Assignment 4, MATH 6104

1. Let $\{Q_t\}_{t\geq 0}$ be the solution semiflow on C_1 of the Fisher equation $u_t = u_{xx} + u(1-u)$. Show that for each t > 0, the map $Q := Q_t$ satisfies assumptions (A1), (A2), (A3), (A4) and (A5).

2. Let c > 0 be a real number and g(t) be a continuous and bounded function defined on \mathbb{R} . Prove that the second order ordinary differential equation cu'(t) = u''(t) - u(t) + g(t) has a unique bounded solution $u^*(t)$ defined on \mathbb{R} , and also give an explicit expression of $u^*(t)$.

3. Use the limiting argument to prove that the Fisher equation $u_t = u_{xx} + u(1-u)$ has a monotone and positive traveling wave solution U(x + 2t) with $U(-\infty) = 0$ and $U(+\infty) = 1$.

4. Use the linearization method to prove that for any $c \in (0, 2)$, the Fisher equation $u_t = u_{xx} + u(1-u)$ has no positive traveling wave solution U(x+ct) with $U(-\infty) = 0$.

5. Find sufficient conditions on $f \in C^1(\mathbb{R}, \mathbb{R})$ such that the spatially homogeneous equation u' = f(u) admits the bistable dynamics, and then discuss the sign of the wave speed c of the bistable traveling wave solution U(x-ct) to the reaction-diffusion equation $u_t = u_{xx} + f(u)$.