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Abstract
In this paper, we propose a periodic reaction–diffusion model of Zika virus with sea-
sonal and spatial heterogeneous structure in host and vector population. We introduce
the basic reproduction ratio R0 for this model and show that the disease-free periodic
solution is globally asymptotically stable if R0 ≤ 1, while the system admits a globally
asymptotically stable positive periodic solution if R0 > 1. Numerically, we study the
Zika transmission in Rio de Janeiro Municipality, Brazil, and investigate the effects of
some model parameters on R0. We find that the neglect of seasonality underestimates
the value of R0 and the maximum carrying capacity affects the spread of Zika virus.

Keywords Zika virus · Seasonality · Reaction–diffusion model · Basic reproduction
ratio · Global stability

Mathematics Subject Classification 35K57 · 37N25 · 92D30

1 Introduction

Zika virus is a mosquito-borne flavivirus, and it is primarily transmitted to humans
through bites from two keymosquito vector species:Aedes aegypti andAedes albopic-
tus mosquitoes. Approximately 80% of people infected with Zika virus do not develop
symptoms; 20% of clinically affected people mostly experience mild symptoms, such
as fever, rash, conjunctivitis, muscle and joint pain, malaise, and headache (Caminade
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et al. 2017; WHO 2018). There is considerable evidence indicating that Zika virus
infection during pregnancy can lead to microcephaly and other congenital abnormali-
ties in the developing fetus and newborn, and can cause pregnancy complications such
as fetal loss, stillbirth, and preterm birth (Brasil et al. 2016; Mlakar et al. 2016). It is
also linked to the Guillain–Barré syndrome, neuropathy, and myelitis (Cao-Lormeau
et al. 2016).

Zika virus was initially isolated from a rhesus monkey in the Zika forest in Uganda
in 1947 (Dick et al. 1952). The first human outbreak of Zika was documented in 1954
in Africa. Recently, Zika entered the Americas and the first confirmed case was in
northeastern Brazil inMay 2015. Since then, it quickly spread tomany other countries,
including the USA. In 2015, there were a preliminary estimate of 440,000–1,300,000
Zika cases in Brazil and 4,783 suspected cases of microcephaly (Heukelbach et al.
2016). To date, there are 86 countries and territories which have reported evidence of
mosquito-transmittedZika infection (WHO2018). The rapid spread ofZikaworldwide
also leads the World Health Organization to announce a Public Health Emergency of
International Concern in 2016. However, there is still no vaccine or other modality
available to prevent or treat Zika virus infection.

Mathematical modeling has become an important tool used to describe the spread
of Zika virus. Gao et al. (2016) proposed an autonomous ODE model to investigate
the impact of mosquito-borne and sexual transmission on the spread of Zika virus and
performed sensitivity analysis for the basic reproduction number R0. Olawoyin and
Kribs (2018), considered an autonomous ODE model with the sexually and vertically
transmittedwithin vectors andhosts, and found that R0 ismost sensitive to themosquito
biting rate and transmission probability. For vector-borne diseases, due to the spatial
structure of density and location of hosts and vectors, and their movements over space,
the spatial heterogeneity in abundance and distribution of host and vector populations
has a strong impact on the disease spread and persistence (Charron et al. 2013; Lou and
Zhao 2011; Neuhauser 2001; Smith et al. 2004). Thus, the inclusion of diffusion in the
transmission and control of diseases in a heterogeneous environment is unavoidable.
Accordingly, several reaction–diffusion models have been developed to describe the
spatial spread of Zika virus (Cai et al. 2019; Fitzgibbon et al. 2017; Magal et al. 2018;
Miyaoka et al. 2019).

Weather and climate factors, especially temperature, are known to impact the trans-
mission dynamics of vector-borne diseases, such as Bluetongue virus,West Nile virus,
Dengue, and Schistosomiasis (Charron et al. 2013; Lambrechts et al. 2011; Li and
Zhao 2019; Li et al. 2020; Zhang and Zhao 2020). The field and laboratory experi-
ments demonstrate that the development, survival, reproduction and biting rates, the
transmission and infection probabilities of both Aedes aegypti and Aedes albopic-
tus are affected by temperature (Brady et al. 2013; Mordecai et al. 2017). Thus, it
is more reasonable to incorporate the seasonality into mathematical models of Zika
transmission. In Suparit, Wiratsudakul, and Modchang (2018) developed a Zika virus
transmission model with a temperature-dependent mosquito biting rate and gave a
case study in Bahia.

Fitzgibbon et al. (2017) studied the spatial interaction of the hosts and vectors
by using an autonomous reaction–diffusion model and a periodic model with a time-
dependent vector breeding rate numerically, but themathematical analysis of the global
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dynamics for such models remains unsolved there. Magal et al. (2018) made a detailed
analysis of the autonomous reaction–diffusion model proposed in Fitzgibbon et al.
(2017) and proved that the basic reproduction ratio R0 serves as a threshold value for
the evolution dynamics of the model. In order to study the impact of spatiotemporal
heterogeneities andmovements on the spread and persistence of diseases, it is essential
to investigate the role of diffusion and seasonality in the transmission of diseases in a
heterogeneous environment.

In this paper, we modify the Zika transmission model developed in Fitzgibbon
et al. (2017) by accounting for the seasonality. Our purpose is to study the effects
of the seasonal and spatial heterogeneities in abundance and distribution of host and
vector populations on the Zika transmission dynamics. Mathematically, we give a
novel method to prove the global stability for the model by using the theory of chain
transitive sets, which enables us to easily lift the threshold type result from a limiting
system to the full model. This method can be also applied to the autonomous reaction–
diffusion model to greatly simplify the analysis in Magal et al. (2018).

The rest of this paper is organized as follows. In Sect. 2, we present the model and
study its well-posedness. In Sect. 3, we first derive the basic reproduction ratio R0 and
then establish the threshold type result on the global stability in terms of R0. In Sect.
4, we use numerical simulations to reveal the spatiotemporal spread of Zika virus in
Rio de Janeiro Municipality, Brazil. A brief discussion then concludes the paper.

2 TheModel

Wedivide the population into two subpopulations, i.e., the host and vector populations.
Suppose that all populations are living in a bounded domain Ω ∈ R

n with smooth
boundary ∂Ω . For the vector population, we only consider one species, Aedes aegypti
or Aedes albopictus mosquitoes, because generally there is only one primary vector
in the Zika outbreak region. All vector populations refer to adult female mosquitoes
because only such vectors contract the virus. Let Hi (t, x), Vu(t, x) and Vi (t, x) be the
densities of infected hosts, susceptible vectors, and infected vectors at time t and loca-
tion x , respectively. Here we assume all parameters are temperature dependent. Note
that the temperature C can be regarded as a function of time t , that is, C = C(t). The
host and vector movements are assumed to be an unbiased random walk, and δ1(t, x)

and δ2(t, x) are the host and vector diffusion rates at time t and location x , respectively.
λ(t, x) is the loss rate of the infected host population due to the recovery and death rate
at time t and location x . In this model, we assume both the susceptible and infectious
vectors give birth, and all newborn vectors are susceptible and enter the susceptible
class at breeding rate β(t, x) at time t and location x . We assume that Zika does not
affect the mosquito lifespan, and the natural mortality rate of vector μ1(t, x) is the
inversely proportional to the vector lifespan.μ2(t, x) is the density-dependent loss rate
of vector at time t and location x , which is estimated by (β(t, x)−μ1(t, x))/Nm(t, x),
where Nm(t, x) is the maximum carrying capacity for the vector population at time t
and location x . σ1(t, x) and σ2(t, x) are the transmission rate for susceptible hosts and
vectors, respectively, which is a product of the per capita biting rate a(t, x) of vector
on hosts and the transmission probability βvh(t, x) (βhv(t, x)) from infectious vectors
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to susceptible hosts (from infectious hosts to susceptible vectors) per bite. Hu(x) is
the density of susceptible host population depending on the spatial location x . Here
we assume that the susceptible host population is unchanging by the epidemic during
a relatively short time period since the infected rate is fairly small (Magal et al. 2018).
Accordingly, the earlier model in Fitzgibbon et al. (2017) can be modified as

