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Abstract

This paper considers the computation of the simplest normal forms of differential
equations, with the particular attention on the systems whose Jacobian evaluated at
an equilibrium has a triple zero eigenvalue of index one or two. The computation is
based on near identity nonlinear transformations. Explicit formulas are derived for
computing the simplest normal forms and the associated nonlinear transformations,
which facilitates a direct implementation on computer systems using Maple.

Key words: Differential equation, Conventional normal form, The simplest normal
form, Nonlinear transformation, Computer algebra

PACS: 34C20, 58F36, 34A34

1 Introduction

Normal form theory plays an important role in the study of differential equa-
tions related to complex behavior patterns such as bifurcation and instability
[1-3]. It provides a convenient tool for computing a simple form of the original
differential equations. The basic idea of the normal form theory is employing
successive, near identity nonlinear transformations to obtain a simpler form.
Many research results related to this area may be found from the above men-
tioned references.

It is well known that in general normal forms are not uniquely defined, and
in fact further reductions on several cases of convention normal forms (CNF)
have been discussed. Ushiki [4] introduced the method of infinitesimal defor-
mation associated with Lie bracket to obtain simpler forms than CNF. Baider
and Churchill [5] developed grading functions based on Lie algebra to define
the first, the second, etc., order normal forms. They considered Hopf type
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singularity and obtained the simplest “form”. This case was recently reinves-
tigated from the computation point of view, and explicit formulations were
obtained for computing the coefficients of the simplest normal form (SNF) and
the nonlinear transformation [6]. The further reduction of the normal forms for
the Bodganov-Takens singularity has been studied by Baider and Sanders [7],
Kokubu et al. [8] and Wang et al. [9] using the Lie bracket method. Sanders
and Meer [10] also used the same method to study the Hamiltonian 1:2 reso-
nant case and showed that the second order normal form is “unique”. Here,
the “unique” means that the normal form is “minimum” or “simplest”. More
references can be found from the tutorial articles [11,12]. In the CNF theory,
by saying that “normal forms are not unique” it usually implies at least one
of the two cases: (1) For a same system, its normal forms may have different
“form”; (2) Even for a same “form”, the coefficient of the CNF may be differ-
ent. For example, a system associated with Bodganov-Takens singularity may
typically have two forms [1]; while the normal forms of Hopf bifurcation have
the same form with only odd order terms presented, but their coefficients may
be different [6]. Thus, certain methods such as adjoint operator approach [13]
were developed to determine a unique normal form. But such a unique normal
form is not the simplest form, and thus we prefer to use the simplest normal
form (SNF), which means that the total number of the SNF up to certain
order cannot be further simplified by any other nonlinear transformations.

Recently, many researchers have paid attention to the computation of the SNF
and efficient computation methods using computer algebra systems have been
developed (e.g., see [6,14-18]). In this paper, a method is presented to com-
pute the SNF of differential equations associated with a triple zero eigenvalue
of index one and two. Our method is based on nonlinear transformations. The
key step in the computation is to find an appropriate pattern of nonlinear
transformations so that the resulting normal form is the simplest. The main
results are obtained using matrix theory and algebraic computations, which
can provide a direct guideline for developing computer software. In fact, based
on the explicit formulas derived in this paper, Maple has been used to develop
symbolic programs.

The general formulas for commutating the SNF of differential equations are
given in the next section. The detailed results are presented in Section 3, and
conclusions are drawn in Section 4.

2 General formulation of the SNF

Consider the general system, described by

t=Jzxz+ f(z), zcR" (1)
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which has an equilibrium at the origin 0, and J is the Jacobian matrix and
assumed, without loss of generality, in a standard Jordan canonical form.
Further, it is assumed that all eigenvalues of J have zero real parts. In other
words, the dynamics of system (1) is described in an N-dimensional center
manifold. In general, we may write system (1) in a vector form

v=[J+{fi(z), fo(z), ..., fn(z)}]O (2)
where the differentiation operator 8 is defined as 8 = (8, Oy, - - -, Ozn ) s
and f = (fi, fa, --., fv)T is assumed to be a nonlinear analytic function.

Thus, the functions f can be expanded into the vector homogeneous poly-
nomials of = near the equilibrium @ = 0. Then we define the linear vector
space H, which consists of the nth degree homogeneous vector polynomials
F™(x). Further one may use the linear part v; = J x to define the homological
operator L, as

Ly: Hp— Hy
Un € Hp = Lp(Uy) = [Un, v1] € Hy (3)
where the operator [U,,vi] is called Lie bracket, defined by
[Un, v1] = Doy - U, — DU, - vy. (4)
Next, we define the space R, as the range of L,, and the complementary
space of R, as K, = Ker (L,). Thus,
Hy = Ra @ Kn, (5)

and we can then choose basis for the spaces R, and K,. Consequently, a
vector homogeneous polynomial f7(z) € #, can be split into two parts: one
can be spanned by the basis of R,, and the other by that of /C,.

