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Abstract
Synchronized maturation has been extensively studied in biological science on its
evolutionary advantages. This paper is devoted to the study of the spatial dynamics
of species growth with annually synchronous emergence of adults by formulating
an impulsive reaction–diffusion model. With the aid of the discrete-time semiflow
generated by the 1-year solutionmap, we establish the existence of the spreading speed
and traveling waves for themodel on an unbounded spatial domain. It turns out that the
spreading speed coincides with theminimal speed of traveling waves, regardless of the
monotonicity of the birth rate function. We also investigate the model on a bounded
domain with a lethal exterior to determine the critical domain size to reserve species
persistence. Numerical simulations are illustrated to confirm the analytical results and
to explore the effects of the emergence maturation delay on the spatial dynamics of
the population distribution. In particular, the relationship between the spreading speed
and the emergence maturation delay is found to be counterintuitively variable.
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1 Introduction

Reproductive synchrony refers to the temporal clustering of reproductive events (mat-
ing, spawning, and/or births) among individualswithin a restricted timewindow,which
is widely documented in plant and animal populations (Mohring et al. 2013; Riehl
2018). It may arise simply as an adaptive mechanism of environmental seasonality in
climate or resources. It may also increase individual offspring survival by reducing
the per capita predation rate or promoting communal breeding for some species (Riehl
2018). Reproductive synchrony may happen in seasonally, lunar or every-other-day
cycles. Breaking the spawning synchrony is regarded to be a threat to coral persis-
tence (Shlesinger and Loya 2019). Interesting modeling studies have been performed
to understand the mechanisms of reproductive synchrony and its effect on popula-
tion growth. To catch the every-other-day egg laying synchrony pattern observed in
colonies of gulls, juvenile-adult structured difference equation models were proposed
and analyzed inVeprauskas (2018), Veprauskas andCushing (2017). By stratifying the
adult individuals into two classes: reproductively active and inactive adults, the exis-
tence of a synchronous 2-cycle composite of fixed points can indicate the synchronized
reproduction. Another well-accepted modeling approach to include the reproductive
synchrony is by dividing the cycle into two seasons, a nonreproduction season and a
short reproduction season. By taking the extreme value of a short reproduction season,
impulsive differential systems can be formulated (Lewis and Li 2012;Wang andWang
2020; Wu and Zhao 2019). If the duration of the cycle is fixed, for example 1 year,
then the differential system with impulsive reproduction rate may define an abstract
difference equation or a discrete-time semiflow which describes the evolution from
this year’s density of offspring to that of the next year (Jin et al. 2016; Wu and Zhao
2019). Following this idea, the persistence and critical domain size for populations
with two sexes and a short reproductive season was investigated in Jin et al. (2016).
A reaction–diffusion equation model with impulsive seasonal reproduction and indi-
vidual dispersal (Fazly et al. 2017) was proposed and the critical domain results were
established. An impulsive integro-differential model was formulated and analyzed to
capture the dynamics of an invading species with an impulsive reproduction stage and
a nonlocal dispersal stage in Wu and Zhao (2019). Considering the potential habitat
shift driven by climate change, the persistence or extinction problem ofmoving animal
species with birth pulse was investigated in Wang and Wang (2020). All these studies
and references therein greatly improve understanding on reproductive synchrony and
propose interesting mathematical questions.

Following the coordinated reproduction, synchronized emergence of matured indi-
viduals has also been reported through observational studies for some species, and
synchronous hatching and emergence occurs in many taxa in egg-laying animals
(Santos et al. 2016). For example, synchronized maturation in natural populations
of Xiphophorus variatus is reported (Borowsky and Diffley 1981) and synchronized
emergence of adult cicadas is widely observed in 13- and 17-year cycles (Hoppen-
steadt and Keller 1976). Although there have been extensive biological observations
and experiments on the possible advantages underlying the synchronized maturation
phenomenon, including reduced mortality due to avian predation, fungal infection,
environmental factors, and senescence (Williams et al. 1993), few modeling studies
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have been performed to qualitatively and quantitatively evaluate the impact of syn-
chronous development activity on population persistence and invasion in a spatially
explicit habitat.

Our purpose is to formulate a spatial population growth model with synchro-
nized emergence of matured individuals by adopting the impulsive reaction–diffusion
modeling idea for coordinated reproduction and impulsive pesticide applications in
dispersing population growth (see aforementioned references and Fazly et al. 2020;
Jin and Thieme 2014; Liang et al. 2019; Lin and Wang 2015). To do that, the whole
species is divided into two growth stages, immature and adult stage, which enables us
to distinguish the heterogeneity of individuals in different stages on the reproductive
potential, ability to disperse andmortality rates. Then, the impulse term can be derived
to describe the maturation pulse perturbation at fixed timing of one cycle. In particular,
the following biological characteristics will be assumed:

(B1) The species can be divided into two development stages for immature and
matured individuals, respectively. Within each stage, all individuals share the
same demographic parameters, such as the birth, death, and dispersal rates.

(B2) Matured individuals reproduce offsprings at the beginning of year, and they reach
maturation at certain time τ ∈ (0, 1) in the same year. That is, newborns mature
at time τ in each year, and hence, there is synchronized emergence of matured
individuals at time τ of each year.

(B3) There is no density-dependent regulation on the immatures during development.
Both immature andmatured individualsmaydispersewithin a habitat, at possibly
different diffusion rates.

The organization of this paper is as follows. In Sect. 2, including the above characteris-
tics in a population growth model, we formulate an age-structured reaction–diffusion
model with an impulsive term to describe the synchronized emergence of matured
individuals. A discrete-time semiflow can be further abstracted from this model. In
Sect. 3, we investigate the property of such a discrete-time semiflow and establish the
existence of spreading speeds and traveling waves, which shed light on the spatial
patterns and invading rates of species. In Sect. 4, we study the critical domain size
determining the successful establishment of the population, persistence or extinction.
At last, we present numerical simulations to evaluate the impact of synchronized mat-
uration emergence on spatial population dynamics and discuss possible extensions
through relaxing modeling assumptions of the current research.

2 Model Formulation

To describe the population growth with annually synchronized maturation driven by
coordinated offspring reproduction, without loss of generality, we assume that adults
reproduce at the beginning of the n-th year, with n ∈ N = {0, 1, 2, . . .}. Let un(t, x)
be the adult population density at time t ∈ [0, 1] and x ∈ R within year n ∈ N. Then,
the adult population densities Nn(x) and Nn+1(x) at the beginning of year n and year
n + 1 follow the following balance laws
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Fig. 1 The diagram describes the evolution of population dynamics for the adult stage un(t, x) and juvenile
stage vn(t, x) at time n + t and space location x , here t ∈ [0, 1] and n represents the n-th year. The
adult population density at location x and at the beginning and end of the n-th year can be represented as
Nn(x) = un(0, x) and Nn+1(x) = un(1, x), respectively. Note that there is an impulsive recruitment rate
R(x; Nn) to the adult stage at the time instant n + τ in the n-th year

Nn(x) = un(0, x) and Nn+1(x) = un(1, x).

The demographic process is illustrated in Fig. 1.
At the beginning of n-th year and spatial location x , the immature individuals are

reproduced at density g(Nn(x)), dependent on the adult population density. These
immature individuals develop into the adult stage after time τ , the synchronized
maturation duration. Due to the synchronized maturation in the n-th year, the adult
population density un(t, x) has an abrupt increase at time t = τ and location x , which
can be characterized by an impulsive force at that moment

un(t
+, x) = un(t, x) + R(x; Nn) when t = τ, (2.1)

where un(t, x) = un(t−, x) and R(x; Nn) describes the density of newly emerging
matured individuals. During the period of their development, immature individuals can
perform random diffusion with diffusion rate DI > 0 and are subject to a natural death
rate dI > 0. Let vn(t, x) be the immature population density at time t ∈ [0, 1] and
x ∈ R. Then, vn(0, x) = g(Nn(x)) and its evolution dynamics is governed by

∂vn

∂t
=

DI
∂2vn

∂x2
− dI vn . Let Tt be the time-t map of the linear equation ∂v

∂t = DI
∂2v
∂x2

− dI v.