∂ Hi (t, x)

∂t
= ∇ · (δ1(t, x)∇Hi (t, x)) − λ(t, x)Hi (t, x)

+ σ1(t, x)Hu(x)Vi (t, x), t > 0, x ∈ Ω,

∂Vu(t, x)

∂t
= ∇ · (δ2(t, x)∇Vu(t, x)) − σ2(t, x)Vu(t, x)Hi (t, x)

+β(t, x)(Vu(t, x) + Vi (t, x)) − μ1(t, x)Vu(t, x)

−μ2(t, x)(Vu(t, x) + Vi (t, x))Vu(t, x), t > 0, x ∈ Ω,

∂Vi (t, x)

∂t
= ∇ · (δ2(t, x)∇Vi (t, x)) + σ2(t, x)Vu(t, x)Hi (t, x) − μ1(t, x)Vi (t, x)

−μ2(t, x)(Vu(t, x) + Vi (t, x))Vi (t, x), t > 0, x ∈ Ω,

∂ Hi

∂ν
= ∂Vu

∂ν
= ∂Vi

∂ν
= 0, t > 0, x ∈ ∂Ω, (1)

where ∇ is the gradient operator and ν is the outward normal vector to ∂Ω . We make
the following basic assumptions:

(A1) Functions β(t, x) �≡ 0, σ1(t, x) and μ2(t, x) are Hölder continuous and non-
negative nontrivial on R × Ω̄ , and T -periodic in t ; functions λ(t, x), μ1(t, x),
σ2(t, x) and the diffusion coefficients δ1(t, x) and δ2(t, x) areHölder continuous
and positive on R × Ω̄ , and T -periodic in t ; Hu(x) �≡ 0 is Hölder continuous
and nonnegative.

In the following, we first study the well-posedness for system (1). Let X := C(Ω̄,

R
3) be the Banach space with the supremum norm ‖ · ‖X. Define X+ := C(Ω̄,R3+).

Then (X,X+) is a strongly ordered Banach space. From the last two equations Vu and
Vi in system (1), we have

∂(Vu(t, x) + Vi (t, x))

∂t
= ∇ · (δ2(t, x)∇(Vu(t, x) + Vi (t, x)))

+ β(t, x)(Vu(t, x) + Vi (t, x))

− μ1(t, x)(Vu(t, x) + Vi (t, x))

− μ2(t, x)(Vu(t, x) + Vi (t, x))2.

Let V (t, x) = Vu(t, x) + Vi (t, x) be the total density of the vector population. It then
follows that

∂V (t,x)
∂t = ∇ · (δ2(t, x)∇V (t, x)) + β(t, x)V (t, x) − μ1(t, x)V (t, x)

−μ2(t, x)V 2(t, x), t > 0, x ∈ Ω,
∂V
∂ν

= 0, t > 0, x ∈ ∂Ω.

(2)
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To ensure that there is a globally stable positive periodic state for the mosquito popu-
lation, we assume that

(A2)
∫ T
0

∫
Ω

β(t, x)dxdt >
∫ T
0

∫
Ω

μ1(t, x)dxdt .

Let μ be the principle eigenvalue of the periodic parabolic problem

∂V (t, x)

∂t
= ∇ · (δ2(t, x)∇V (t, x)) + β(t, x)V (t, x)

−μ1(t, x)V (t, x) + μV (t, x), t > 0, x ∈ Ω,

∂V

∂ν
= 0, t > 0, x ∈ ∂Ω.

In view of (A2), it follows from Hess (1991, Section 7.1) that μ < 0. By a standard
convergence result on the periodic parabolic logistic equations (see, e.g., Hess 1991,
Theorem 28.1 or Zhao 2017b, Theorem 3.1.5), we see that system (2) has a globally
stable positive T -periodic solution V ∗(t, x), that is, limt→∞(V (t, x)− V ∗(t, x)) = 0
uniformly for all x ∈ Ω , for any V (0, ·) ≥ 0 but V (0, ·) �≡ 0. Clearly, system (1) is
equivalent to the following one:

∂ Hi (t, x)

∂t
= ∇ · (δ1(t, x)∇Hi (t, x)) − λ(t, x)Hi (t, x)

+ σ1(t, x)Hu(x)Vi (t, x), t > 0, x ∈ Ω,

∂Vi (t, x)

∂t
= ∇ · (δ2(t, x)∇Vi (t, x)) + σ2(t, x)(V (t, x)

− Vi (t, x))Hi (t, x) − μ1(t, x)Vi (t, x)

−μ2(t, x)V (t, x)Vi (t, x), t > 0, x ∈ Ω,

∂V (t, x)

∂t
= ∇ · (δ2(t, x)∇V (t, x)) + β(t, x)V (t, x) − μ1(t, x)V (t, x)

−μ2(t, x)V 2(t, x), t > 0, x ∈ Ω,

∂ Hi

∂ν
= ∂Vi

∂ν
= ∂V

∂ν
= 0, t > 0, x ∈ ∂Ω, (3)

with its phase space being

X := {ϕ = (ϕ1, ϕ2, ϕ3) ∈ X
+ : ϕ1(x) ≥ 0, 0 ≤ ϕ2(x) ≤ ϕ3(x),∀x ∈ Ω̄}.

Let Y := C(Ω̄,R) and Y
+ := C(Ω̄,R+). Let T1(t, s), T2(t, s) : Y → Y, t ≥ s,

be the linear evolution operators associated with

∂u1

∂t
= ∇ · (δ1(t, x)∇u1(t, x)) − λ(t, x)u1(t, x), t > 0, x ∈ Ω,

and

∂u2

∂t
= ∇ · (δ2(t, x)∇u2(t, x)) − μ1(t, x)u2(t, x), t > 0, x ∈ Ω,
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subject to the Neumann boundary condition, respectively. Since λ(t, ·) and μ1(t, ·)
are T -periodic in t , it follows from Daners and Medina (1992, Lemma 6.1) that
Ti (t + T , s + T ) = Ti (t, s) for any (t, s) ∈ R

2 with t ≥ s, i = 1, 2. More-
over, for any (t, s) ∈ R

2 with t > s, Ti (t, s), i = 1, 2, is compact and strongly
positive (see, e.g., Hess 1991, Chapter II and Smith 1995, Theorems 7.3.1 and
7.4.1). Let T (t, s) := diag{T1(t, s), T2(t, s), T2(t, s)} : X → X, ∀t ≥ s, and
A (t) := diag{A1(t), A2(t), A2(t)}, where A1(t) and A2(t) are defined by,

D(Ai (t)) =
{

ϕ ∈ C2(Ω̄) : ∂ϕ

∂ν
= 0 on ∂Ω

}

, i = 1, 2,

A1(t)ϕ = ∇ · (δ1(t, x)∇ϕ(t, x)) − λ(t, x)ϕ(t, x), ∀ϕ ∈ D(A1(t)),

A2(t)ϕ = ∇ · (δ2(t, x)∇ϕ(t, x)) − μ1(t, x)ϕ(t, x), ∀ϕ ∈ D(A2(t)).

Define F = (F1, F2, F3) : [0,+∞) × X → X by

F1(t, ϕ) = σ1(t, ·)Hu(·)ϕ2(·),
F2(t, ϕ) = σ2(t, ·)(ϕ3(·) − ϕ2(·))ϕ1(·) − μ2(t, ·)ϕ3(·)ϕ2(·),
F3(t, ϕ) = β(t, ·)ϕ3(·) − μ2(t, ·)ϕ2

3(·),

for all t ≥ 0 andϕ = (ϕ1, ϕ2, ϕ3) ∈ X . Then system (3) can bewritten as the following
abstract differential equation:

du
dt = A (t)u + F(t, u), t > 0,
u(0) = ϕ ∈ X .

(4)

Lemma 1 Let (A1)–(A2) hold. For any ϕ ∈ X, system (3) has a unique nonnegative
solution u(t, ·, ϕ) with u(0, ·, ϕ) = ϕ such that u(t, ·, ϕ) ∈ X for all t ∈ [0,+∞),
and solutions are ultimately bounded and uniformly bounded.