To find the SNF and the associated nonlinear transformation, one can start
from the quadratic (2nd-order) terms: For n = 2, define

er:\{zdl"l?wa‘% Zd2a2ma27 ey ZdNagwaz}j:
%:fz(m)z{zplagmaz’ S Pocy B2, ..., ZpNagmaz}j: (6)

where the a denotes taking summation of all possible non-negative integers
ki1, ko, ..., kn such that k;+ks+...+kxy = n, and we say that o has index

n, denoted by oy. Then a® = zfzh . x']i,”. Note that Y, denotes the

general second-order nonlinear transformation while V; represents the terms
of the vector fleld f up to second order. Further let

W=Vs+[Ya,v1],

U2 =v1 + {Z Q1oo waz’ Z 92a; waz’ cey quaz waz}T s (7)
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where U, denotes the SNF up to second order. It should be noted that the
form of U, is same as that of V. since the SNF is at least as simple as the
original vector fields.

Now setting W — U, = 0, and then balancing the coeflicients of the second-
order terms yields a set of algebraic equations which can be used to determine
the coefficients of the nonlinear transformation, d;;r, and the coeflicients of
the SNF, gjx. It should be pointed out that in general the number of the
coefficients is larger than the number of the algebraic equations. Thus, some
of the coefficients of the nonlinear transformation cannot be determined. In
the CNF theory, the undetermined coefficients are set zero and therefore the
nonlinear transformation is simplified. However, in order to further simplify
the normal form, we should not set the undetermined coefficients zero but let
them carry over to higher order equations and hope that they can be used to
simplify higher order normal forms. This is the fundamental difference between
the CNF and the SNF.

Similarly, we can carry out the above procedure to n = 3,4, ..., and in
general we may obtain

Yo={ T dia, @, Ldoa, @, ..., Ldna, "},
Vo ={X o, %, X P20, T, ..., ZpNa,.wa“}’{
Un={% tta, 2, =20, T -, LGNa, T})
W=[Y,, v{] +§ { [Yaoi1, Vi] + DY; (F77F — Uk—i+1)}
B oam
+ 2 o gﬂ; D™ ft > Y, Y, - Y, (8)

lLi+lz++lm=n-(i—m)
2y, b,y bn S—(i=m) —2(m—1)

Then setting W — U, = 0 results in a set of algebraic equations for solving the
coefficients of the nth order SNF and the associated nonlinear transformation.
The coefficients of the lower order nonlinear transformations which have not
been determined in the previous steps are used to eliminate the coefficients of
the nth order CNF, pjx, as many as possible and therefore, the SNF up to
nth order is obtained.

The iterative formula given in equation (8) for W has been obtained and
proved in the reference [20]. This formula provides an equation which involves
the nth-order terms only, and thus greatly saves computational time and com-
puter memory.
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3 The SNF for a triple zero eigenvalue

Consider the following system

z=Jz+f(z), z€RM (9)
which vanishes at the origin 0, and J is given by
J l A] or J [ A]’ (10)
where
010 010
Ji=|001| and Jo=1|00 0], (11)
000 000

and A € RM-3)x(M=3) ig hyperbolic, i.e., all eigenvalues of A have non-zero
real parts. J; is said to be index one while J, index two.

8.1 The SNF for a triple zero of index one

By using the normal form theory (e.g., see [1,18,19]), one may find the CNF
for the triple zero singularity with index one:

-'1.:1 =g,
j/‘Z =1x3,
00 k J
. ki i I J—i, i
ZED { —iys 25Ty + 21 T3 Y by (—iye T x3}’ (12)
k=2 Li=0 i=0
where

T(k=1), I=1, when k is odd, 13)
N =2, J=§—1, I=J+1, when k is even.