It follows that the density of newly emerging matured individuals at location x and
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time n + τ of the n-th year can be expressed as

R(x; Nn) =
(
Tτ g(Nn(·))

)
(x)

= e−dI τ︸ ︷︷ ︸
survival probability
through maturation

∫

R

�(DI τ, x − y)︸ ︷︷ ︸
diffusion to locationx
during maturation

g(Nn(y))︸ ︷︷ ︸
born at
locationy

dy, (2.2)

where�(t, x) = 1√
4π t

e− x2
4t is the fundamental solution associated with the partial dif-

ferential operator ∂t − ∂2

∂x2
. The above term accounts the immatures surviving through

the maturation period with an exponential surviving probability and moving from
location y to location x in a normally distributed way.

At other time instances of 1 year, the adult population density can be described by
a reaction–diffusion equation

∂un
∂t

= DM
∂2un
∂x2

+ f (un) when 0 < t ≤ 1, t �= τ, (2.3)

where DM > 0 is the rate of adult random diffusion and f (·) is the death rate function,
including both density-independent and density-dependent mortalities.

Since the newly matured individuals can be expressed by a term of adult population
density, the above arguments summarize the following system to describe the spatial
evolution of adult population density with an annual impulsive maturation emergence

⎧⎪⎪⎨
⎪⎪⎩

∂un
∂t = DM

∂2un
∂x2

+ f (un), 0 < t ≤ 1, t �= τ, x ∈ R,

un(t+, x) = un(t, x) + R(x; Nn), t = τ,

un(0, x) = Nn(x), n = 0, 1, 2, . . .
Nn+1(x) = un(1, x).

(2.4)

Here the initial data is u0(0, x) = N0(x), ∀x ∈ R. Various types of functions have
been extensively used to approximate the birth and death rates in population growth
models (Fazly et al. 2017; Lewis and Li 2012; Liang et al. 2019; Wu and Zhao 2019).
For example, the Beverton–Holt function g1(N ) = pN

q+N with positive constants p and

q, and theRicker function g2(N ) = Ner−kN with positive constants r and k are typical
ones for the birth rate function, while f1(N ) = −aN −bN 2 with positive constants a
and b is widely used to describe the joint effect of natural and density-dependent death
rates. Motivated by these functional responses, we assume that the death rate function
f and birth function g satisfy the following assumptions throughout this paper:

(H1) f is a locally Lipschitz continuous function in R+, f (0) = 0 > f ′(0) and
f (N )/N is strictly decreasing in N .

(H2) g is a locally Lipschitz continuous function in R+, g(0) = 0 < g′(0) and
g(N ) > 0 for N > 0. Moreover, g(N )/N is nonincreasing for N , and there
exists N̄ > 0 such that g(N̄ ) ≤ N̄ .
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(H3) There are real numbers F > 0,G > 0, σ f > 0, σg > 0, ν f > 1 and νg > 1 such
that f (N ) ≥ f ′(0)N − FN ν f for 0 ≤ N ≤ σ f and g(N ) ≥ g′(0)N − GN νg

for 0 ≤ N ≤ σg .

It is easy to see that if both f ′′(0) and g′′(0) exist, then (H3) holds true with
ν f = νg = 2. Clearly, the aforementioned functions f1, g1 and g2 satisfy the above
assumptions. However, we should point out that two birth functions share different
monotonicity properties: g1(N ) is strictly increasing, while g2(N ) is not. Different
analytical techniques will be employed to investigate the spatial dynamics for two
scenarios (see subsections in Sects. 3 and 4).

Although the model (2.4) admits a maturation impulse, it is interesting to observe
that the impulse occurs at instants τ of the n-th year, that is, this abrupt change happens
periodically. This motivates us to consider the 1-year timemap of system (2.4). Let Mt

be the solution map of ∂u
∂t = DM

∂2u
∂x2

+ f (u). For a distribution of adult density φ(x)
at location x at the beginning of the year, the distribution at time τ is Mτ (φ)(x) due
to individual movement and death, and at time τ+, it becomes [Mτ (φ) + Tτ g(φ)](x)
because of coordinated maturing adults. After that, the spatial distribution follows
(2.3) in the remaining [τ, 1] interval and the distribution at the end of year becomes
M1−τ [Mτ (φ) + Tτ g(φ)](x). Thus, the time-one solution map of system (2.4) is

Q[φ](x) = M1−τ [Mτ (φ) + Tτ g(φ)](x), x ∈ R. (2.5)

For any time instant t̃ ≥ 0, there is a unique decomposition t̃ = 	t̃
 + t , where
t ∈ [0, 1) and 	t̃
 denotes the nearest integer less than or equal to t̃ . It then follows
that the time-t̃ solution map of system (2.4) can be expressed as

	t̃ [φ](x) =
{
Mt̃−	t̃
 ◦ Q	t̃
[φ](x), 0 ≤ t̃ − 	t̃
 ≤ τ,

Mt̃−	t̃
−τ ◦ [Mτ (Q
	t̃
[φ]) + Tτ g(Q

	t̃
[φ])](x), τ < t̃ − 	t̃
 < 1

for any given initial value φ = N0. Further, a straightforward verification shows that
	t̃ ◦	1 = 	t̃+1 for all t̃ ≥ 0. Note that 	t̃ [φ] is continuous in t̃ ∈ R+ \ {n+ τ : n =
0, 1, 2, . . .} for any given φ, and 	t̃ [φ] is continuous in φ uniformly for t̃ in any
bounded interval. Thus, {	t̃ }t̃≥0 can be regarded as a 1-periodic semiflow in a weak
sense (i.e., the traditional joint continuity in (t̃, φ) is replaced by the aforementioned
two continuities). Since the Poincaré map of {	t̃ }t̃≥0 is exactly	1 = Q, the evolution
dynamics of system (2.4) can be investigated via the following discrete-time recursion

Nn+1(x) = Q[Nn](x), x ∈ R, n ≥ 0. (2.6)

For this reduction, we refer to Zhao (2017, Section 3.1), Liang et al. (2006, Section 2)
Wu andZhao (2019) andWu andZhao (2022). In the rest of this paper, wewill focus on
the evolution dynamics of the discrete-time semiflow {Qn}n≥0 associated with system
(2.6) in the cases of unbounded and bounded spatial domains.
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3 Spreading Speeds and TravelingWaves

In this section, we study the spreading speed and traveling waves of system (2.6) with
two different kinds of birth functions. For notational simplicity, we drop subscript n
for un(t, x) in (2.4) and rewrite it as u(t, x) for t ∈ [0, 1].

3.1 Scenario 1: The Birth Function g is Monotone

Wefirst investigate the global dynamics of the spatially homogeneous version of (2.4):

⎧
⎪⎪⎨
⎪⎪⎩

du
dt = f (u), 0 < t ≤ 1, t �= τ,

u(t+) = u(t) + e−dI τ g(Nn), t = τ,

u(0) = Nn, n = 0, 1, 2, . . .
Nn+1 = u(1).

(3.1)

Similar to the formulation of the discrete-time recursion (2.6), this impulsive ordinary
differential model gives rise to a discrete-time dynamical system:

Nn+1 = Ŝ(Nn) := S1−τ (Sτ (Nn) + e−dI τ g(Nn)), n ≥ 0, (3.2)

where St is the time-t map of system du
dt = f (u) with t ∈ [0, 1]. Then, it is easy

to show that Ŝ is monotone and strongly subhomogeneous based on the assumptions
on growth functions (H1)–(H3) (see Zhao 2017). For the recursion derived from the
impulsive ordinary differential system Ŝ, we can explicitly compute that

Ŝ′(0) := e f ′(0) + g′(0)e f ′(0)(1−τ)−dI τ

via the linearized system of (3.1) at zero. In view of (H2), it follows that for any
N̂ ≥ M := (1 + e−dI τ )N̄ , [0, N̂ ] is positively invariant for system (3.2) in the sense
that if 0 ≤ N0 ≤ N̂ , then 0 ≤ Nn ≤ N̂ for all n ≥ 1. Therefore, Ŝ is a continuous and
compact map on R. The following result is a straightforward consequence of Zhao
(2017, Lemma 2.2.1 and Theorem 2.3.4).

