Hopf Algebras

Problem 1: Suppose that A is a bialgebra, and that V and W are left comodules over A.

1. Show that $V \otimes W$ is again a comodule when endowed with the coaction

$$\delta_{V\otimes W}(v\otimes w):=v^{(1)}w^{(1)}\otimes v^{(2)}\otimes w^{(2)}$$

2. If U is another left comodule over A, show that the canonical isomorphism of vector spaces

$$(V \otimes W) \otimes U \cong V \otimes (W \otimes U)$$

is colinear.

3. Show that the base field K becomes a comodule over A when endowed with the coaction

$$\delta_K: K \to A \otimes K, \ \lambda \mapsto 1 \otimes \lambda$$

4. Show that the canonical isomorphisms $K \otimes V \to V$, $\lambda \otimes v \mapsto \lambda v$ and $V \otimes K \to V$, $v \otimes \lambda \mapsto \lambda v$ are colinear. (4 points)

Problem 2: Suppose that *H* is a Hopf algebra, and that *V* is a finite-dimensional left comodule over *H* with basis v_1, \ldots, v_n and dual basis v_1^*, \ldots, v_n^* .

1. Show that the dual space is again a left comodule over ${\cal H}$ when endowed with the coaction

$$\delta_{V^*}: V^* \to H \otimes V^*, \ \varphi \mapsto \sum_{i=1}^n S(v_i^{(1)})\varphi(v_i^{(2)}) \otimes v_i^*$$

2. Show that this coaction satisfies

$$\varphi^{(1)}\varphi^{(2)}(v) = S(v^{(1)})\varphi(v^{(2)})$$

for all $\varphi \in V^*$ and all $v \in V$.

3. Show that the evaluation map

$$\operatorname{ev}: V \otimes V^* \to K, \ v \otimes \varphi \mapsto \varphi(v)$$

is colinear.

(3 points)

Problem 3: Let L be a Lie algebra. An associative algebra U (with unit) together with a linear map $\iota: L \to U$ is called a universal enveloping algebra if

$$\iota([x,y]) = \iota(x)\iota(y) - \iota(y)\iota(x)$$

for all $x, y \in L$ and the following universal property holds: If A is another associative algebra (with unit) together with a linear map $i: L \to A$ satisfying

$$i([x,y]) = i(x)i(y) - i(y)i(x)$$

for all $x, y \in L$, then there is a unique (unit-preserving) algebra homomorphism $f: U \to A$ satisfying $f \circ \iota = i$. Show that there is a unique Hopf algebra structure on U with the following properties:

- 1. $\Delta(\iota(x)) = \iota(x) \otimes 1 + 1 \otimes \iota(x)$ for all $x \in L$.
- 2. $\varepsilon(\iota(x)) = 0$ for all $x \in L$.
- 3. $S(\iota(x)) = -\iota(x)$ for all $x \in L$.

(Remark: It is a consequence of the (nontrivial) Poincaré-Birkhoff-Witt theorem that ι is injective. This fact is not needed for this problem.) (6 points)

Problem 4: Decide whether the Taft algebras T defined on Exercise Sheet 2 are semisimple. If semisimplicity depends on properties of the parameter q, find and state these properties. Prove all your assertions in complete detail. (7 points)

Due date: Tuesday, February 25, 2014. Please write your solution on letter-sized paper, and write your name on your solution. It is not necessary to submit this sheet with your solution.