Proof By the abstract setting in Martin and Smith (1990), we consider the integral
form of system (4):

u(t, ϕ) = T (t, 0)ϕ + ∫ t
0 T (t, s)F(s, u(s))ds, t > 0,

u(0) = ϕ ∈ X .

From the expression of F , we see that F is locally Lipschitz continuous. For any
(t, ϕ) ∈ R+ × X and k > 0, we have

ϕ(x) + k F(t, ϕ)(x)

=
⎛

⎝
ϕ1(x) + kσ1(t, x)Hu(x)ϕ2(x)

ϕ2(x) + k[σ2(t, x)(ϕ3(x) − ϕ2(x))ϕ1(x) − μ2(t, x)ϕ3(x)ϕ2(x)]
ϕ3(x) + k[β(t, x)ϕ3(x) − μ2(t, x)ϕ2

3(x)]

⎞

⎠
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≥
⎛

⎝
ϕ1(x)

ϕ2(x)[1 − k(σ̂2ϕ1(x) + μ̂2ϕ3(x))]
ϕ3(x)(1 − kμ̂2ϕ3(x))

⎞

⎠ ,

where μ̂2 = maxt∈[0,T ],x∈Ω̄ μ2(t, x), σ̂2 = maxt∈[0,T ],x∈Ω̄ σ2(t, x), and

ϕ3(x) − [ϕ2(x) + k F2(t, ϕ)(x)] = ϕ3(x) − ϕ2(x) − kσ2(t, x)(ϕ3(x) − ϕ2(x))ϕ1(x)

+ kμ2(x)ϕ3(x)ϕ2(x)

≥ (ϕ3(x) − ϕ2(x))(1 − kσ̂2ϕ1(x)).

Thus, for sufficiently small k > 0, we have ϕ + k F(t, ϕ) ∈ X , and hence,

lim
k→0+

1

k
dist(ϕ + k F(t, ϕ), X) = 0, ∀(t, ϕ) ∈ R+ × X .

Since T1(t, s) and T2(t, s) are positive for t ≥ s, we easily see that T (t, s) : X → X
for all t ≥ s ≥ 0. By Martin and Smith (1990, Corollary 4) with K = X and
S(t, s) = T (t, s), it then follows that for any ϕ ∈ X , system (3) has a unique non-
continuable mild solution u(t, ·, ϕ) with u0 = ϕ on its maximal existence interval
t ∈ [0, tϕ), where tϕ ≤ +∞, and u(t, ·, ϕ) ∈ X for all t ∈ [0, tϕ). Moreover, by the
analyticity of T (t, s)with respect to (t, s) ∈ R

2, t > s, u(t, ·, ϕ) is a classical solution
of system (3) for t > 0.

Since system (2) admits a globally stable positive T -periodic solution V ∗(t, x), it
follows thatu3(t, ·, ϕ) = V (t, ·) is bounded on [0, tϕ), and hence,u2(t, ·, ϕ) = Vi (t, ·)
is also boundedon [0, tϕ). Then there exists a constant B > 0 such that thefirst equation
Hi of system (3) is dominated by the following one:

∂w(t,x)
∂t = ∇ · (δ1(t, x)∇w(t, x)) − λ(t, x)w(t, x) + B, t > 0, x ∈ Ω,

∂w
∂ν

= 0, t > 0, x ∈ ∂Ω.

ByZhang et al. (2015, Lemma2.1) and the comparison principle, u1(t, ·, ϕ) = Hi (t, ·)
is bounded on [0, tϕ). Thus, the solution u(t, ·, ϕ) is bounded on [0, tϕ), and hence,
tϕ = +∞ for any ϕ ∈ X . It then follows from the comparison argument that solutions
of system (3) with initial data in X exist globally on [0,+∞) and are also ultimately
bounded.

It is easy to see that there exists a positive vector ζ = (ζ1, ζ2, ζ3) := (
σ̂1 Ĥu(β̂−μ̄1)

μ̄2λ̄
,

β̂−μ̄1
μ̄2

,
β̂−μ̄1

μ̄2
) such that

σ1(t, x)Hu(x)ζ2 − λ(t, x)ζ1 ≤ 0,−μ1(t, x)ζ2 − μ2(t, x)ζ2ζ3 ≤ 0,

(β(t, x) − μ1(t, x))ζ3 − μ2(t, x)ζ 2
3 ≤ 0,

where σ̂1 = maxt∈[0,T ],x∈Ω̄ σ1(t, x), Ĥu = maxx∈Ω̄ Hu(x), β̂ = maxt∈[0,T ],x∈Ω̄ β(t, x),
μ̄i = mint∈[0,T ],x∈Ω̄ μi (t, x) (i = 1, 2), and λ̄ = mint∈[0,T ],x∈Ω̄ λ(t, x). Thus, for
any m ≥ 1, mζ is an upper solution of systems (3). This implies that solutions of
system (3) are uniformly bounded. �
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3 Threshold Dynamics

In this section, we first introduce the basic reproduction ratio R0 for system (3) and
then establish a threshold type result on its global dynamics in terms of R0.

Let E := C(Ω̄,R2), E+ := C(Ω̄,R2+), and CT (R,E) be the Banach space con-
sisting of T -periodic and continuous functions from R to E, where ‖φ‖CT (R,E) :=
maxθ∈[0,T ] ‖φ(θ)‖E for any φ ∈ CT (R,E). Letting Hi = Vi = 0 in system (3), we
obtain system (2). Thus, linearizing system (3) at the disease-free periodic solution
(0, 0, V ∗(t, x)), we consider the following system of infectious compartments:

∂ Hi (t, x)

∂t
= ∇ · (δ1(t, x)∇Hi (t, x)) − λ(t, x)Hi (t, x)

+ σ1(t, x)Hu(x)Vi (t, x), t > 0, x ∈ Ω,

∂Vi (t, x)

∂t
= ∇ · (δ2(t, x)∇Vi (t, x)) + σ2(t, x)V ∗(t, x)Hi (t, x)

− (μ1(t, x) + μ2(t, x)V ∗(t, x))Vi (t, x), t > 0, x ∈ Ω,

∂ Hi

∂ν
= ∂Vi

∂ν
= 0, t > 0, x ∈ ∂Ω. (5)

Define the operator F(t) : E → E by

F(t)

(
φ1
φ2

)

=
(

σ1(t, ·)Hu(·)φ2(·)
σ2(t, ·)V ∗(t, ·)φ1(·)

)

, ∀t ∈ R, φ = (φ1, φ2) ∈ E.

Let −W (t)v = ∇ · (δ(t, ·)∇v) − W (t)v, where δ(t, ·) = diag(δ1(t, ·), δ2(t, ·)) and

−[W (t)](x) =
(−λ(t, x) 0

0 −(μ1(t, x) + μ2(t, x)V ∗(t, x))

)

, ∀t ∈ R, x ∈ Ω̄.

Then system (5) can be written as

dv

dt
= F(t)v − W (t)v, t ≥ 0.

Let T3(t, s), t ≥ s, be the evolution operator on Y associated with

∂u(t, x)

∂t
= ∇ · (δ2(t, x)∇u(t, x)) − (μ1(t, x)

+μ2(t, x)V ∗(t, x))u(t, x), t > 0, x ∈ Ω,

∂u

∂ν
= 0, t > 0, x ∈ ∂Ω.

Thus,Φ(t, s) := diag(T1(t, s),T3(t, s)), t ≥ s, is the evolution family onE associated
with the linear system
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dv

dt
= −W (t)v.

The exponential growth bound of Φ(t, s) is defined by

ω̄(Φ) = inf{ω̃ : ∃M ≥ 1 such that ‖Φ(t + s, s)‖ ≤ Meω̃t , ∀s ∈ R, t ≥ 0}.

By the Krein–Rutman Theorem (see, e.g., Hess 1991, Theorem 7.2 and Lemma 14.2),
we have

0 < r(Φ(T , 0)) = max{r(T1(T , 0)), r(T3(T , 0))} < 1,

where r(Φ(T , 0)) is the spectral radius of Φ(T , 0). Thus, Thieme (2009, Proposition
5.6) with s = 0 implies that ω̄(Φ) < 0. Note that Φ(t, s) is a positive operator in
the sense that Φ(t, s)E+ ⊆ E

+ for all t ≥ s. Therefore, F(t) and Φ(t, s) satisfy the
following assumptions:

(H1) For each t ≥ 0, F(t) is a positive operator on E.
(H2) For any t ≥ s, Φ(t, s) is a positive operator on E, and ω̄(Φ) < 0.

