Robust Control Charts

Jayasankar Vattathoor
Graduate Student (MSc- Statistics)

Department of Mathematics & Statistics
Memorial University of Newfoundland, St. John’s

February 27, 2012
Outline

- Introduction to Control Charts
- Hotelling’s T^2 Control Chart
- Robust Control Charts
- Robust Estimators
- T^2 control chart based MCD/MVE estimators
Control Charts

- A graphical tool for detecting changes in the manufacturing conditions (shift in mean or variance) by comparing the actual observations with the control limits.

- Phase-I: Assessing the ability of the process - Estimation of process parameters and control limits

- Phase-II: Monitoring the process - Corrective and preventive action

- Univariate Control Charts
 - \bar{X} - R charts or \bar{X}-S charts

- Multivariate Control charts
 - (i) Hotelling’s T^2 Control Chart - Process Mean.
 (Sub- groups, Individual Observations)
 - (ii) MCUSUM / MEWMA Control Charts - Process Variance.
Hotelling’s T^2 Control Chart for Individual Observations

- Sample X_1, X_2, \ldots, X_m which follow a p-variate $MVN(\mu, \Sigma)$

\[T^2(j) = (X_j - \bar{X})' S^{-1} (X_j - \bar{X}), j = 1, 2, \ldots, m \] \hspace{1cm} (1)

where, \bar{X} and S are the sample mean & sample covariance

- T^2 follows β-distribution for phase-I data and F-distribution for phase-II data.

- Sample mean and sample covariance are sensitive to outliers.
Robust Control Charts

- Robust Control charts are suggested replacing the classical estimators by Robust estimators.
- Covariance matrix based on successive differences between vectors [Sullivan, Woodall (1996)]
- If \(V_i = X_{i+1} - X_i, i = 1, 2, \ldots, (m - 1) \), Then an unbiased estimator of covariance matrix \(S_1 = \frac{1}{2(m-1)} \sum_{i=1}^{m-1} V_i V_i' \) is replacing \(S \).
- It was effective in detecting sustained step changes but not successful in detecting multiple multivariate outliers.
Example: Comparison of Control Charts

Hoteling's T-Square Chart

T-Square Chart – Successive Difference
Robust Estimators

A Good Robust estimator should possess the following properties:

- **High Breakdown Point:**
 (i) The smallest proportion of observations which can render an estimator meaningless
 (ii) Mean has breakdown point of $1/n$ and median has $1/2$

- **Invariant:** Allows standardization/Transformation
 Highest possible asymptotic breakdown point $\frac{(m-p+1)}{2m}$

- **Efficiency:** Minimum Mean Square Error
 Trade off (Breakdown point & Efficiency)

- **Computing power in a reasonable amount of time.**
Robust Estimators

- M-estimators are robust but breakdown point reduces as dimension increases.
- Stahel-Donoho estimator with sample breakdown point is \(\frac{(m-2p+2)}{2m} \), but computationally expensive.
- S-estimator with sample breakdown point is \(\frac{(m-p+1)}{2m} \), but computationally expensive.
 (i) They are invariant
 (ii) Highest possible asymptotic breakdown point \(\frac{(m-p+1)}{2m} \).
 (iii) Fast and efficient algorithm for approximation
 (iv) Lower statistical efficiency as considers only partial data
Robust Estimators

- MVE- Find the smallest ellipsoid containing a subset \((1 - \gamma)100\%\) of the observations, \(\gamma = [0, 0.5]\)
 (i) Location - The geometrical center of the ellipsoid
 (ii) Covariance - The matrix defining the ellipsoid

- MCD- Find the subset of observations having covariance matrix with lowest determinant.
 Estimates of Mean and Covariance correspond to the mean and covariance of the subset.

- Computing exact MVE/MCD estimators are expensive but algorithms are available for approximating the estimators.
Robust Control Charts

- The T^2 control chart based MCD/MVE estimators [Vargas(2003), Jensen et al.(2007)]
- T^2 values for i-th multivariate observation is given by:

$$
T^2_{MCD}(X_i) = (X_i - \bar{X}_{MCD})' S^{-1}_{MCD} (X_i - \bar{X}_{MCD}) \\
T^2_{MVE}(X_i) = (X_i - \bar{X}_{MVE})' S^{-1}_{MVE} (X_i - \bar{X}_{MVE})
$$

- The performance of these charts are assessed by probability of signal and showed to be better than existing robust charts.
- The exact distribution of T^2 with MCD / MVE estimators are not available, hence the control limits are arrived by inverting empirical distribution.
- The Control limits for sample sizes (T^2_{MVE} 20-75, T^2_{MCD} 20-100) and dimension 2-10 at $\alpha = 0.05$ level are given.

Thank You