Lemma 3.1 The following statements are valid:

(i) If Ŝ′(0) ≤ 1, then Nn = 0 is globally asymptotically stable for (3.2) in R+.
(ii) If Ŝ′(0) > 1, then (3.2) admits a unique fixed point β > 0 which is globally

asymptotically stable in R+ \ {0}.
To study the propagation dynamics of (2.6), we assume that Ŝ′(0) > 1 in the rest of

this subsection to guarantee that the operator Ŝ admits a positive fixed point β which is
globally asymptotically stable. Let C be the set of all bounded and continuous functions
from R to R. For any φ, ψ ∈ C, we write φ ≥ ψ if φ(x) ≥ ψ(x) for all x ∈ R; and
φ > ψ if φ ≥ ψ but φ �= ψ . Define

‖φ‖C = �∞
k=1

max|x |≤k |φ(x)|
2k

, ∀φ ∈ C.
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Then (C, ‖ · ‖C) is a normed space. It is easy to see that the norm ‖ · ‖C induces the
standard compact open topology on C, that is, a sequence of points φn converges to
φ in C if the sequence φn(x) of functions converges to φ(x) uniformly for x in any
compact subset of R.

For a given number r > 0, define Cr := {φ ∈ C : 0 ≤ φ(x) ≤ r , ∀x ∈ R}. Thus,
we are able to use the theory developed in Liang and Zhao (2007) to establish the
propagation dynamics for system (2.6).

Theorem 3.1 If Ŝ′(0) = e f ′(0) + g′(0)e f ′(0)(1−τ)−dI τ > 1, then system (2.6) admits a
spreading speed c∗ in the sense that

(i) For any c > c∗, if φ ∈ Cβ with 0 ≤ φ � β and φ(x) = 0 outside a bounded
interval, then limn→∞,|x |≥cn Qn[φ](x) = 0.

(ii) For any c < c∗, if φ ∈ Cβ \ {0}, then limn→∞,|x |≤cn Qn[φ](x) = β.

Proof For any φ ∈ C, let R[φ](x) := φ(−x) be the reflection operator and
T y[φ](x) := φ(x − y) be the translation operator for a given y ∈ R. Based on
the definition of the time-one map Q in (2.5), we show that the following statements
are valid for Q:

(A1) Q[R[φ]] = R[Q[φ]], T y[Q[φ]] = Q[T y[φ]], ∀y ∈ R.
(A2) Q : Cβ → Cβ is continuous with respect to the compact open topology.
(A3) Q[Cβ ] is precompact in Cβ .
(A4) Q is order preserving in the sense that Q[φ] ≥ Q[ψ] whenever φ ≥ ψ .
(A5) Q : [0, β] → [0, β] admits two fixed points 0 and β, and for any φ ∈ Cβ with

0 < φ ≤ β, there holds limn→∞ Qn[φ] = β.

If u(t̃, x) is a solution to (2.4)with n = 	t̃
 and t = t̃−	t̃
 ∈ [0, 1), then u(t̃, x+y),
∀y ∈ R and u(t̃,−x), are also solutions. Therefore, (A1) holds for the map Q. The
property (A2) can be established by the arguments similar to those in Yu and Zhao
(2015, Lemma 2.2). Note that M1−τ is compact with respect to the compact open
topology (see, e.g., the proof of Lemma 3.3). Thus, Q is compact on Cβ , and hence
(A3) holds. Further, since the birth function g is monotonically increasing, Q is order
preserving and (A4) holds. By statement (ii) in Lemma 3.1, we see that condition (A5)
is valid for Q. Further, we can verify that Q is subhomogeneous on Cβ in the sense
that Q[αφ] ≥ αQ[φ] for any φ ∈ Cβ \ {0} and α ∈ (0, 1). Therefore, Liang and Zhao
(2007, Theorems 2.11, 2.15 and Corollary 2.16) and Liang et al. (2006, Theorem A)
imply that (2.6) admits a spreading speed c∗ satisfying (i) and (ii). ��

Next we use the linear operators approach (see, e.g., Peng and Zhao 2013) to
estimate c∗. For any ε ∈ (0, 1), let Lε

t be the solution map associated with linear
reaction–diffusion equation

∂u

∂t
= DM

∂2u

∂x2
+ (1 + ε) f ′(0)u, 0 < t ≤ 1.
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Consider the following perturbed system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
= DM

∂2u

∂x2
+ (1 + ε) f ′(0)u, 0 < t ≤ 1, t �= τ, x ∈ R,

u(t+, x) = u(t, x) + Rε
(x; Nn), t = τ,

u(0, x) = Nn(x), n = 0, 1, 2, . . .

Nn+1(x) = u(1, x),

(3.3)

where Rε
(x; Nn) = (1 − ε)e−dI τ g′(0)

∫
R

�(DI τ, x − y)Nn(y)dy. Let Mε be the
time-one solution map of (3.3), that is,

Mε[ϕ](x) :=Lε
1−τ [Lε

τ (ϕ)+(1−ε)e−dI τ g′(0)
∫

R

�(DI τ, ·−y)ϕ(y)dy](x), ∀ϕ ∈ C.

For any given N0(x) = αe−μx with μ > 0 and α ∈ R, we have

M0[N0](x) : = L0
1−τ

[
L0

τ (αe
−μ·) + e−dI τ g′(0)α

∫

R

�(DI τ, · − y)e−μydy

]
(x)

= L0
1−τ

⎡
⎣α (e f ′(0)τ+DM τμ2 + g′(0)e−dI τ+DI τμ2

)︸ ︷︷ ︸
=�

e−μ·
⎤
⎦ (x)

= α�e f ′(0)(1−τ)

∫

R

�(DM (1 − τ), y)e−μ(x−y)dy

= α�e f ′(0)(1−τ)+DM (1−τ)μ2
e−μx

=
(
e f ′(0)+DMμ2 + g′(0)e f ′(0)(1−τ)−dI τ+DI τμ2+DM (1−τ)μ2

)
αe−μx .

Following Liang and Zhao (2007), we define Bμ : R → R as

Bμ[α] = M0[αe−μx ](0) =
(
e f ′(0)+DMμ2 + g′(0)e f ′(0)(1−τ)−dI τ+DI τμ2+DM (1−τ)μ2

)
α, ∀α ∈ R.

Then, the principle eigenvalue λ(μ) of Bμ can be expressed as

λ(μ) = e f ′(0)+DMμ2 + g′(0)e f ′(0)(1−τ)−dI τ+DI τμ2+DM (1−τ)μ2
.

Let	(μ) := ln λ(μ)
μ

= DMμ+ ln(e f ′(0)+g′(0)e f ′(0)(1−τ )−dI τ+DI τμ2−DM τμ2 )
μ

. Then, we have
the following formula on the spreading speed c∗.

Proposition 3.1 c∗ = infμ>0 	(μ).

Proof Clearly, Ŝ′(0) > 1 implies λ(0) > 1 and 	(∞) = ∞. Assumptions (H1) and
(H2) imply that f (u) and g(u) are subhomogeneous, and hence,

f (u) ≤ f ′(0)u and g(u) ≤ g′(0)u, ∀u ∈ [0,∞).
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By the comparison principle, we get Q[φ] ≤ M0[φ] for any φ ∈ Cβ . As a result,
Liang and Zhao (2007, Theorem 3.10(i)) implies that c∗ ≤ infμ>0 	(μ).

For given ε ∈ (0, 1), there exists δ = δ(ε) such that

g(u) ≥ (1 − ε)g′(0)u and f (u) ≥ (1 + ε) f ′(0)u, ∀u ∈ [0, δ].

Choose a positive number ξ = ξ(δ) > 0 such that for any ϕ ∈ Cξ , we have

0 ≤ u(t, x, ϕ) ≤ u(t, x, ξ) < δ, ∀(t, x) ∈ [0, 1] × R,

where u(t, x, ψ) is a solution of (2.4) through ψ . Furthermore, the comparison prin-
ciple implies that

Q[ϕ] ≥ Mε[ϕ], ∀ϕ ∈ Cξ .