Following Liang et al. (2019) and Zhao (2017a), we define two linear operators on
CT (R,E) by

[Lv](t) :=
∫ +∞

0
Φ(t, t − s)F(t − s)v(t − s)ds, ∀t ∈ R, v ∈ CT (R,E),

and

[L v](t) := F(t)

(∫ +∞

0
Φ(t, t − s)v(t − s)ds

)

, ∀t ∈ R, v ∈ CT (R,E).

Let A and B be two bounded linear operators on CT (R,E) given by

[Av](t) :=
∫ +∞

0
Φ(t, t − s)v(t − s)ds, [Bv](t) = F(t)v, ∀t ∈ R, v ∈ CT (R,E).

We then have L = A ◦ B andL = B ◦ A, and hence, L andL have the same spectral
radius. Thus, we define the basic reproduction ratio as R0 := r(L) = r(L ), where
r(L) and r(L ) are the spectral radii of L and L , respectively.

For any given t ≥ 0, let P(t) be the solution map of system (5) on E, that is,
P(t)φ = v(t, φ), where v(t, φ)(x) = v(t, x, φ), ∀x ∈ Ω̄ , and v(t, x, φ) is the unique
solution of system (5) with v(0, x, φ) = φ(x), ∀x ∈ Ω̄ . Then, P := P(T ) is the
Poincaré map associated with system (5). Let r(P) be the spectral radius of P . By
Liang et al. (2019, Theorem 3.7) with τ = 0, we have the following result.

Lemma 2 R0 − 1 has the same sign as r(P) − 1.
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Note that for any V (0, ·) ≥ 0 but V (0, ·) �≡ 0, there holds limt→∞(V (t, x) −
V ∗(t, x)) = 0 uniformly for all x ∈ Ω̄ . We then consider the following limiting
system:

∂ Hi (t, x)

∂t
= ∇ · (δ1(t, x)∇Hi (t, x)) − λ(t, x)Hi (t, x)

+ σ1(t, x)Hu(x)Vi (t, x), t > 0, x ∈ Ω,

∂Vi (t, x)

∂t
= ∇ · (δ2(t, x)∇Vi (t, x)) + σ2(t, x)(V ∗(t, x) − Vi (t, x))Hi (t, x)

−μ1(t, x)Vi (t, x) − μ2(t, x)V ∗(t, x)Vi (t, x), t > 0, x ∈ Ω,

∂ Hi

∂ν
= ∂Vi

∂ν
= 0, t > 0, x ∈ ∂Ω. (6)

For each t ≥ 0, we define

E(t) := {(ϕ1, ϕ2) ∈ E
+ : ϕ1(x) ≥ 0, 0 ≤ ϕ2(x) ≤ V ∗(t, x),∀x ∈ Ω̄}.

Then, we have the following result for system (6).

Lemma 3 Let (A1)–(A2) hold. For any φ ∈ E(0), system (6) has a unique solution
v(t, ·, φ) with v(0, ·, φ) = φ such that v(t, ·, φ) = (v1(t, ·, φ), v2(t, ·, φ)) ∈ E(t) for
all t ≥ 0, and solutions are ultimately bounded and uniformly bounded. Moreover,
system (6) generates a T -periodic semiflow Q(t) := v(t, ·) : E(0) → E(t).

Proof From system (6) with the initial data φ, we have

v1(t, ·, φ) = T1(t, 0)φ1(·) +
∫ t

0
T1(t, s)[σ1(s, ·)Hu(·)v2(s, ·)]ds,

v2(t, ·, φ) = T3(t, 0)φ2(·) +
∫ t

0
T3(t, s)[σ2(s, ·)(V ∗(s, ·) − v2(s, ·))v1(s, ·)]ds.

Define F̃ = (F̃1, F̃2) : [0,+∞) × E → E by

F̃1(t, φ) := σ1(t, ·)Hu(·)φ2(·),
F̃2(t, φ) := σ2(t, ·)(V ∗(t, ·) − φ2(·)))φ1(·),∀t ≥ 0, φ = (φ1, φ2) ∈ E.

Then, system (6) can be written as an integral equation

v(t, φ) = Φ(t, 0)φ +
∫ t

0
Φ(t, s)F̃(s, v(s))ds,∀t ≥ 0, φ ∈ E.

Wefirst show that F̃ is quasi-monotone on E := {(t, φ) ∈ [0,+∞)×E
+ : φ ∈ E(t)}

in the sense that

lim
k→0+

1

k
dist((ψ − φ) + k[F̃(t, ψ) − F̃(t, φ)],E+) = 0, (7)
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for all (t, φ), (t, ψ) ∈ E with φ ≤ ψ . Indeed, for any given (t, φ), (t, ψ) ∈ E with
φ ≤ ψ , we have

ψ − φ + k[F̃(t, ψ) − F̃(t, φ)]

=
⎛

⎝
ψ1(·) − φ1(·) + k[σ1(t, ·)Hu(·)ψ2(·) − σ1(t, ·)Hu(·)φ2(·)]
ψ2(·) − φ2(·) + k[σ2(t, ·)(V ∗(t, ·) − ψ2(·))ψ1(·)

− σ2(t, ·)(V ∗(t, ·) − φ2(·))φ1(·)]

⎞

⎠

≥
(

ψ1(·) − φ1(·) + kσ̄1 H̄u(ψ2(·) − φ2(·))
ψ2(·) − φ2(·) + kσ̄2V ∗(t, ·)(ψ1(·) − φ1(·)) − kσ̄2(ψ1(·)ψ2(·) − φ1(·)φ2(·))

)

=
(

ψ1(·) − φ1(·) + kσ̄1 H̄u(ψ2(·) − φ2(·))
(1 − kσ̄2φ1(·))(ψ2(·) − φ2(·)) + kσ̄2(V ∗(t, ·) − ψ2(·))(ψ1(·) − φ1(·))

)

,

where σ̄i = mint∈[0,T ],x∈Ω̄ σi (t, x), i = 1, 2, H̄u = minx∈Ω̄ Hu(x).

Thus,ψ−φ+k[F̃(t, ψ)− F̃(t, φ)] ∈ E
+ for all sufficiently small k > 0, and hence,

(7) holds true. Letting v−(t) = (0, 0), v+(t) = (+∞, V ∗(t, ·)), S+ = S− = S = Φ,
and B− = B+ = F̃ , we can easily verify assumptions (C1)–(C6) in Martin and
Smith (1990). It then follows from Martin and Smith (1990, Corallary 5) that for any
φ ∈ E(0), system (6) admits a unique solution v(t, ·, φ) with v(0, ·, φ) = φ such that
v(t, ·, φ) ∈ E(t) for all t in its maximal interval of existence [0, tφ).

By the arguments similar to those for Lemma 1, it follows that the solution of
system (6) with initial data φ ∈ E(0) exists globally on [0,+∞), and solutions are
ultimately bounded and uniformly bounded. For any given t ≥ 0,we define an operator
Q(t) : E(0) → E(t) by Q(t)(φ)(x) = v(t, x, φ), ∀φ ∈ E(0), x ∈ Ω̄ . It then follows
that Q(t) : E(0) → E(t) is a T -periodic semiflow (see, e.g., Zhao 2017b), and
Q := Q(T ) : E(0) → E(T ) = E(0) is the Poincaré map associated with system (6).

�
Lemma 4 Let (A1)–(A2) hold. For any φ and ψ in E(0) with φ > ψ (that is, φ ≥ ψ ,
but φ �≡ ψ), the solutions v̄(t, ·, φ) and v(t, ·, ψ) of system (6) with v̄0(0, ·, φ) = φ

and v0(0, ·, ψ) = ψ , respectively, satisfy v̄(t, ·, φ) � v(t, ·, ψ) for all t > 0. That is,
the map Q(t) : E(0) → E(t) is strongly monotone for each t > 0.