Next, the approach described in the previous section can be used to compute
the SNF. We start from the second order terms (i.e., n = 2), and can write
Yy, Vo and Us, with the aid of the linear part vy = (x;, 72, 0)T as follows:

T
_ J okl gkl ikl
Yo= Z dyjki T1T573 Z dojrt £12523 Z d3jm TY 2575 |,
GHE+H=2 JHE+HI=2 GHk+H=2

Va=(0, 0, aza? 24 h T

2=1(0, U, az 27 + a11 T1Z2 + ag2 25 + 0200 123 ) ,

T
2 2

U2 =v + (0, 0, A20 T3 -+ An 129 + AQQ Xy -+ BQ()() .’)31.’1,’3) . (14)

Then solving the linear algebraic equation Va+[Y2, v1]— Uz, =0 yields
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di200 = dy110 = dazoo = d2020 = d2110 = da101 = 0,
d3200 = d3020 = d3110 = d3o11 = dzi01 = 0,
dionr = daooz,  dizo1 = daoo2 — 2dio20, 2011 = d3oo2,
A = 620, A =oa1, A =aw, Bo= b (15)

Equation (15) indicates that the second order terms of the CNF cannot be fur-
ther simplified. Also, it is noted that the nonlinear coefficients dyg20, dogo, dso02
and dyge2 (di1002 does not appear in the algebraic equation) are not determined
at this step, and therefore may be used in higher order equations to eliminate
higher order CNF coeflicients.

Next, consider n = 3, following the above step we may find the key linear
algebraic equations:

Aso—az) |00000]( 0 0 0 0
A21 — a9y 03000 d3300 0 0 0
A12 — a1y 00200 —2(1,20 0 0

+ dsa10 [+ dyg20 — dagoz — di002 =0
Aoy — ags 00010 gy | B0 o | %2002 o |
Bio—bio| 100100]||%2] | 46y 0 0
Bior—bioy/ [00001 |\daiy 2 bago a11 2az9

where the vector (0, dsso0, d3210, 3190, d3111)T can be expressed in terms of
the second order undetermined coefficients as follows:

d3300 000 0} (dsn
daato | _ | * *x 0 0| [dioz 7 (16)
d3120 * % x 0 1 daoo2
dzin * x % * | \dioo2

where an * represents a known expression. Substituting equation (16) into
the key equation results in

Ago — a3o [ 0 00O ] d
A21 — ao1 0 0 0O 3002
Ay — a1 i *= x 0 0 1020 _o (17)
Agz — ags * ox % 0 da002
BllO - bu() ¥+ * 0 0
d1002
BlOl — blOl * *x x 0 1

It is easy to see from equation (17) that Asy = asp, A2 = @91, and digp2 is
not involved in the equation. Further note that the maximum rank of the ma-
trix in equation (17) is three, and thus three of the remaining four coefficients
Aja, Aoz, Biio and By can be eliminated by appropriately choosing values
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for d3002, dmzo and d2002- In this pbaper we choose A12 = Aog = B101 = 0,
and then Bjjo is uniquely determined. Of course, there exist other choices,
implying that the SNF is unique oaly if a “form” is fixed. Therefore, three
third order coefficients in the CNF have been removed.

The above procedure can be carried out to higher order equations. One can
similarly determines the key equations, and then uses the lower order coef-
ficients to eliminate the CNF coefficients as many as possible. The detailed
process is omitted here but we list the SNF coefficients up to 8th order in
Table 1, where the NT coefficients are the coefficients of lower order nonlinear
transformations which are used to remove the higher order CNF coefficients.

Table 1. The SNF coefficients for a triple zero of index one.

Order SNF coefficients NT coefficients
2 A20, A11, Agz, 3200 None
3 Aso, As1, Brwo d3o02, d1020, dooo2
4 Ago, Baro dio02, d1120, d1030, d3003, d1021
5 Aso, Aa1, Bizo d2003, d1003, di040, d3022, d2022, di022
6 Ago, As1, Az, Bao d3004, d2004; d1140, d1004, d1050, d1041
7 Ao, As1, Ase, Bi3o, Bi21 | d3023, d2o23, d3005, 41023, d2005, d1005, d1060
8 Aso, A1, Aga, Baso d3o42, doos, diosz, dso24, d2024

d1160, d1024, d1070, d3006

The SNF for a triple zero of index one up to 8th order is given below:
U = Ug,
Uy = U3,
. 2 2 b 3 2 B 2
Uz = QgoU) T Q131U1Ug + Go2Uy T O200U1U3 + Q3eU; + Q21UTU2 + D110UTU3
4 3 5 4 4 6 5
+ Ayou] + Bajgujus + Asouy + Agiuiug + Biagujus + Agouy + As1uqug
4,2 5 7 6 5,2 6
+ A42U1LL2 + 3220U1U3 + A70u1 + A61’LL1U2 + A52u1u2 + Bl3ou1u;;

