) subject to u(0, · ) = φ ∈ C as an integral equation

(5.20) u(t, x, y) = T (t)[φ](x, y) + ∫ t

0
T (s) f (y, u(t − s, x, y))ds,

where f (y, u) = ug(y, u). Using the standard linear semigroup theory (see, e.g.,

[25, 28]), we see that for any φ ∈ Cβ , (5.15) has a unique solution u(t, φ) with

u(0, φ) = φ, which exists globally on [0,+∞). Define Qt(φ) = u(t, φ). With

the expression of the semigroup T (t) and (5.20), we can show that {Qt}∞t=0 is a

subhomogeneous semiflow on Cβ . Moreover, Qt satisfies hypotheses (A1), (A2),
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(A3)(a), (A4), (A5), and (A6)(a) for each t > 0. Hence, {Qt}∞t=0 has a spreading

speed c∗.

Let {Mt}∞t=0 be the solution semiflow associated with the linear equation

(5.21)

{
∂u
∂t

= ∂2u

∂x2 + �yu + ug(y, 0), x ∈ R, y ∈ �, t > 0,
∂u
∂ν

= 0 on R × ∂� × (0,+∞).

Since g(y, 0) ≥ g(y, u), we have Mt [φ] ≥ Qt [φ] for any φ ∈ Cβ . Let Mε
t be the

solution semiflow associated with the linear equation

(5.22)

{
∂u
∂t

= ∂2u

∂x2 + �yu + (1 − ε)ug(y, 0), x ∈ R, y ∈ �, t > 0,
∂u
∂ν

= 0 on R × ∂� × (0,+∞).

Then for any ε, there is a δ � 0 such that Mε
t [φ] ≤ Qt [φ] for any φ ∈ Cδ and

t ∈ [0, 1].
It is easy to see that if η(t, y) is a solution of the linear equation

(5.23)

{
∂u
∂t

= �yu + ug(y, 0) + µ2u, y ∈ �, t > 0,
∂u
∂ν

= 0 on ∂� × (0,+∞),

then u(t, x, y) = η(t, y)e−µx is a solution of (5.21).

Let λ(µ) be the principal eigenvalue of the elliptic eigenvalue problem

(5.24)

{
λu = �yu + ug(y, 0) + µ2u, y ∈ �,
∂u
∂ν

= 0 on ∂�.

It follows that eλ(µ)t is the principal eigenvalue of the Bµ(t), where Bµ(t) is the

solution semiflow associated with (5.23). It is easy to see that Bµ(t)[α](y) =
Mt [αe−µx ](y, 0). Since λ(µ) = λ0 + µ2, we see that �(µ) = λ(µ)

µ
= µ + λ0

µ

assumes its minimum at µ∗ = √
λ0. Thus, Theorem 3.10 implies that c∗ = 2

√
λ0.

Note that if u(t, x, y) is a solution of (5.15) with 0 ≤ u(0, x, y) < β(y) ∀y ∈
�, x ∈ R, and u(0, x, y) �≡ 0, then u(t, x, y) > 0 ∀t > 0, y ∈ �, x ∈ R (see, e.g.,

the proof of [51, lemma 3.1]).

As the consequences of Theorems 2.17, 4.3, and 4.4 with Remark 4.5, we have

the following results:

THEOREM 5.5 Let u(t, x, y) be a solution of (5.15) with u(0, · ) ∈ Cβ . Then the

following two statements are valid:

(1) If u(0, x, y) = 0 for y ∈ � and x outside a bounded interval, then for any

c > c∗, limt→∞,|x |≥tc u(t, x, y) = 0 uniformly for y ∈ �.

(2) If u(0, x, y) �≡ 0, then for any c < c∗, limt→∞,|x |≤tc u(t, x, y) = β(y)

uniformly for y ∈ �.

THEOREM 5.6 For any c ≥ c∗, (5.15) has a traveling wave solution U (x − tc, y)

such that U (s, y) is nonincreasing in s ∈ R, and lims→−∞ U (s, y) = β(y) and

lims→∞ U (s, y) = 0 uniformly for y ∈ �. Moreover, for any c < c∗, (5.15) has no

traveling wave U (x − tc, y) connecting β(·) to 0.



38 X. LIANG AND X.-Q. ZHAO

We should mention that traveling waves in the monostable case were already

studied in [6, 24, 33, 41] for some parabolic equations in cylinders. As illustrated

in the above example, it is also possible to use the theory developed above to obtain

the asymptotic speeds of spread for these equations.
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