Proof The comparison theorem for cooperative parabolic systems implies that
v̄i (t, ·, φ) ≥ vi (t, ·, ψ) for all t ≥ 0, i = 1, 2. Let φ,ψ ∈ E(0) satisfy φ > ψ . Denote
v̄(t, ·) = v̄(t, ·, φ) = (v̄1(t, ·), v̄2(t, ·)) and v(t, ·) = v(t, ·, ψ) = (v1(t, ·), v2(t, ·)).
Without loss of generality, we assume that φ1(·) > ψ1(·). Clearly, we have

∂(v̄1(t, x) − v1(t, x))

∂t
= ∇ · (δ1(t, x)∇(v̄1(t, x) − v1(t, x)))

− λ(t, x)(v̄1(t, x) − v1(t, x))

+ σ1(t, x)Hu(x)(v̄2(t, x) − v2(t, x))

≥ ∇ · (δ1(t, x)∇(v̄1(t, x) − v1(t, x)))

− λ(t, x)(v̄1(t, x) − v1(t, x)),

∂(v̄1 − v1)

∂ν
= 0, t > 0, x ∈ ∂Ω,
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v̄1(0, ·) − v1(0, ·) = φ1(·) − ψ1(·) > 0.

By the standard parabolic comparison theorem and maximal principle, it follows that
v̄1(t, x) > v1(t, x) for all t > 0 and x ∈ Ω̄ , i.e., v̄1(t, ·) � v1(t, ·) for each t > 0. By
an argument similar to that for v̄1 and v1, we have v̄2(t, ·) � v2(t, ·) for each t > 0
provided that φ2(·) > ψ2(·). It suffices to consider the case where φ2(·) ≡ ψ2(·). For
such a case, we have the following claim.
Claim. v̄2(t, ·) > v2(t, ·) for all t > 0.

Indeed, assume, by contradiction, that v̄2(t0, ·) = v2(t0, ·) for some t0 > 0. Then,
the maximum principle implies that v̄2(t, ·) = v2(t, ·), ∀t ∈ [0, t0], and hence,
∂v̄2(t,x)

∂t = ∂v2(t,x)
∂t for all t ∈ [0, t0] and x ∈ Ω̄ . It then follows that

σ2(t, ·)(V ∗(t, ·) − v2(t, ·))(v̄1(t, ·) − v1(t, ·)) = 0,∀t ∈ [0, t0].

Since v̄1(t, ·) � v1(t, ·), ∀t > 0, we have V ∗(t, ·) = v2(t, ·), ∀t ∈ [0, t0], and hence,
∂V ∗(t, x)

∂t
= ∂v2(t, x)

∂t
= ∇ · (δ2(t, x)∇v2(t, x)) − (μ1(t, x)

+μ2(t, x)V ∗(t, x))v2(t, x),

for all t ∈ [0, t0], which contradicts the fact that

∂V ∗(t, x)

∂t
= ∇ · (δ2(t, x)∇V ∗(t, x)) + β(t, x)V ∗(t, x) − (μ1(t, x)

+μ2(t, x)V ∗(t, x))V ∗(t, x).

This proves the claim above.
Let g1(t, x, ξ) := ∇ · (δ2(t, x)∇ξ) + σ2(t, x)(V ∗(t, x) − ξ)v1(t, x) − (μ1(t, x) +

μ2(t, x) ×V ∗(t, x))ξ, x ∈ Ω̄. Since

∂v̄2(t, x)

∂t
= ∇ · (δ2(t, x)∇v̄2(t, x)) + σ2(t, x)(V ∗(t, x) − v̄2(t, x))v̄1(t, x)

− (μ1(t, x) + μ2(t, x)V ∗(t, x))v̄2(t, x)

≥ ∇ · (δ2(t, x)∇v̄2(t, x)) + σ2(t, x)(V ∗(t, x) − v̄2(t, x))v1(t, x)

− (μ1(t, x) + μ2(t, x)V ∗(t, x))v̄2(t, x)

= g1(t, x, v̄2(t, x)),

we have ∂v̄2(t,x)
∂t − g1(t, x, v̄2(t, x)) ≥ ∂v2(t,x)

∂t − g1(t, x, v2(t, x)), ∀t > 0, x ∈ Ω ,

with ∂v̄2(t,x)
∂t = ∂v2(t,x)

∂t = 0, x ∈ ∂Ω . For any given t1 > 0, the above claim implies
that v̄2(t1, ·) > v2(t1, ·). It then follows from the parabolic maximum principle that
v̄2(t, ·) � v2(t, ·) for all t > t1. Since t1 > 0 is arbitrary, we have v̄2(t, ·) � v2(t, ·)
for all t > 0. Thus, v̄(t, ·, φ) � v(t, ·, ψ) for all t > 0. �

By the continuity and differentiability of solutions with respect to the initial data, it
is easy to see that Q is differentiable at zero and the Frechét derivative DQ(0) = P .
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In the following, we establish a threshold type result on the global dynamics of system
(6) in terms of R0.

Theorem 1 Assume that (A1)–(A2) hold. The following statements are valid:

(i) If R0 ≤ 1, then (0, 0) is globally asymptotically stable for system (6) in E(0).
(ii) If R0 > 1, then system (6) admits a unique positive T -periodic solution (H∗

i (t, x),

V ∗
i (t, x)), and it is globally asymptotically stable for system (6) in E(0)\ {(0, 0)}.

Proof For any given φ ∈ E(0) and α ∈ [0, 1], let v(t, x, φ) and v(t, x, αφ) be the
solutions of system (6) with v(0, x, φ) = φ(x) and v(0, x, αφ) = αφ(x), x ∈ Ω̄ ,
respectively. Define u(t, x) := αv(t, x, φ) = (u1(t, x), u2(t, x))) and w(t, x) :=
v(t, x, αφ) = (w1(t, x), w2(t, x)), we then have

∂u1(t, x)

∂t
= α

∂v1(t, x)

∂t
= ∇ · (δ1(t, x)∇(αv1(t, x))) − λ(t, x)(αv1(t, x))

+ σ1(t, x)Hu(x)(αv2(t, x)),

∂u2(t, x)

∂t
= α

∂v2(t, x)

∂t
= ∇ · (δ2(t, x)∇(αv2(t, x))) + σ2(t, x)(V ∗(t, x)

− v2(t, x))(αv1(t, x)) − (μ1(t, x) + μ2(t, x)V ∗(t, x))(αv2(t, x))

≤ ∇ · (δ2(t, x)∇(αv2(t, x))) + σ2(t, x)(V ∗(t, x) − αv2(t, x))(αv1(t, x))

− (μ1(t, x) + μ2(t, x)V ∗(t, x))(αv2(t, x)), t > 0, x ∈ Ω.

Thus, u(t, x) is a lower solution of system (6) with u(0, x) = αv(0, x, φ) = αφ(x),
x ∈ Ω̄ . It then follows that αv(t, x, φ) ≤ v(t, x, αφ) for all t ≥ 0, x ∈ Ω̄ . This shows
that the solution map Q(t) : E(0) → E(t) is subhomogeneous. Moreover, we have
the following claim.
Claim. For each t > 0, Q(t) : E(0) → E(t) is strictly subhomogeneous in the sense
that for any α ∈ (0, 1) and φ ∈ E(0) with φ � 0, there holds Q(t)(αφ) > αQ(t)(φ).

