Hopf Algebras

Problem 1: Suppose that K is a field whose characteristic is different from 2. Let H be the algebra with generators x, y, z subject to the relations

$$
x^{2}=y^{2}=1 \quad z^{2}=\frac{1}{2}(1+x+y-x y) \quad x y=y x \quad x z=z y \quad y z=z x
$$

1. Show that there are unique algebra homomorphisms

$$
\Delta: H \rightarrow H \otimes H \quad \varepsilon: H \rightarrow K \quad S: H \rightarrow H^{\mathrm{op}}
$$

with the property that

$$
\Delta(x)=x \otimes x \quad \Delta(y)=y \otimes y \quad \Delta(z)=\frac{1}{2}(1 \otimes 1+1 \otimes x+y \otimes 1-y \otimes x)(z \otimes z)
$$

as well as $\varepsilon(x)=\varepsilon(y)=\varepsilon(z)=1$ and $S(x)=x, S(y)=y, S(z)=z$.
2. Show that these structures make H into a Hopf algebra. (25 points)

Problem 2: For the Hopf algebra in Problem 1, define

$$
\Lambda:=(1+x)(1+y)(1+z)
$$

1. Show that Λ is a two-sided integral.
2. Deduce that H is semisimple.
(20 points)

Problem 3: Suppose that K is a field whose characteristic is different from 2 and that $\iota \in K$ is a primitive fourth root of unity. Consider the Hopf algebra H defined in Problem 1.

1. Show that there are four algebra homomorphisms $\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}$ from H to K, of which the first is the counit $\omega_{0}=\varepsilon$ defined in Problem 1 and the remaining three are given on generators by

$$
\begin{array}{lll}
\omega_{1}(x)=1 & \omega_{1}(y)=1 & \omega_{1}(z)=-1 \\
\omega_{2}(x)=-1 & \omega_{2}(y)=-1 & \omega_{2}(z)=\iota \\
\omega_{3}(x)=-1 & \omega_{3}(y)=-1 & \omega_{3}(z)=-\iota
\end{array}
$$

2. Show that there are no other algebra homomorphisms from H to K.
3. Show that the group of group-like elements $G\left(H^{*}\right)$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Problem 4: We continue to use the assumptions and notations from Problem 3.

1. Show that there is a representation $\rho: H \rightarrow M(2 \times 2, K)$ with the property that

$$
\rho(x)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \rho(y)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad \rho(z)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

2. Show that ρ is irreducible.
3. Show that every two-dimensional irreducible representation is isomorphic to ρ.
4. Show that the elements $x^{i} y^{j} z^{k}$ for $i, j, k \in\{0,1\}$ form a basis of H. Use this to compute the dimension of H.
(40 points)

Due date: There is no due date. The completion of these problems is voluntary. The solutions will not be collected and not be marked, unless explicitly requested otherwise.