By the arguments similar to those forM0 andLiang andZhao (2007,Theorem3.10(ii)),
it follows that

c∗ ≥ inf
μ>0

	ε(μ)

= inf
μ>0

⎡
⎣DMμ +

ln
(
e(1+ε) f ′(0) + (1 − ε)g′(0)e(1+ε) f ′(0)(1−τ)−dI τ+DI τμ2−DM τμ2

)

μ

⎤
⎦ .

Therefore, infμ>0 	ε(μ) ≤ c∗ ≤ infμ>0 	(μ) for all ε ∈ (0, 1). Letting ε → 0, we
then have c∗ = infμ>0 	(μ). ��

Definition 3.1 The solution Nn(x) is called a traveling wave solution of the recursion
(2.6) if there exist a one-variable function w and a constant c such that Nn(x) =
w(x − cn) for all integers n.

The following result on travelingwave solutions can be inferred directly fromLiang
and Zhao (2007, Theorems 4.1 and 4.2).

Theorem 3.2 For any c ≥ c∗, system (2.6) admits a traveling wave solutionw(x−cn)

connecting β to 0 such thatw(ξ) is nonincreasing in ξ , and for any c ∈ (0, c∗), system
(2.6) has no such traveling wave solution connecting β to 0.

3.2 Scenario 2: g is not Monotonically Increasing

In the case where the birth function g(N ) is not monotonically increasing for all N ,
the time-one solution map Q is not monotone on its whole domain. To overcome this
difficulty, we make an additional assumption on function g:

(H4) There is σ > 0 such that g(N ) is nondecreasing for 0 ≤ N ≤ σ .
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This assumption is reasonable biologically since it excludes the possibility of the
Allee effect in the birth function where the species suffers a decrease of its fitness
when the density is low (Taylor and Hastings 2005). For this scenario, we define

g+(N ) = max
0≤V≤N

g(V ), ∀N ≥ 0.

One sees that g+ is nondecreasing, locallyLipschitz continuous, and (g+)′(0) = g′(0).
In the case where Ŝ′(0) > 1, Lemma 3.1 implies that (3.2) with g replaced by g+ has
a positive fixed point β+. Similarly, if we introduce

g−(N ) = min
N≤V≤β+ g(V ), ∀0 ≤ N ≤ β+,

then g−(N ) is nondecreasing, locally Lipschitz continuous, and Eq. (3.2) with g
replaced by g− admits a positive equilibrium β−. Clearly, 0 < β− ≤ β ≤ β+.
Moreover, g−(N ) ≤ g(N ) ≤ g+(N ), (g±)′(0) = g′(0), g±(N ) ≤ g′(0)N , and there
exists σ0 ∈ (0, σ ∗] with σ ∗ = min{σ, σg} such that g±(N ) = g(N ) for N ∈ (0, σ0].

We now consider two auxiliary systems:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= DM

∂2u

∂x2
+ f (u), 0 < t ≤ 1, t �= τ, x ∈ R,

u(t+, x) = u(t, x) + R+(x; N+
n ), t = τ,

u(0, x) = N+
n (x), n = 0, 1, 2, . . .

N+
n+1(x) = u(1, x),

(3.4)

and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= DM

∂2u

∂x2
+ f (u), 0 < t ≤ 1, t �= τ, x ∈ R,

u(t+, x) = u(t, x) + R−(x; N−
n ), t = τ,

u(0, x) = N−
n (x), n = 0, 1, 2, . . .

N−
n+1(x) = u(1, x),

(3.5)

where

R±(x; N±
n ) =

(
Tτ g

±(N±
n (·))

)
(x) = e−dI τ

∫

R

�(DI τ, x − y)g±(N±
n (y))dy.

Similar to the procedures of formulating the recursion operator Q in (2.5), systems
(3.4) and (3.5) define two recurrence relations for N+

n (x) and N−
n (x) as

N+
n+1(x) = Q+[N+

n ](x) = M1−τ [Mτ (N
+
n )

+Tτ g
+(N+

n )](x), x ∈ R, n ≥ 0, (3.6)
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and

N−
n+1(x) = Q−[N−

n ](x) = M1−τ [Mτ (N
−
n )

+Tτ g
−(N−

n ](x), x ∈ R, n ≥ 0, (3.7)

respectively. Let N+
n (x), N−

n (x) and Nn(x) be the solutions of (3.6), (3.7) and (2.6),
respectively. The comparison arguments show that if N−

0 (x) ≤ N0(x) ≤ N+
0 (x) ≤

β+, then

0 ≤ N−
n (x) ≤ Nn(x) ≤ N+

n (x), x ∈ R, n ≥ 0.

Note that c∗ = infμ>0 	(μ) in Sect. 3.1 is the spreading speed of (2.6) with monotone
birth rate function, and the expression of c∗ only depends on the linearized equation
at u = 0. Based on this fact, we can define same (c+)∗ and (c−)∗ for (3.6) and (3.7),
respectively, in a similar manner. Moreover, (c−)∗ = (c+)∗. With the help of two
systems (3.4) and (3.5), we can use the comparison arguments similar to those in
Hsu and Zhao (2008, Theorem 2.2) to prove the following result, which implies that
c∗ = (c−)∗ = (c+)∗ is also a spreading speed for system (2.6).

Theorem 3.3 Suppose Ŝ′(0)=e f ′(0)+g′(0)e f ′(0)(1−τ)−dI τ> 1 and assumptions (H1)–
(H4) hold. Then, the following statements are valid:

(i) For any c > c∗, if φ ∈ Cβ+ with 0 ≤ φ � β+ and φ(·) = 0 outside a bounded
interval, then limn→∞,|x |≥cn Qn[φ](x) = 0.

(ii) For any c < c∗, if φ ∈ Cβ+ \ {0}, then

β− ≤ lim inf
n→∞,|x |≤cn

Qn[φ](x) ≤ lim sup
n→∞,|x |≤cn

Qn[φ](x) ≤ β+.

In order to address traveling waves for system (2.6), we define the operators

Qc[u](x) := T̂cQ[u](x) = T̂c{M1−τ [Mτ (u) + Tτ g(u)]}(x),

and

Q±
c [u](x) := T̂cQ

±[u](x) = T̂c{M1−τ [Mτ (u) + Tτ g
±(u)]}(x),

where T̂c[u](x) = u(x + c) for x ∈ R. Since the operators Q± are order-preserving,
Theorem 3.2 implies that for all c ≥ c∗, (3.6) and (3.7) admit nontrivial nonincreasing
traveling waves w+(x − nc) and w−(x − nc), respectively, with w±(+∞) = 0 and
w±(−∞) = β±.

For a given ρ > 0, define

Xρ :=
{
φ ∈ C(R,R) : sup

x∈R
|φ(x)|e−ρ|x | < +∞

}
,
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and ‖φ‖ρ := sup
x∈R

|φ(x)|e−ρ|x |. It then follows that (Xρ, ‖ · ‖ρ) is a Banach space. For

any c ≥ c∗, let

Ec = {u ∈ Xρ : δw+(x) ≤ u(x) ≤ w+(x), x ∈ R}

with 0 < δ < 1 and δw+(x) ≤ σ0. Clearly, Ec is a nonempty, bounded, closed, and
convex subset of Xρ . Further, we have the following two properties for the operator
Qc.

Lemma 3.2 The operator Qc maps Ec into Ec.

Proof Note that g+ ≥ g and g+ is nondecreasing. If u ≤ w+, then

Qc[u] ≤ Q+
c [u] ≤ Q+

c [w+] = w+.

On the other hand, if u ≥ δw+, then

Qc[u] ≥ Q−
c [u] ≥ Q−

c [δw+]
= T̂c{M1−τ [Mτ (δw

+) + Tτ g
−(δw+)]}

≥ δT̂c{M1−τ [Mτ (w
+) + Tτ g

+(w+)]}
= δQ+

c [w+] = δw+.

Here, we have used the fact that g−(δw+) = g+(δw+) ≥ δg+(w+). Thus, the desired
result follows. ��
Lemma 3.3 The map Qc : Ec → Ec is continuous and compact with respect to ‖ · ‖ρ .