Indeed, for any φ ∈ E(0) with φ �≡ 0 and α ∈ (0, 1), let z(t, x) = v(t, x, αφ) −
αv(t, x, φ). Then, z(0, x) = 0 and z(t, x) ≥ 0 for all t ≥ 0 and x ∈ Ω̄ . We further
show that z(t, x) > 0 for all t > 0 and x ∈ Ω̄ . For simplicity, we let f (t, x, v1, v2) :=
σ2(t, x)(V ∗(t, x) − v2(t, x))v1(t, x). It follows that

∂z2(t, x)

∂t
= ∂v2(t, x, αφ)

∂t
− α

∂v2(t, x, φ)

∂t
= ∇ · (δ2(t, x)∇v2(t, x, αφ)) + f (t, x, v1(t, x, αφ), v2(t, x, αφ))

− (μ1(t, x) + μ2(t, x)V ∗(t, x))v2(t, x, αφ)

− α[∇ · (δ2(t, x)∇v2(t, x, φ))

+ f (t, x, v1(t, x, φ), v2(t, x, φ)) − (μ1(t, x)

+ μ2(t, x)V ∗(t, x))v2(t, x, φ)]
= ∇ · (δ2(t, x)∇z2(t, x)) − (μ1(t, x)

+ μ2(t, x)V ∗(t, x))z2(t, x) + h(t, x)

+ σ2(t, x)V ∗(t, x))z1(t, x) + σ2(t, x)[−αv2(t, x, φ)z1(t, x)
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− v1(t, x, αφ)z2(t, x)]
= ∇ · (δ2(t, x)∇z2(t, x)) − (μ1(t, x)

+ μ2(t, x)V ∗(t, x))z2(t, x) + h(t, x)

+ σ2(t, x)(V ∗(t, x) − αv2(t, x, φ))z1(t, x)

− σ2(t, x)v1(t, x, αφ)z2(t, x)

≥ ∇ · (δ2(t, x)∇z2(t, x)) − (μ1(t, x) + μ2(t, x)V ∗(t, x))z2(t, x)

− σ2(t, x)v1(t, x, αφ))z2(t, x) + h(t, x),

whereh(t, x) := f (t, x, αv1(t, x, φ), αv2(t, x, φ))−α f (t, x, v1(t, x, φ), v2(t, x, φ)).
Since the solution v1(t, x, αφ) is bounded, there exists a positive constant K such that

∂z2(t, x)

∂t
≥ ∇ · (δ2(t, x)∇z2(t, x)) − K z2(t, x) + h(t, x). (8)

Let T̂ (t, s) : Y → Y, 0 ≤ s ≤ t , be the evolution operator of

∂u(t, x)

∂t
= ∇ · (δ2(t, x)∇u(t, x)) − K u(t, x), t > 0, x ∈ Ω,

∂u(t, x)

∂ν
= 0, t > 0, x ∈ ∂Ω.

Thus, the system

∂u(t, x)

∂t
= ∇ · (δ2(t, x)∇u(t, x)) − K u(t, x) + h(t, x), t > 0, x ∈ Ω,

∂u(t, x)

∂ν
= 0, t > 0, x ∈ ∂Ω,

u(0, x) = ϕ ∈ Y, x ∈ Ω̄, (9)

can be written as

u(t, x, ϕ) = T̂ (t, 0)(ϕ)(x) +
∫ t

0
T̂ (t, s)h(s, x)ds, t ≥ 0, x ∈ Ω̄, ϕ ∈ Y. (10)

By Lemma 4, v1(t, x, φ) > 0, ∀t > 0, x ∈ Ω̄ . It then follows that h(t, x) = σ2(t, x)α

×v1(t, x, φ)(v2(t, x, φ) − αv2(t, x, φ)) > 0 for all t > 0 and x ∈ Ω̄ . By equation
(10) and the properties of T̂ (t, s), we have for any ϕ ≥ 0 with ϕ �≡ 0, the solution
of system (9) satisfies u(t, x, ϕ) > 0 for all t > 0 and x ∈ Ω̄ . Then by (8) and the
comparison principle, we have z2(t, x) > 0 for all t > 0 and x ∈ Ω̄ . This implies that
v(t, ·, αφ) > αv(t, ·, φ), ∀t > 0, that is, Q(t)(αφ) > αQ(t)(φ) for all t > 0. Thus,
for each t > 0, the map Q(t) is strictly subhomogeneous.

By the above analysis and Lemma 4, it follows that Q := Q(T ) is a strongly
monotone and strictly subhomogeneous map on E(0). Since Q(t) is compact for all
t > 0, Q is asymptotically smooth on E(0). Similarly, we see that P is also compact
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and strongly positive. By Zhao (2017b, Theorem 2.3.4 and Lemma 2.2.1), as applied
to Q, we have the following threshold type result:

(i) If r(P) ≤ 1, then (0, 0) is globally asymptotically stable for system (6) in E(0).
(ii) If r(P) > 1, then system (6) has a unique positive T -periodic solution v∗(t, x) =

(H∗
i (t, x), V ∗

i (t, x)), and v∗(t, x) is globally asymptotically stable for system (6)
in E(0) \ {(0, 0)}.

In view of Lemma 2, we then have the desired threshold type result in terms of R0. �
Next, we use the theory of chain transitive sets (see Zhao 2017b, Chapter 1) to lift

the global stability result on system (6) to system (3).

Theorem 2 Let (A1)–(A2) hold. The following statements are valid:

(i) If R0 ≤ 1, then the periodic solution (0, 0, V ∗(t, x)) is globally asymptotically
stable for system (3) in X1 := {(ϕ1, ϕ2, ϕ3) ∈ X : ϕ3 �= 0}.

(ii) If R0 > 1, then system (3) admits a unique positive T -periodic solution u∗(t, x) =
(H∗

i (t, x), V ∗
i (t, x), V ∗(t, x)), and u∗(t, x) is globally asymptotically stable for

system (3) in X2 := {(ϕ1, ϕ2, ϕ3) ∈ X : (ϕ1, ϕ2) �= (0, 0) and ϕ3 �= 0}.
Proof For any given t ≥ 0, let Q̃(t) : X → X be the solution map of system (3),
that is, Q̃(t)(ϕ) = u(t, ·, ϕ), where u(t, ·, ϕ) is the unique solution of system (3) with
u(0, ·, ϕ) = ϕ. Then Q̃ := Q̃(T ) is the Poincaré map associated with system (3). For
any given ϕ̄ ∈ X with ϕ̄3(·) �≡ 0, let ū(t, x) = (Hi (t, x), Vi (t, x), V (t, x)) be the
unique solution of system (3) with ū(0, ·, ϕ̄) = ϕ̄ and let ω(ϕ̄) be the omega limit set
of the orbit {Q̃n(ϕ̄)}n≥0 for the discrete-time semiflow Q̃n .

Since system (2) has a unique positive T -periodic solutionV ∗(t, x) and it is globally
stable, we have limt→∞(V (t, x) − V ∗(t, x)) = 0 uniformly for all x ∈ Ω̄ in Y \
{0}. Then, limn→∞(Q̃n(ϕ̄))3 = V ∗(0, ·), where (Q̃n(ϕ̄))3 is the third component
of Q̃n(ϕ̄). Since Q̃(t) is compact for each t > 0, ω(ϕ̄) is nonempty, compact and
invariant for Q̃. Therefore, there exists a subset ω̃ of E+ such that ω(ϕ̄) = ω̃ × {V ∗

0 },
where V ∗

0 = V ∗(0, ·).
For any φ = (φ1, φ2, φ3) ∈ ω(ϕ̄), there exists a sequence nk → ∞ such that

Q̃nk (ϕ̄) → φ as k → ∞. Since Vi (nk T , x) ≤ V (nk T , x) for all x ∈ Ω̄ , letting
nk → ∞, we have 0 ≤ φ2(x) ≤ φ3(x) ≡ V ∗

0 for all x ∈ Ω̄ . It then follows that
ω̃ ⊂ E(0). Clearly,

Q̃n |ω(ϕ̄) (φ1, φ2, V ∗
0 ) = Qn |ω̃ (φ1, φ2) × {V ∗

0 },∀(φ1, φ2) ∈ ω̃, n ≥ 0.

Since ω(ϕ̄) is an internally chain transitive set for Q̃ on X , we can easily check that
ω̃ is an internally chain transitive set for Q on E(0).