+ Blglu‘;’ug + Ang? + A71UI’U,2 + AGQU?U% + B230U;U3, (18)
where

Bi1o=— (@12 bagg — 5 bagg b110 + 4 b110 @o2 + 8 bior a20)/ (5 bago — 4 ao2),
Ago = — 5(—115 baggaosazo — 30 baoose + 11 b200a11612 + 24 a40002

+ 92 apsanaee — 42 a11bipiaze — 13 a11a12002)/ (5 bago — 4 ao2),

1111
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Baio = — 375 (1259 b3ga20011012 — 13690 b250G03a30 — 2692 bagoazoai1a12a0s
— 330 bygoa?, G320 + 39 bagos; a1z — 4728 bagoarbip1as,
— 780 bago@30a20@12 — 90 @11b200a31a20 + 23312 bagyao3a30a02
— 1860 bapob210a3g + 600 bagoaseady + 1416 azpar a12ag,
+ 3120 azoadobior + 264 a?;agsazaor + 936 az0a20a12002
+ 4464 a11b101030a02 — 42 a3, 1900, + 1488 bygasyag:
+ 72 a11a31020002 — 108 a3, b101a20 — 9888 agzazyad,
— 480 a22a30002)/ aZy (5bagy — 4ap2),
(19)

3.2 The SNF for a triple zero of index two

By using normal form theory we may find the CNF for the case of index two:

Cb1:$2,
k—1
- 7 k—i—1_1
m_z{zamxl Bt an S b 7 }
k=2 =0

EZcmx"“ (20)

k=21=0

Similarly, we may follow the procedure used in obtaining the SNF for the case
of index one to find the SNF for this case. First consider n = 2 and define

T
_ Jokod Jok g kol
Yo=| > dywnzizizy, > dyjuzizizy, Y. dymaiabay|,
GHk+H=2 jAkHl=2 GtkHi=2
2 2
Vo= (0, 20 7 + Q11 T1%3 + Go2 T3 + bio T1%2 + by T3,
2 nT
C T7 + C11 T1%3 + Co2 T3 |
2 2
Uy=v, + (0, Agp Ty + Ay z123 + Ago T3+ Big 2129 + By 2223,
T
2 2
Cyy ry + Ch zi1z3 + Coa 1133) , (21)

where v; = (21, 0, 0)7 represents the linear part. Then one may solve the

linear equation given by Vo +[Ys, v1] —~ Uz =0 to find

di200 = do2oo = daop2 = a1 = dar1o = daze0 = da1ip = dzin = 0,
diiio = daozo, doorn = diior, Ao = ago, A = a1, Ag2 = agy,
Big = b, Boi =bo1, Co =cz, Cin =cu, Coz = co, (22)
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which implies that the second order terms of the CNF cannot be further simpli-
fied. It is noted that the nonlinear coefficients djga, di002, d1110, d1101, 1011,
d3020, d3oo2 and dsg;; are not determined at this step, and may be used to
eliminate higher order CNF coefficients.

Next, consider n = 3, by following the similar procedure we may find the key
linear algebraic equations as follows:

0 A dopao
Byy — by 3azo 0 €20 0 dio02
By —by | T |3an 4o —aj; 3ci1—byp 0 dsonn | =0 (23)
Boz = boz 3age 2¢11 —~bo —2ap2  2¢cr2  — by diror
3002
and
Aszp — azo ( 0 0 0 0 0
Ag —an 0 0 0 —aq 0 dao20
Alg — a12 0 -2 axp O 0 - a d1002
Apz — ag3 0 —ann 0  ap -—2ap
030 — C30 0 0 0 0 0 3011 ( )
Co1 — e 0 0 azpy —2¢y 2cexp di101
Ciz — c1a 0 —2c¢p an —cn 11 d3002
Cosz — co3 L 0 —cnn ape O 0 ]

It is easy to see from equation (23) that we can use three of the d’s coefficients
to eliminate the three normal form coefficients By, By; and Byy, which fur-
ther simplifies the CNF. For definite, here we choose dagop, dipo2 and dsp11,
and solve them from equation (23) (noting that By = Bj; = By = 0), and
then substitute the resulting solutions into equation (24) to further eliminate
two of the coefficients A’s and/or C’s by using the coefficients dy1p; and
dago2- However, it should be pointed that the coeflicients Azp and Csp can-
not be set zero, and in fact, Asp = a3y and Csp = c39. Here we may choose
Ag; = Ajp = 0 and then uniquely determine djig and dsge from equation
(24). Tt has also been noted that the coefficient djq;; does not appear in equa-
tions (23) and (24), and may be used later to remove some higher order CNF
coefficient.