Proof For any φ1, φ2 ∈ Ec and t ∈ [0, τ ], we let Mt (φi )(x) = u(t, x, φi ), x ∈ R,
i = 1, 2. Then

|u(t, x, φ1) − u(t, x, φ2)|e−ρ|x |

≤
∫

R

�(DMt, y)|φ1(x − y) − φ2(x − y)|e−ρ|x |dy

+
∫ t

0

∫

R

�(DM (t − s), y)L f |u(s, x − y, φ1) − u(s, x − y, φ2)|e−ρ|x |dyds

≤ ‖φ1 − φ2‖ρ

∫

R

�(DMt, y)eρ|y|dy

+
∫ t

0
‖u(s, ·, φ1) − u(s, ·, φ2)‖ρL f

∫

R

�(DM (t − s), y)eρ|y|dyds

≤ ‖φ1 − φ2‖ρ2e
ρ2DM τ +

∫ t

0
‖u(s, ·, φ1) − u(s, ·, φ2)‖ρ2L f e

ρ2DM (t−s)ds,

where L f is the Lipschitz constant of f on [0, β+] and we have used the fact that∫
R

�(DMt, y) eρ|y|dy ≤ 2eρ2DMt for all t ≥ 0. By Gronwall’s inequality, it then
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follows that

‖u(t, ·, φ1) − u(t, ·, φ2)‖ρ ≤ 2e
ρ2DM τ+ 2L f

ρ2DM
(eρ2Dmt−1)‖φ1 − φ2‖ρ,

and hence,

‖Mτ (φ1) − Mτ (φ2)‖ρ ≤ 2e
ρ2DM τ+ 2L f

ρ2DM
(eρ2Dm τ −1)‖φ1 − φ2‖ρ.

This implies that Mτ is continuous on Ec. Similarly, we can prove the continuity of
T̂c, Tτ g and M1−τ with respect to ‖ · ‖ρ . Therefore, Qc : Ec → Ec is continuous.

Next we prove that Qc[Ec] is precompact in Xρ . For this purpose, we first show
that for any given t ∈ (0, τ ], the map Mt : Cβ+ → Cβ+ is compact with respect to the
compact open topology. Let U (t) be the solution semigroup generated by

⎧⎨
⎩

∂v

∂t
= DM

∂2v

∂x2
, t > 0, x ∈ R,

v(0, ·) = ϕ ∈ C.

Then,

[U (t)ϕ](x) =
∫

R

�(DMt, y)ϕ(x − y)dy =
∫

R

�(DMt, x − y)ϕ(y)dy.

Let B be any given bounded subset of Cβ+ . For any ϕ ∈ B, x1, x2 ∈ R, we have

|[U (t)ϕ](x1) − [U (t)ϕ](x2)|
=

∣∣∣∣
∫

R

(�(DMt, x1 − y) − �(DMt, x2 − y)) ϕ(y)dy

∣∣∣∣

≤ β+
∫

R

|�(DMt, x1 − x2 + z) − �(DMt, z)| dz → 0 (as |x1 − x2| → 0).

Thus, the family of functions {[U (t)ϕ](x) : ϕ ∈ B} is both uniformly bounded and
equicontinuous in x ∈ R. By the Arzela–Ascoli theorem, it then follows that for every
sequence ϕn in B, there exists a subsequence ϕnk such that [U (t)ϕnk ](x) converges to
a function in Cβ+ uniformly for x in any compact subset of R. This implies that the
set U (t)B is precompact in Cβ+ .

By the constant-variation formula, for any ε ∈ (0, t), t ∈ (0, τ ] and φ ∈ Cβ+ , we
have

Mt (φ) = u(t, ·, φ) = U (t)φ +
∫ t−ε

0
U (t − s) f (u(s, ·, φ))ds

+
∫ t

t−ε

U (t − s) f (u(s, ·, φ))ds
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= U (ε)

[
U (t − ε)φ +

∫ t−ε

0
U (t − ε − s) f (u(s, ·, φ))ds

]

+
∫ t

t−ε

U (t − s) f (u(s, ·, φ))ds

= U (ε)u(t − ε, ·, φ) +
∫ t

t−ε

U (t − s) f (u(s, ·, φ))ds.

Since {u(t − ε, φ) : φ ∈ Cβ+} is bounded in C and U (ε) is compact, we have

α̂({U (ε)u(t − ε, ·, φ) : φ ∈ Cβ+}) = 0,

where α̂ is the Kuratowski measure of noncompactness in (C, ‖ · ‖C). Moreover, it
is easy to see that {U (t − s) f (u(s, ·, φ)) : φ ∈ Cβ+} is bounded in C and for each
t ∈ (0, τ ], there exists Ht > 0 such that

∥∥∥∥
∫ t

t−ε

U (t − s) f (u(s, ·, φ))ds

∥∥∥∥C
≤ Htε, ∀φ ∈ Cβ+ .

By virtue of the fact α̂(A) ≤ d(A), where d(A) is the diameter of A ⊆ C, we obtain

α̂

({∫ t

t−ε

U (t − s) f (u(s, ·, φ))ds : φ ∈ Cβ+
})

≤ 2Htε, ∀t ∈ (0, τ ].

It then follows that

α̂({u(t, ·, φ) : φ ∈ Cβ+}) ≤ α̂({U (ε)u(t − ε, ·, φ) : φ ∈ Cβ+})
+ α̂

({∫ t

t−ε

U (t − s) f (u(s, ·, φ))ds : φ ∈ Cβ+
})

≤ 2Htε, ∀t ∈ (0, τ ].

Letting ε → 0, we have α̂({u(t, ·, φ) : φ ∈ Cβ+}) = 0, and hence, for each t ∈ (0, τ ],
Mt (Cβ+) is precompact with respect to the compact open topology.

The compactness of Tτ g and M1−τ with respect to the compact open topology can
be proved similarly. Since T̂c is continuous and Q[·] = M1−τ [Mτ (·) + Tτ g(·)] is
compact, the composition operator Qc = T̂cQ is also compact. It then follows that
for any given sequence {ψn := Qc[φn]}n≥1 ⊂ Qc[Ec], there exists nk → ∞ and
ψ ∈ C(R,R) such that limk→∞ ψnk (x) = ψ(x) uniformly for x in any compact
subset ofR. Since ψnk is bounded by δw+ and w+, so is the limit ψ . This implies that
ψ ∈ Ec. Moreover, for any ε̄ > 0, there exists a K > 0 such that

|ψnk (x) − ψ(x)|e−ρ|x | ≤ w+(x)e−ρ|x | < ε̄, ∀|x | ≥ K , k ≥ 1.
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On the other hand, it follows from the uniform convergence of ψnk (x) on [−K , K ]
that there exists an integer k0 such that

|ψnk (x) − ψ(x)|e−ρ|x | < ε̄, ∀|x | ≤ K , k ≥ k0.

From the above two inequalities, we see that ψnk → ψ in Ec with respect to the norm
‖ · ‖ρ . This shows that Qc : Ec → Ec is compact. ��

Now we are ready to prove the existence of traveling wave solutions.

Theorem 3.4 Suppose Ŝ′(0)=e f ′(0)+g′(0)e f ′(0)(1−τ)−dI τ> 1 and assumptions (H1)–
(H4) hold. Then the following statements are valid:

(i) For any c ∈ (0, c∗), system (2.6) has no traveling wave in the form of w(x − cn)

with w(+∞) = 0.
(ii) For any c ≥ c∗, system (2.6) has a continuous traveling wave in the form ofw(x −

cn) such that w(+∞) = 0 and β− ≤ lim infξ→−∞ w(ξ) ≤ lim supξ→−∞ w(ξ)

≤ β+.

Proof Statement (i) can be proved by the arguments similar to those in the first part of
the proof ofWu and Zhao (2019, Theorem 3.5(i)). By Lemmas 3.2, 3.3 and Schauder’s
fixed point theorem, it follows that there existsw ∈ Ec such that Qc[w](x) = w(x) for
all x ∈ R. Hence, Q[w](x) = w(x−c) and Qn[w](x) = w(x−cn) is a travelingwave
solution of (2.6). Since δw+(ξ) ≤ w(ξ) ≤ w+(ξ), ξ = x − c, we have w(+∞) = 0.