In the case where R0 ≤ 1, Theorem 1 (i) implies that (0, 0) is globally asymp-
totically stable for Q in E(0). It follows from Zhao (2017b, Theorem 1.2.1) that
ω̃ = {(0, 0)}, and hence, ω(ϕ̄) = {(0, 0, V ∗

0 )}. This implies that statement (i) is valid.
In the casewhere R0 > 1, it follows fromTheorem1 (ii) and (Zhao 2017b, Theorem

1.2.2) that either ω̃ = {(0, 0)} or ω̃ = {(H∗
i0, V ∗

i0)}, where H∗
i0 = H∗

i (0, ·) and
V ∗

i0 = V ∗
i (0, ·). Next we claim that ω̃ �= {(0, 0)}. Assume, by contradiction, that
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ω̃ = {(0, 0)}, then we have ω(ϕ̄) = {(0, 0, V ∗
0 )}. Thus, limt→∞(Hi (t, x), Vi (t, x)) =

(0, 0) and limt→∞ (V (t, x) − V ∗(t, x)) = 0 uniformly for x ∈ Ω̄ . In view of
system (3), it then follows that for any ε > 0, there exists t0 = t0(ε) > 0 such that
‖V (t, x) − V ∗(t, x)‖ < ε and ‖(V (t, x) − Vi (t, x)) − V ∗(t, x)‖ < ε for all t ≥ t0
and x ∈ Ω̄ . Then, for any t ≥ t0, we see from system (3) that

∂ Hi (t, x)

∂t
= ∇ · (δ1(t, x)∇Hi (t, x)) − λ(t, x)Hi (t, x) + σ1(t, x)Hu(x)Vi (t, x),

∂Vi (t, x)

∂t
≥ ∇ · (δ2(t, x)∇Vi (t, x)) + σ2(t, x)(V ∗(t, x) − ε)Hi (t, x)

−μ1(t, x)Vi (t, x) − μ2(t, x)(V ∗(t, x) + ε)Vi (t, x). (11)

Let rε be the spectral radius of the Poincarémap associated with the following periodic
linear system:

∂ Hi (t, x)

∂t
= ∇ · (δ1(t, x)∇Hi (t, x)) − λ(t, x)Hi (t, x)

+ σ1(t, x)Hu(x)Vi (t, x), t > 0, x ∈ Ω,

∂Vi (t, x)

∂t
= ∇ · (δ2(t, x)∇Vi (t, x)) + σ2(t, x)(V ∗(t, x) − ε)Hi (t, x)

−μ1(t, x)Vi (t, x)

−μ2(t, x)(V ∗(t, x) + ε)Vi (t, x), t > 0, x ∈ Ω,

∂ Hi

∂ν
= ∂Vi

∂ν
= 0, t > 0, x ∈ ∂Ω. (12)

Since limε→∞ rε = r(P) > 1, we can fix 0 < ε < mint∈[0,T ],x∈Ω̄ V ∗(t, x) small
enough such that rε > 1. By the arguments similar to those for Liang et al. (2017, The-
orem 2.16), there exists a positive T -periodic function v∗

ε (t, x) such that eμε tv∗
ε (t, x)

is a solution of system (12), where με = ln rε

T > 0. Since ϕ̄ ∈ X2, it follows from
the proof of Lemma 4 that Hi (t, ·) � 0 and Vi (t, ·) � 0 for all t > 0. Then, there
exist a large integer n0 > 0 and a small number α > 0 such that n0T ≥ t0 and
(Hi (n0T , ·), Vi (n0T , ·) ≥ αeμεn0T v∗

ε (0, ·). By the comparison theorem, it follows
that

(Hi (t, ·), Vi (t, ·)) ≥ αeμε tv∗
ε (t, ·) � 0, ∀t ≥ n0T ,

which contradicts limt→∞(Hi (t, x), Vi (t, x)) = (0, 0) uniformly for all x ∈ Ω̄ . Thus,
ω̃ = (H∗

i0, V ∗
i0), and hence, ω(ϕ̄) = {(H∗

i0, V ∗
i0, V ∗

0 )}. This implies that statement (ii)
is valid. �

4 Numerical Simulations

In this section, we present some numerical simulations to investigate the impact of
seasonality and spatial heterogeneous infection on the Zika transmission. We apply
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Fig. 1 (Color figure online) a Population density of Rio de Janeiro Municipality sub-districts (Fitzgibbon
et al. 2017). . Source: https://www.citypopulation.de/php/brazil-rio.php. b Density of susceptible host
Hu(x) in Rio de Janeiro Municipality

system (3) to Rio de Janeiro Municipality, Brazil, which has a resident population of
6, 718, 903 and a density of 5, 598 inhabitants per square kilometer (see, https://www.
citypopulation.de/php/brazil-regiaosudeste-admin.php?adm2id=3304557). The first
confirmed case is reported in May 2015 and the main vector is the Aedes aegypti
mosquito. From the map of Rio de Janeiro Municipality (see Fig. 1a), we see that
the east–west is much longer than north–south and the eastern region has a highest
population density. The sub-district population densities range from about 1, 000 to
50, 000 per square kilometer. For simplicity, we then focus on one dimensional domain
Ω , which can be chosen Ω = (0, π), without loss of generality. The density of sus-
ceptible host is assumed to be the function Hu(x) = 7405 × (1.05 − cos(x − 0.48))
(see Fig. 1b), which corresponds approximately to the total population density in Fig.
1a. Assuming that there are 10 mosquitoes per host, we have the maximum carrying
capacity for vector Nm(x) = 10 × Hu(x). Since Brazilian average life expectancy is
76 years, we can estimate the natural death rate of host as 1/(76 × 12) Month−1.

Since host components of the transmission cycle do not undergo a significant sea-
sonal variation,weuse constant values to describe them.Themajority of the parameters
associated with the Aedes aegypti mosquitoes are influenced by temperature such as
the biting rate, the vector breeding rate, the mortality rate of vector, the carrying
capacity, and so on. We list the temperature-dependent functions and the values for
temperature-independent rates in Table 1 by using some published data. Additionally,
according to Huber et al. (2018), Palamara et al. (2014), the temperature-dependent
carrying capacity is modeled as

K (C) =
(

1 − μ1(C0)

β(C0)

)

× Nm × e
−0.5(C−C0)2

8.617×10−5(C+273)(C0+273) ,

where the reference temperature C0 = 29◦C. Then, we evaluate the time-dependent
parameters by using the monthly mean temperature for Rio de Janeiro according to the
Climate Change Knowledge Portal (https://climateknowledgeportal.worldbank.org/).
Set the period T = 12 Months. Thus, using the curve fitting tool (CFTOOL) in
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Table 2 Monthly mean temperatures for Rio de Janeiro (in ◦C)

Month January February March April May June

Temperature 25.65 26.03 25.31 23.61 21.67 20.52

Month July August September October November December

Temperature 20.20 20.72 21.29 22.36 23.40 24.71

MATLAB and Tables 1 and 2, we can fit the time periodic functions for parameters to
obtain

b(t) = (0.1841 + 0.05958 cos(π t/6) + 0.01361 sin(π t/6)

− 3.333 × 10−5 cos(2π t/6) + 0.009324 sin(2π t/6)

− 0.0012 cos(3π t/6) − 0.0006667 sin(3π t/6)

+ 5 × 10−5 cos(4π t/6) − 0.0001155 sin(4π t/6) + 0.0003714 cos(5π t/6)

− 0.0006242 sin(5π t/6) − 0.0007667 cos(6π t/6)) × 30.4 Month−1,

βvh(t) = 0.4098 + 0.1947 cos(π t/6) + 0.04374 sin(π t/6) − 0.002083 cos(2π t/6)

+ 0.02933 sin(2π t/6) − 0.0041 cos(3π t/6) − 0.003133 sin(3π t/6)

+ 0.0003667 cos(4π t/6) − 0.0004907 sin(4π t/6) + 0.001362 cos(5π t/6)

− 0.002019 sin(5π t/6) − 0.002567 cos(6π t/6),

βhv(t) = 0.4583 + 0.1279 cos(π t/6) + 0.02857 sin(π t/6) − 0.001792 cos(2π t/6)

+ 0.0191 sin(2π t/6) − 0.002567 cos(3π t/6) − 0.002133 sin(3π t/6)

+ 0.0002417 cos(4π t/6) − 0.0002742 sin(4π t/6)

+ 0.0009287 cos(5π t/6)

− 0.001306 sin(5π t/6) − 0.001683 cos(6π t/6),

μ1(t) = (0.03384 − 0.0004271 cos(π t/6) + 9.33 × 10−5 sin(π t/6)

+ 0.0005917 cos(2π t/6)

+ 0.0002165 sin(2π t/6) − 5 × 10−5 cos(3π t/6) + 0.0002 sin(3π t/6)