The above procedure can be repeatly applied to higher order equations: First
determines the key equations, and then uses the lower order undetermined
coefficients to eliminate the higher order CNF coefficients as many as pos-
sible. Table 2 shows the SNF coefficients up to 8th order and the nonlinear
transformation (NT) coefficients which are the lower order coefficients used to
eliminate the higher order CNF coefficients.
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Table 2. The SNF coefficients for a triple zero of index two.

Order SNF coefficients NT coefficients
Ao, A11, A By, B
9 20, A11, Ao2, Bio, Boi None
C, Ci1, Co2
Aszp, Ags
3 ’ di1o1, di002, d2020, d3002, dao11
Cs0, Ca1, Ci2, Co3
4 Ago di102, dio11, di111, d1003
Cio, C31, Caa, Ci3, Cos d1020, d3020, 3012, d3003
5 Aso d1004, d1012, di1103, d1021, d1120, di112
Cy1, C32, Ca3, Cl4, Cos d3021, d3oo4, d3013, d3112, d3030
6 Aso, Ceo, Cs1 di113, dizo4, d1121, d1013, d1022, 1005
Clg, Cs3, Cas, C1s, Coe d1030, d113e, d3022, 93031, daoi4, Q3005
Aqo, A4z, Azq, Azs, Ais | dios0, d1122, d1023, d1014, d1114, d1105, d1031
7
Cr0, Ce1, C34, Cas d1131, d1006> 3006, @3015, d3023, d3032, d3040
d1007, d1115, di106, d3016, d3007
3 Ago, Cgo, Cr1, Co2, Cs3
di123, dio1s, d1024, d1132, d3024, d3033
Cu4, C3s, Cog, C17, Cog
d1o41, diosz, di140, d3o041, d3050

Finally, the SNF for a triple zero of index two up to 8th order is found to be:

Uy = Uy,

U 2 2 3 3 4
Ug = A20U7 -+ aj1uius -+ a02U3 + b10U1U2 —+ b01u21L3 + Ago’ul + A03U,3 + A40u1

-+ A50’U,? + Aosug -+ Amui -+ Agouf,

u3 = C20uf -+ C11U1’LL3 + ngug + Cgou:% -+ 021U%U3 -+ Clgu1u§ -+ 003’113
+ 04011,% + 0317.1,?’&3 + szﬁ%'u% + Clgulug -+ 00411,3 + 04171,‘1111,3
+ C32U:13u§ + 023’&??}% + C14u1u§ + Oogug + CGO’L&? + Csl’u?u;;
+ Cpufui + Cauiud + Cogudug + Crsuiul + Cogud + Crou]
+ Cslu?ﬂg -+ C34u?u§ + Cg5ufug + CgoUE + Cnuz’ll,a + OGZU?'U/%
+ 053’11?’11«3 -+ 04411,11111% + 035’11,?’11,2 + CQG’UE'Ug + 017’111’1,6; + Cog'ug, (25)
where the coefficients Aj;’s and Cji’s are given in terms of the known coeffi-
cients ajx’s, bjr’s and c;i's. The detailed expressions are omitted here.

It is noted from equation (11) that the Jacobian J, involves a non-semisimple
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double zero eigenvalue. The explicit SNF for the double zero eigenvalue has
been obtained in [16]. Here we may use the SNF for the triple zero of index two,
given by equation (25), to recover the SNF of the generic case for the double
zero singularity. First note in equation (20) that setting all ¢ coefficients zero
in the 3rd equation of (20), and taking the terms in the second equation of (20)
for ¢ = 0 only results in the CNF for the double zero singularity. This leads
to the coefficients of equation (25): Coy = Czp = Cyg = Coo = Cro = Csp = 0.
Then further setting uz = 0 in equation (25) yields

2'/41 = U2,
’l:Lz = CLQOU% + me1U2 + A30U? + ,1440114‘11 + A5Q’U€ + Amuz + Agoui. (26)

A careful examination of the SNF for the double zero singularity has shown
that the result given by equation (26) is exactly same as that obtained in {16].

3.8 Symbolic computation using Maple

The explicit formulas derived in this section can be directly implemented on
computer algebra systems. In fact, all the results obtained in this paper are
obtained using Maple. The Maple programs we have developed can be conve-
niently executed on any computer systems for computing the SNF of a given
vector field associated with the triple zero singularity of index one or two. The
software only requires a minimum preparation for an input file from a user.

4 Conclusions

A method is presented for computing the simplest normal forms of differen-
tial equations associated with triple zero singularity of index one and two. It
has been shown that this approach is an efficient way from the computation
point of view. User-friendly symbolic computation programs written in Maple
have been developed. This method can be easily extended to consider other
singularities.
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