For a fixed c ≥ c∗, let un(x) = w(x−cn),∀n ≥ 0 be awave profile. Fix c̄ ∈ (0, c∗),
it follows from Theorem 3.3(ii) that

β− ≤ lim inf
n→∞,|x |≤c̄n

un(x) ≤ lim sup
n→∞,|x |≤c̄n

un(x) ≤ β+,

and hence,

β− ≤ lim inf
n→∞ un(kn) ≤ lim sup

n→∞
un(kn) ≤ β+ uniformly for k ∈ [0, c̄].

This implies that β− ≤ lim infn→∞ w(sn) ≤ lim supn→∞ w(sn) ≤ β+ uniformly
for s ∈ [−c, c̄ − c]. Let an = −cn, bn = (c̄ − c)n, ∀n ≥ 1. Then, there exists j0 > 0
such that an ≤ bn+1, ∀n ≥ j0, and hence, ∪n≥ j [an, bn] = (−∞, b j0 ], ∀ j ≥ j0.
Consequently, we obtain that β− ≤ lim infξ→−∞ w(ξ) ≤ lim supξ→−∞ w(ξ) ≤ β+.

��

4 Critical Domain Size

In this section, we consider the model in a bounded spatial domain [0, L] and discuss
the values of L that can support the species establishment in this domain. Assume that
the boundary is hostile for the species, and therefore, Dirichlet boundary condition
can be imposed for the species density variable u(t, x) at time t of a specific year at
location x .
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Following the model formulation procedures for system (2.4), we can derive the
system for the population growth on a bounded domain [0, L]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= DM

∂2u

∂x2
+ f (u), 0 < t ≤ 1, t �= τ, 0 < x < L,

u(t+, x) = u(t, x) + R(x; Nn), t = τ,

u(0, x) = Nn(x), n = 0, 1, 2, . . .

u(t, 0) = u(t, L) = 0,

Nn+1(x) = u(1, x).

(4.1)

Please note that the initial condition for model (4.1) is u(0, x) = N0(x), ∀x ∈ (0, L).
The impulsive perturbation term to account for the synchronized maturation should
be reformulated as

R(x; Nn) = e−dI τ
∫ L

0
�̃(DI τ, x, y)g(Nn(y))dy

with �̃(t, x, y) being the Green function associated with the operator ∂t − � subject
to the Dirichlet boundary condition on the domain [0, L]. As discussed in Sect. 3, we
introduce a discrete-time recursion:

Nn+1(x) = Q[Nn](x) = M1−τ [Mτ (Nn)

+Tτ g(Nn)](x), x ∈ [0, L], n ≥ 0, (4.2)

which will be used to investigate the spatial dynamics of model (4.1). Here, Tt and
Mt are the solution maps of the following tow equations:

∂v

∂t
= DI

∂2v

∂x2
− dI v and

∂u

∂t
= DM

∂2u

∂x2
+ f (u), t > 0, x ∈ (0, L)

with the Dirichlet boundary condition, respectively. In next two subsections, we are
going to discuss the critical domain size problem for two different scenarios: (i) the
birth function g is monotonically increasing, and (ii) the birth function g is not mono-
tone.

4.1 Scenario 1: The Birth Function g is Monotone

Consider two Dirichlet eigenvalue problems

⎧⎨
⎩

DM
d2φ

dx2
+ f ′(0)φ = λφ, 0 < x < L,

φ(0) = φ(L) = 0,
(4.3)
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and
⎧⎨
⎩

DI
d2φ

dx2
− dIφ = λφ, 0 < x < L,

φ(0) = φ(L) = 0.
(4.4)

It is easily seen that λ1 = f ′(0) − DMπ2

L2 and λ2 = −dI − DIπ
2

L2 are the principal
eigenvalues of (4.3) and (4.4), respectively, with the same eigenfunction φ∗(x) =
sin πx

L . To obtain the critical domain size of (4.2), we introduce a function

h(L) = eλ1 + g′(0)eλ1(1−τ)+λ2τ

= e f ′(0)− DMπ2

L2 + g′(0)e f ′(0)(1−τ)− DMπ2(1−τ )

L2
−dI τ− DI π2τ

L2 .

It is easy to check that this function admits the following properties: (i) limL→0 h(L) =
0, (ii) h∞ := limL→∞ h(L) = e f ′(0)+g′(0)e f ′(0)(1−τ)−dI τ and (iii) h′(L) > 0 for L ∈
(0,∞). Therefore, if h∞ > 1, there is a unique L∗ > 0 such that h(L∗) = 1.

To establish a threshold-type result on the global dynamics for system (4.2), we
first need the following result.

Lemma 4.1 If h∞ > 1 and L > L∗, then εφ∗(x) is a subsolution of the map Q for
small ε > 0.

Proof In this case, we have h(L) > 1, and therefore, we can choose λ̂1 < λ1 and
γ ∈ (0, g′(0)) such that eλ̂1 + eλ̂1(1−τ)+λ2τ γ > 1. Let

z(t, x) =
{

εeλ̂1tφ∗(x), 0 ≤ t ≤ τ,

εeλ̂1(t−τ)[eλ̂1τ + eλ2τ γ ]φ∗(x), τ < t ≤ 1.

By (H3), for sufficiently small ε > 0, we have

∂z

∂t
− DM

∂2z

∂x2
− f (z)

≤ ελ̂1e
λ̂1tφ∗ − DMεeλ̂1tφ′′∗ − εeλ̂1tφ∗ f ′(0) + F(εeλ̂1tφ∗)ν f

= εeλ̂1t [λ̂1φ∗ − DMφ′′∗ − f ′(0)φ∗] + F(εeλ̂1tφ∗)ν f

= z[λ̂1 − λ1 + Fεν f −1(eλ̂1tφ∗)ν f −1] ≤ 0, 0 < t ≤ τ,

and

∂z

∂t
− DM

∂2z

∂x2
− f (z)

≤ ελ̂1e
λ̂1(t−τ)Kφ∗−DMεeλ̂1(t−τ)Kφ′′∗ −εeλ̂1(t−τ)Kφ∗ f ′(0)+F(εeλ̂1(t−τ)Kφ∗)ν f

= εeλ̂1(t−τ)K[λ̂1φ∗ − DMφ′′∗ − f ′(0)φ∗] + F(εeλ̂1(t−τ)Kφ∗)ν f

= z[λ̂1 − λ1 + Fεν f −1(eλ̂1(t−τ)Kφ∗)ν f −1] ≤ 0, τ < t ≤ 1,
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where K = eλ̂1τ + eλ2τ γ . This shows that z(t, x) is a lower solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
= DM

∂2u

∂x2
+ f (u), 0 < t ≤ 1, t �= τ, 0 < x < L,

u(τ+, x) = u(τ, x) + εeλ2τ γ φ∗(x),
u(t, 0) = u(t, L) = 0.

Moreover, for the above ε > 0, assumption (H3) implies that

g(εφ∗)≥g′(0)εφ∗ − G(εφ∗)νg =γ εφ∗ + εφ∗
(
g′(0) − γ − Gενg−1φ

νg−1
∗

)
≥ γ εφ∗.

Thus, there exists a sufficiently small ε0 such that for any given ε ∈ (0, ε0], we have
M > εφ∗ and

Q[εφ∗] = M1−τ [Mτ (εφ∗) + Tτ g(εφ∗)]
≥ M1−τ [eλ̂1τ εφ∗ + eλ2τ γ εφ∗] ≥ (eλ̂1 + eλ̂1(1−τ)+λ2τ γ )εφ∗ ≥ εφ∗.

The desired result follows. ��

To consider a Dirichlet boundary condition, we choose

X = {ψ ∈ C([0, L],R) : ψ(0) = ψ(L) = 0}

with the cone X+ of nonnegative functions in X . Since Int(X+) is empty, we further
introduce the following Banach space:

Y = {ϕ ∈ C1([0, L],R) : ϕ(0) = ϕ(L) = 0}

with the usual norm in C1. The set of nonnegative functions in Y forms a solid cone
Y+ with nonempty interior given by

Int(Y+) = {ϕ ∈ Y : ϕ(x) > 0 for all x ∈ (0, L), ϕ′(0) > 0 and ϕ′(L) < 0}.

Then, we have the following result.