− 4.166 × 10−5 cos(4π t/6) − 4.329 × 10−5 sin(4π t/6)

− 2.292 × 10−5 cos(5π t/6)

+ 6.7 × 10−6 sin(5π t/6) + 8.341 × 10−6 cos(6π t/6)) × 30.4 Month−1,

β(t) = (16.77 + 8.093 cos(π t/6) + 1.92 sin(π t/6) + 0.2185 cos(2π t/6)

+ 1.348 sin(2π t/6) − 0.2163 cos(3π t/6) − 0.05037 sin(3π t/6)

+ 0.004967 cos(4π t/6) − 0.05488 sin(4π t/6)

+ 0.0463 cos(5π t/6) − 0.08378 sin(5π t/6)

− 0.09837 cos(6π t/6))30.4 Month−1,

K (t) = (0.1804 + 0.2413 cos(π t/6) + 0.07915 sin(π t/6) + 0.07087 cos(2π t/6)

+ 0.07705 sin(2π t/6) − 0.00275 cos(3π t/6) + 0.02712 sin(3π t/6)
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Fig. 2 (Color figure online) Evolution of Hi (t, x), Vi (t, x) and V (t, x) when R0 < 1

Fig. 3 (Color figure online) Evolution of Hi (t, x), Vi (t, x) and V (t, x) when R0 > 1

− 0.007217 cos(4π t/6) − 0.001559 sin(4π t/6) − 0.001664 cos(5π t/6)

− 0.004829 sin(5π t/6) − 0.0009667 cos(6π t/6)) × Nm,

μ2(t) = β(t) − μ1(t)

K (t)
Month−1.

For time-periodic systems, it is hard to obtain an explicit formulation of the basic
reproduction ratio, but we can numerically compute it.We use the numerical algorithm
for the computation of R0 developed in Liang et al. (2019, Lemma 2.5 and Remark
3.2). With this set of parameters, we numerically calculate the basic reproduction ratio
to obtain R0 = 0.1353 < 1. We use the backward difference method on time variable
t and the central difference method on space variable x to simulate the solutions of
system (3). Choosing the initial data as

Hi (0, x) = 1

0.38
√
2π

e
− (x−π/2)2

2×0.382 × 20, Vi (0, x) = 1

0.38
√
2π

e
− (x−π/2)2

2×0.382 × 200,

V (0, x) = 1

0.38
√
2π

e
− (x−π/2)2

2×0.382 × 2000, ∀x ∈ [0, π ].

Figure 2 shows the long-term behavior of system (3). The densities of infectious host
and vector both go to zero, and the density of total vector stabilizes at a positive
periodic solution, which implies that the disease will be eliminated. If the biting rate
a(t) increases to 8.5a(t), we obtain R0 = 1.1503 > 1. In this case, the solution
converges to a positive periodic solution eventually (see Fig. 3), which means that the
disease will persist and exhibit periodic fluctuation eventually. This is consistent with
Theorem 2.

For the purpose of exploring control measures, it is necessary to know the relative
importance of each factor responsible for the transmission of disease. Since R0 mea-
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Fig. 4 (Color figure online) Relationships of R0 and b, βvh , βhv , λ, β, Nm , μ1 and μ2 with and without
seasonality, respectively
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Fig. 5 (Color figure online) Effects of population diffusion
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Fig. 7 (Color figure online) a R0 as a function of θ . b The spatial distribution of Nm (x)

sures the risk of an epidemic, we numerically explore the relationship between R0
and some coefficients in our model system. In the following, we keep the parameter
values the same as those in Fig. 3. Figure 4 shows that R0 is an increasing function
with respect to parameters b, βvh , βhv , β, and Nm , but R0 is a decreasing function of
λ, μ1 and μ2, respectively. From the seventh of Fig. 4, there is a very small change
in R0 when μ1 increases under seasonal heterogeneity or homogeneity. That is, μ1 is
lowly correlated with R0. Other parameters with a broad range of variability would
be expected to be stronger drivers of change in R0. In order to control the spread of
disease, the ideal situation is to reduce R0 to be less than unity. Moreover, Fig. 5 shows
that R0 decreases as δi , i = 1, 2, increases, but we find that there is a sharp decline in
R0 when δi is small and then R0 is decreasing very slowly. This means that it does not
seem like a good control strategy by increasing the host or vector population mobility.
Moreover, to study the impact of the seasonal heterogeneity on the Zika transmission,
the time-averaged parameter is assumed by [g] := 1

T

∫ T
0 g(t)dt . In Figs. 4 and 5, the

green curves refer system (3) is under time-averaged parameters and the blue ones
refer system (3) with time-periodic parameters. It is easy to see that the green curves
all lie below the blue ones, respectively. These indicate that the disease risk will be
underestimated if we ignore the seasonality of Zika virus (see Fig. 6).

We also compare the infectious host and vector population sizes under different
maximum carrying capacities in vectors. This implies that for the lower maximum of
carrying capacity, there is a smaller epidemic peak. To explore the spatial heterogeneity
effect on R0,we can assume that themaximumvector carrying capacity Nm = 74050×
(1.05− θ cos(x − 0.48)) with θ ∈ [0, 1]. R0 is an increasing function with respect to
θ (see Fig. 7a). Note that the vector is distributed homogeneously in Rio de Janeiro
Municipality when θ = 0. But the host distribution is concentrated in the east of Rio
de JaneiroMunicipality. In this case, the value of R0 is big and there is a higher disease
risk.More andmore vectors are concentrated in humans crowded places as θ increases
from 0 to 1. In this case, the value of R0 will decrease as θ increases. These show that
the spatial heterogeneities in host and vector distributions impact the spread of Zika
virus.
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5 Discussion

In this paper, we have investigated a periodic Zika transmission model which takes
into account the seasonality and spatial heterogeneity in host and vector populations.
Applying the theory developed in Liang et al. (2019), we have derived the basic
reproduction ratio R0. Using the theories of monotone dynamical systems and chain
transitive sets, we have obtained a threshold type result on the global stability for the
model system in terms of R0, that is, if R0 ≤ 1, then the disease will die out; if R0 > 1,
then the disease will eventually stabilize at a positive periodic state.

In order to discuss the effect of the temperature on Zika transmission, we have used
some published data and temperature-dependent parameters with functional forms to
simulate the Zika transmission case in Rio de Janeiro Municipality, Brazil. We sim-
ulated the long-time behaviors of system to verify our analytic results. The value of
R0 measures the risk of an epidemic or pandemic in infectious diseases. Then, we
numerically explored the influence of some parameters on R0. As shown in Figs.
4 and 5, reducing the biting rate, the transmission probability from infectious host
(vector) to vector (host), the vector breeding rate, the maximum carrying capacity in
vector, and increasing the host recovery rate, the vector mortality rate, the host and
vector diffusion coefficients can reduce the risk of disease. This suggests that vec-
tor control strategies play a very important role in the Zika transmission, especially,
reducing the vector population size and biting rate. Thus, we may provide some cor-
responding potential control strategies: the biting rate can be reduced by avoiding the
exposure to mosquitoes through personal protection including using window screens,
door screens and mosquito nets, and using repellents on exposed skin or clothing; the
transmission probability per bite from infectious vector to host can be decreased by
using transmission-blocking strategies; the breeding rate of vector can be reduced by
using larvicides; the maximum carrying capacity in vector can be decreased by elim-
inating vector breeding sites near human habitats such as water storage, ponds and
puddles; the mortality rate of vector can be increased by using adulticides; the recov-
ery rate of host can be increased by the prompt diagnosis and medication treatments.
In addition, the vaccines against Zika virus seem the best way to protect humans over
the long term, but it remains an urgent need to develop a Zika vaccine (Makhluf and
Shresta 2018). Figures 4 and 5 show the ignorance of seasonality in the Zika virus
transmission may underestimate the value of R0.

A larger maximum of carrying capacity in vectors leads to an earlier peak and larger
epidemic peak. This allows us to highlight the importance of the maximum of carrying
capacity in vectors and its influence on the spread of Zika virus. We also found that
the spatial heterogeneities of the maximum of carrying capacity in vectors decease the
disease risk.
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