Hopf Algebras

Problem 1: Suppose that $q \in K$ is an element of the base field that is different from 0 and 1 . For a natural number $n \in \mathbb{N}$, we define the q-number

$$
(n)_{q}:=\frac{q^{n}-1}{q-1}=\sum_{k=0}^{n-1} q^{k}
$$

Furthermore, we define the q-factorial as $(n)_{q}!:=(1)_{q}(2)_{q}(3)_{q} \ldots(n)_{q}$, with the convention that $(0)_{q}!:=1$. It may very well happen that q-numbers and q-factorials are zero; this happens if and only if q is a root of unity. Even in this case, we define the q-binomial coefficient, or Gaussian binomial coefficient, as

$$
\binom{n}{k}_{q}:=\frac{(n)_{q}!}{(k)_{q}!(n-k)_{q}!}
$$

as long as $0 \leq k \leq n$ and the denominator of this expression is nonzero. However, we have in any case by definition that

$$
\binom{n}{0}_{q}=\binom{n}{n}_{q}:=1
$$

even if $(n)_{q}!=0$. Furthermore, we define $\binom{0}{0}_{q}:=1$.

1. For $n \geq 2$ and $k=1, \ldots, n-1$, show the q-Pascal identity

$$
\binom{n}{k}_{q}=q^{n-k}\binom{n-1}{k-1}_{q}+\binom{n-1}{k}_{q}
$$

2. Suppose that A is an algebra and that $a, b \in A q$-commute in the sense that $b a=q a b$. Show the q-binomial theorem

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k}_{q} a^{k} b^{n-k}
$$

3. In this situation, suppose that q is a primitive n-th root of unity. Show that

$$
(a+b)^{n}=a^{n}+b^{n}
$$

Problem 2: Suppose that $q \in K$ is a primitive n-th root of unity. Let T be the algebra generated by g and x subject to the relations

$$
g^{n}=1 \quad x^{n}=0 \quad x g=q g x
$$

1. Show that there exist unique algebra homomorphisms $\Delta: T \rightarrow T \otimes T$ and $\varepsilon: T \rightarrow K$ such that

$$
\Delta(g)=g \otimes g \quad \Delta(x)=1 \otimes x+x \otimes g \quad \varepsilon(g)=1 \quad \varepsilon(x)=0
$$

and a unique algebra antihomomorphism $S: T \rightarrow T$ satisfying

$$
S(g)=g^{n-1} \quad S(x)=-x g^{n-1}
$$

(Note that $g^{n-1}=g^{-1}$, the inverse of g.)
(10 points)
2. Show that Δ, ε, and S make T into a Hopf algebra, the so-called Taft algebra.

Problem 3: Let C be a cyclic group of order n with generator c, and let $K[t] /\left(t^{n}\right)$ be the quotient of the polynomial algebra $K[t]$ by the principal ideal $\left(t^{n}\right)$. We denote the residue class of t by τ. The elements $c^{i} \otimes \tau^{j}$ for indices in the range $i, j=0, \ldots, n-1$ form a basis of $K[C] \otimes K[t] /\left(t^{n}\right)$. We define a product on this space by defining it on basis elements via

$$
\left(c^{i} \otimes \tau^{j}\right)\left(c^{k} \otimes \tau^{l}\right)=q^{j k} c^{i+k} \otimes \tau^{j+l}
$$

and extending bilinearly.

1. Show that this product is associative and that $1 \otimes 1=c^{0} \otimes \tau^{0}$ is a unit element.
(10 points)
2. Show that $K[C] \otimes K[t] /\left(t^{n}\right)$ is isomorphic to T.
(10 points)
3. Conclude that the elements $g^{i} x^{j}$ for $i, j=0, \ldots, n-1$ form a basis of T.
(5 points)

Problem 4: Suppose that H is a Hopf algebra with antipode S. Suppose furthermore that H^{op} is also a Hopf algebra with antipode S^{\prime}. Show that $S \circ S^{\prime}=\operatorname{id}_{H}=S^{\prime} \circ S$.
(20 points)

Due date: There is no due date. The completion of these problems is voluntary. The solutions will not be collected and not be marked, unless explicitly requested otherwise.

