Hopf Algebras

Problem 1: Suppose that V and W are vector spaces over the field K. Show that every tensor $x \in V \otimes W$ can be written as a sum

$$
x=\sum_{i=1}^{k} v_{i} \otimes w_{i}
$$

of decomposable tensors $v_{i} \otimes w_{i}$ with the property that both v_{1}, \ldots, v_{k} and w_{1}, \ldots, w_{k} are linearly independent.

Problem 2: Suppose that V and W are vector spaces over the field K.

1. If $\left(v_{i}\right)_{i \in I}$ is a basis of V, where I is a not necessarily finite index set, show that every tensor $x \in V \otimes W$ can be written uniquely in the form

$$
x=\sum_{i \in I} v_{i} \otimes w_{i}
$$

where only finitely many w_{i} are nonzero.
2. If in addition $\left(w_{j}\right)_{j \in J}$ is a basis of W, where J is a not necessarily finite index set, show that every tensor $x \in V \otimes W$ can be written uniquely in the form

$$
x=\sum_{i \in I} \sum_{j \in J} \lambda_{i j} v_{i} \otimes w_{j}
$$

where only finitely many coefficients $\lambda_{i j} \in K$ are nonzero.
(2 points)

Problem 3: Suppose that V and W are vector spaces over the field K, and that $V^{*}=\operatorname{Hom}_{K}(V, K)$ and $W^{*}=\operatorname{Hom}_{K}(W, K)$ are the corresponding dual spaces. If $f \in V^{*}$ and $g \in W^{*}$, the mapping

$$
V \times W \rightarrow K, \quad(v, w) \mapsto f(v) g(w)
$$

is bilinear, and therefore induces a linear map $V \otimes W \rightarrow K$, i.e., an element of the dual space $(V \otimes W)^{*}$, which is, in an ambiguous fashion, also denoted by $f \otimes g$.

1. Show that the map

$$
V^{*} \times W^{*} \rightarrow(V \otimes W)^{*},(f, g) \mapsto f \otimes g
$$

is bilinear and therefore induces a canonical map

$$
c: V^{*} \otimes W^{*} \rightarrow(V \otimes W)^{*}
$$

satisfying $c(f \otimes g)=f \otimes g$. (Recall that the notation $f \otimes g$ is ambiguous.)
2. Show that c is injective.

Problem 4:

1. Show that c is surjective if V or W are finite-dimensional. (2 points)
2. Show that c is not surjective if both V and W are infinite-dimensional. (3 points)

Due date: Tuesday, February 4, 2014. Please write your solution on letter-sized paper, and write your name on your solution. It is not necessary to submit this sheet with your solution.

