Hopf Algebras

Problem 1: Suppose that G is a finite group. In the dual $K[G]^{*}$ of the group algebra, we have the dual basis of the basis consisting of the elements of G, which we denote by p_{g}, so that $p_{g}(h)=\delta_{g, h}$ for all elements $g, h \in G$. Show that the Hopf algebra structure of $K[G]^{*}$ is given on this basis by the formulas

1. $\Delta\left(p_{g}\right)=\sum_{\substack{h, h^{\prime} \in G \\ h h^{\prime}=g}} p_{h} \otimes p_{h^{\prime}}$
2. $\varepsilon\left(p_{g}\right)=\delta_{g, 1}$
3. $p_{g} p_{h}=\delta_{g, h} p_{g}$
4. $S\left(p_{g}\right)=p_{g^{-1}}$
(20 points)
(Remark: Since a linear functional is uniquely determined by its values on a basis, this Hopf algebra can also be constructed as the algebra of functions on the group. The multiplication is then the pointwise multiplication, and the elements p_{g} become the characteristic functions on the singletons.)

Problem 2: Suppose that C is a cyclic finite group of order n with generator c, and suppose that $\zeta \in K$ is a primitive n-th root of unity.

1. Show that there is a unique algebra homomorphism $\chi: K[C] \rightarrow K$ with the property that $\chi(c)=\zeta$.
(5 points)
2. Show that $\chi \in K[C]^{*}$ is group-like.
3. Show that there is a unique Hopf algebra isomorphism $f: K[C] \rightarrow K[C]^{*}$ with the property that $f(c)=\chi$.
(15 points)

Problem 3: Suppose that G is a finite group.

1. Show that if G is abelian, then $K[G]$ and $K[G]^{*}$ are isomorphic as Hopf algebras.
(15 points)
2. Show that if G is not abelian, then $K[G]$ and $K[G]^{*}$ are not isomorphic as Hopf algebras.
(15 points)

Problem 4: Suppose that H is a Hopf algebra. An algebra A that is simultaneously an H -module is called a module algebra if

$$
h .(a b)=\left(h_{(1)} \cdot a\right)\left(h_{(2)} \cdot b\right) \quad \text { and } \quad h .1_{A}=\varepsilon_{H}(h) 1_{A}
$$

where the dot indicates the module action.

1. Show that H is a module algebra over itself with respect to the left adjoint action

$$
h . h^{\prime}:=h_{(1)} h^{\prime} S\left(h_{(2)}\right)
$$

2. Show that this module structure satisfies the so-called Yetter-Drinfel'd condition

$$
\Delta\left(h . h^{\prime}\right):=h_{(1)} h_{(1)}^{\prime} S\left(h_{(3)}\right) \otimes h_{(2)} \cdot h_{(2)}^{\prime}
$$

(20 points)

Due date: There is no due date. The completion of these problems is voluntary. The solutions will not be collected and not be marked, unless explicitly requested otherwise.