Theorem 4.1 Suppose h∞ > 1. Then, the following statements are valid:

(i) If L < L∗, then the zero steady state is globally asymptotically stable for system
(4.2) in X+.

(ii) If L > L∗, then system (4.2) has a unique positive steady state N∗ ∈ Int(Y+),
which is global asymptotically stable with respect to initial values in X+ \ {0}.
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Proof (i) When L < L∗, we have h(L) < 1. Let Ñn(x) = δ[h(L)]nφ∗(x), n =
0, 1, 2, . . . , where δ is a positive constant. Then, Ñn(x) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= DM

∂2u

∂x2
+ f ′(0)u, 0 < t ≤ 1, t �= τ, 0 < x < L,

u(t+, x) = u(t, x) + R̃(x; Ñn), t = τ,

u(0, x) = Ñn(x), n = 0, 1, 2, . . .

u(t, 0) = u(t, L) = 0,

Ñn+1(x) = u(1, x),

where R̃(x; Ñn) = e−dI τ g′(0)
∫ L
0 �̃(DI τ, x, y)Ñn(y)dy. For any given u(0, x) =

N0(x) in (4.1), one can choose a sufficiently large δ such that N0(x) ≤ Ñ0(x).
Applying the standard comparison theorem and mathematical induction arguments,
we obtain Nn(x) ≤ Ñn(x) for all n ≥ 0. This implies that limn→∞ Nn(x) = 0 uni-
formly for x ∈ [0, L]. The desired result immediately follows from Wu and Zhao
(2022, Lemma 2.1).

(ii) By Lemma 4.1, we know that εφ∗ is a subsolution of the map Q. Then an
induction argument shows that

M ≥ Qn+1[εφ∗](x) ≥ Qn[εφ∗](x), x ∈ [0, L], n ≥ 0.

It is easy to see that the discrete orbit γ +(εφ∗) = {Qn(εφ∗) : n ≥ 0} is precompact
in X+. Hence, there is N∗ ∈ X+ \ {0} such that limn→∞ Qn[εφ∗](x) = N∗(x)
uniformly for any x ∈ [0, L], and QN∗ = N∗. Clearly, N∗(x) > 0 in (0, L) and
N∗(0) = N∗(L) = 0. According to the proof of Smith (1995, Corollary 4.2), we have
that N∗ ∈ Int(Y+). Moreover, if N∗∗ ∈ Int(Y+) is another fixed point of Q. By Zhao
(2017, Lemma 2.3.1) with U = Int(Y+), it follows that N∗ = ηN∗∗ for some η ∈
(0, 1]. We further claim η = 1, that is, N∗ = N∗∗. Suppose otherwise that η ∈ (0, 1).
First we can verify thatQ : Int(Y+) → Int(Y+) is strongly subhomogeneous. Then,
we have

N∗ = Q(N∗) = Q(ηN∗∗) �Y ηQ(N∗∗) = ηN∗∗ = N∗,

which leads a contradiction.
Finally, we prove that the solution Nn(x) with the initial value N0 = ϕ ∈ X+ \ {0}

satisfies limn→∞ Nn(x) = N∗(x), ∀x ∈ [0, L]. Arguments in the proof of Smith
(1995, Corollary 4.2) imply that N1(·) ∈ Int(Y+). Without loss of generality, we may
set N1 as the new initial datum in the space Int(Y+). Then Q : Int(Y+) → Int(Y+)

is strongly monotone and strictly subhomogeneous, and Zhao (2017, Theorem 2.3.2)
gives rise to

lim
n→∞Qn+1(ϕ)(x) = lim

n→∞Qn(N1)(x) = N∗(x)
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uniformly for x ∈ [0, L]. By virtue of Wu and Zhao (2022, Lemma 2.1), we obtain
the global stability of N∗(x). ��

4.2 Scenario 2: g is not Monotonically Increasing

Nowwe consider the case where g is not monotone. In this case, we need an additional
assumption (H4) as in Sect. 3.2 to address the critical domain size problem. Recalling
the definition of g+ and g− in Sect. 3.2, we consider the following two auxiliary
systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= DM

∂2u

∂x2
+ f (u), 0 < t ≤ 1, t �= τ, 0 < x < L,

u(t+, x) = u(t, x) + R+(x; N+
n ), t = τ,

u(0, x) = N+
n (x), n = 0, 1, 2, . . .

u(t, 0) = u(t, L) = 0,

N+
n+1(x) = u(1, x),

(4.5)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= DM

∂2u

∂x2
+ f (u), 0 < t ≤ 1, t �= τ, 0 < x < L,

u(t+, x) = u(t, x) + R−(x; N−
n ), t = τ,

u(0, x) = N−
n (x), n = 0, 1, 2, . . .

u(t, 0) = u(t, L) = 0,

N−
n+1(x) = u(1, x),

(4.6)

where

R±(x; N±
n ) =

(
Tτ g

±(N±
n (·))

)
(x) = e−dI τ

∫ L

0
�̃(DI τ, x, y)g

±(N±
n (y))dy.

Then discrete-time recursions can be well derived from (4.5) and (4.6) as a time-one
solution map on a space of functions:

N+
n+1(x) = Q+[N+

n ](x) = M1−τ [Mτ (N
+
n ) + Tτ g

+(N+
n )](x),

x ∈ [0, L], n ≥ 0, (4.7)

and

N−
n+1(x) = Q−[N−

n ](x) = M1−τ [Mτ (Nn) + Tτ g
−(N−

n )](x),
x ∈ [0, L], n ≥ 0. (4.8)
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The comparison principle shows that if 0 < N−
0 (x) ≤ N0(x) ≤ N+

0 (x) ≤ β+, then

0 ≤ N−
n (x) ≤ Nn(x) ≤ N+

n (x) ≤ β+, x ∈ [0, L], n ≥ 0. (4.9)

Following same arguments as in the previous Sect. 4.1, we can show that systems
(4.5) and (4.6), with increasing birth functions g+ and g−, respectively, admit critical
domain sizes, and moreover, the critical domain sizes for systems (4.5) and (4.6) are
consistent. By using this observation and (4.9), combined with the arguments in the
previous subsection, we can easily obtain the following result.

Theorem 4.2 When the birth function g is not monotone, but an additional assumption
(H4) holds, the following statements are valid:

(i) If L < L∗, then the zero steady state is globally attractive for system (4.2) in X+.
(ii) If L > L∗, then the solution sequence Nn(x) of system (4.2) with initial data

N0 ∈ X+ \ {0} satisfies

lim sup
n→∞

max
x∈[0,L][Nn(x) − N+∗ (x)] ≤ 0 ≤ lim inf

n→∞ min
x∈[0,L][Nn(x) − N−∗ (x)],

where N−∗ (x) and N+∗ (x) are positive steady states of systems (4.8) and (4.7),
respectively.

5 Numerical Simulations and Discussions

In this paper, we formulate an impulsive reaction–diffusion population growth model
with a maturation pulse, which was motivated by annually synchronized emergence of
adults. Through carefully compositing a time-τ map in interval [0, τ ] with impulsive
maturation, and a time-(1 − τ) map in interval [τ, 1], a discrete-time semiflow on an
infinite dimensional space is derived to account the evolution from this year’s adult
density distribution in a spatial domain to that of the next year. By investigating the
properties of such a discrete-time semiflow, rigorous analysis is performed on the
spatial dynamics of the original impulsive reaction–diffusion model. In particular,
the existence of the spreading speed and the traveling waves is established when the
habitat is an unbounded domain, and furthermore, it is confirmed that the spreading
speed coincides with the minimal wave speed for traveling wave solutions. In the
case where the spatial habitat is a one-dimensional bounded domain [0, L], species
persistence and extinction is shown to be determined by the domain size and the critical
domain size is investigated by using the explicitly expressed principal eigenvalue of
the Laplacian operator.

To verify these analytic results and to explore the effects of the adult emergence
delay on the propagation dynamics, we perform illustrative numerical investiga-
tions through the backward (implicit) difference method (see Lu and Guan 2004,
Section 2.1.4) in MATLAB 2019a, which is an efficient and unconditionally stable
numerical algorithm. The baseline parameter settings are taken as follows: The loss
function f takes the form f (N ) = −aN − bN 2, with a = 1 being the natural

123



Journal of Nonlinear Science            (2022) 32:78 Page 23 of 29    78 

0 1 2 3 4 5 6 7 8 9 10
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

pe
ak

 v
al

ue

(d)(c)

(a) (b)

Fig. 2 The effects of the maturation emergence time on the population distribution of (2.4) when g(N )

is in the Beverton–Holt form. The delays τ for subplots a, b and c are 0.2, 0.5 and 0.8, respectively, and
u(t̃, x) := un(t, x)with t̃ = n+ t and n = 	t̃
. The peaking time and peaking value of the adult population
density un(t, x) in the n-th year are indicated in subplot (d)

density-independence death rate of the population and b = 0.01 representing the
strength of the interspecific competition between individuals (Lewis and Li 2012; Wu
and Zhao 2019). Twowidely used types of birth functions, the Beverton–Holt function
g(N ) = pN

q+N and the Ricker function g(N ) = Ner−kN , will be employed to simu-
late different scenarios where g is monotone and nonmonotone, respectively. Unless
stated otherwise, the default parameter values are set as p = 1.8, q = 0.2 in the
Beverton–Holt function, and r = 2.5, k = 1 in the Ricker function. For illustration,
other parameters are fixed at dI = 0.5, DM = 1 and DI = 0.2.

5.1 The Effect of Delay on the Spatial Spread

Taking the initial function as N0(x) = cos( π
20 x) with a compact support from −10

to 10 in the domain [−50, 50], the spreading of species is illustrated in Figs. 2 and 3
for the Beverton–Holt and Ricker birth functions, respectively. By checking the pro-
file of the adult population densities in the n-th year (Figs. 2d and 3d), the peaking
population density (the maximum value of un(t, x) attained in the specific year n for
t ∈ [0, 1] and x ∈ [−50, 50]) will eventually stabilize at a constant level, which is
negatively related to the maturation delay. This can be explained as a decreased sur-
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Fig. 3 The effects of the maturation emergence time on the population distribution of (2.4) when g(N )

takes the Ricker function form. The delays τ for subplots a, b and c are 0.2, 0.5 and 0.8, respectively, and
u(t̃, x) := un(t, x)with t̃ = n+ t and n = 	t̃
. The peaking time and peaking value of the adult population
density un(t, x) in the n-th year are indicated in subplot (d)

vival probability exp(−dI τ) with a larger maturation delay. Moreover, the peaking
time (the corresponding time instant when un(t, x) attains its maximum in year n)
occurs at the moment of maturation emergence. Considering the symmetries of the
solution profile in the spatial domain, it is interesting to observe that there are two
peaking value points for the nonmonotone Ricker birth rate, while the peaking value
point is unique for the strictly increasing Beverton–Holt birth function. We leave this
puzzle for further investigation.

Now we examine the influences of the maturation delay τ on the spreading speed
c∗. Noting that when DM = DI , it follows from Proposition 3.1 that

c∗ = 2
√
DM ln(e f ′(0) + g′(0)e f ′(0)(1−τ)−dI τ ).

This indicates that the monotonicity of c∗ with respect to τ is dependent on the sign of
− f ′(0) − dI . When DM < DI and − f ′(0) − dI > 0, the whole term of 	(μ) in the
Proposition 3.1 is an increasing function of τ , and therefore, c∗ can be predicted as an
increasing function of τ , as shown in Figs. 4b and 5b. This can also be explained by
the fact that larger maturation emergence delay increases the distance that the species
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Fig. 4 The effects of the maturation delay τ on the spreading speed c∗ for different diffusion rates and

intrinsic birth rate when g(N ) = pN
q+N . Left panel: DM = 1, DI = 0.2; right panel: DM = 0.2, DI = 1
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Fig. 5 The effects of the maturation delay τ on the spreading speed c∗ for different diffusion rates and
intrinsic growth rate when g(N ) = Ner−kN . Left panel: DM = 1, DI = 0.2; right panel: DM = 0.2,
DI = 1

moves since juveniles with larger diffusion rate takes more time to disperse. When the
diffusion rate of adults is greater than that of immatures (DM > DI ), it is surprisingly
interesting to find that the monotonicity relationship between the spreading speed c∗
and τ can be very complicated, which can be increasing, decreasing, or neither of
them (Figs. 4a and 5a).

5.2 The Effect of the Emergence Delay on TravelingWaves

To illustrate the patterns of traveling waves, the matured population densities Nn(x)
at different years n = 9, 12, 15 through the initial condition

N0(x) =
⎧
⎨
⎩
5, x ≤ −12.5,
1
5 (12.5 − x), |x | ≤ 12.5,
0, x ≥ 12.5,
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Fig. 6 The traveling wave solutions of (2.4) with different birth rate functions: the Beverton–Holt function
(left panel) and the Ricker function (right panel). In a and b, dashed lines, solid lines, and dash-dotted lines
represent n = 9, 12, 15, respectively

with different τ values are simulated in Fig. 6. The solutions with the above initial data
evolve into a traveling wave solution, with different patterns for the Beverton–Holt
function and the Riker function. The wave profiles in Fig. 6a for the Beverton–Holt
function are monotone, while those in Fig. 6b for the Riker birth function are not.

5.3 Critical Domain Size and Persistence

In the case where g takes Beverton–Holt function, which is monotone, Fig. 7a illus-
trates the dependence of L∗ on DM with τ = 0.5 and DI = DM

5 . The critical domain
size is L∗ = 2.001 when DM = 1 (see Fig. 7a), and h∞ = 4.6192. We see from
Fig. 7b that the population keeps persistent and approaches to a positive steady state
of (4.2) when L = 3 > L∗, which is consistent with Theorem 4.1(ii).

In the case where g takes the Ricker function, which is nonmonotone, Fig. 8a shows
that L∗ is a decreasing function of r , when τ = 0.5. When r = 2.5, L∗ = 1.8294 and
h∞ = 6.1225, the numerical solution of (4.2) for a domain with length L = 3 being
greater than L∗ = 1.8294 is presented in Fig. 8b.

5.4 Limitations and Future Research

At the end, we would like to propose further interesting problems related to the current
study. The model developed in this manuscript can be extended in several directions,
by relaxing some biological assumptions in the model formulation, for example: (i)
the model was formulated by assuming that individuals in both immature and matured
stages perform random diffusion, which introduces the Laplacian operator in the diffu-
sion term. As a matter of fact, random movement of the species is regarded as a local
behavior, which may not be suitable for studying long range interaction of species
in a spatial habitat (Kao et al. 2010). This motivates one to consider a species with
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Fig. 7 A numerical approximation to the graph of Nn(x) for (4.2) with g taking the Beverton–Holt function
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Fig. 8 A numerical approximation to the graph of Nn(x) for (4.2) with g taking the Ricker function

maturation pulse and a nonlocal dispersal represented by an integral (convolution)
operator:

[Au](x) = (J ∗ u − u)(x) =
∫

R

J (x, y)u(y)dy − u(x),

where the dispersal kernel J (x, y) measures the probability distribution for the indi-
viduals jumping from location y to location x , which depicts the free and large-range
interaction process for species (Coville andDupaigne 2007; Li et al. 2018); (ii) another
key assumption on model formulation is ignoring the intra-specific competition of
immatures. This assumption makes sense for some species as juvenile individuals
have the ability to disperse, which can largely alleviates the competition pressure
between immature individuals. However, immature individuals of some species with
inefficient dispersal ability are subject to strong intra-specific competition for food and
resources, which introduces additional density-dependent immature death rate. In this
case, the equations for immature and adult population densities cannot be decoupled
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(Altwegg 2002; Fang et al. 2016; Zhang et al. 2020). Further careful derivation of
the model and more challenging analysis are needed; (iii) another underlying model
assumption is that the newborns are laid at a rate only dependent on the adult popula-
tion density, while independent of the spatial location. This is not the case sometimes,
for example, when adults may select oviposition habitats (Gourley and Ruan 2012) or
when the habitat ranges for immatures and adults are not exactly the same. In these
cases, the impulsive emergence of matured species density R(x; Nn) in (2.1) should
be carefully reformulated. The biological significance and mathematical techniques
on addressing these problems are worthy of further investigation.
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