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Abstract

Vector-potential formulations are attractive for electromagnetic problems in two dimensions, since they
reduce both the number and complexity of equations, particularly in coupled systems, such as magnetohy-
drodynamics (MHD). In this paper, we consider the finite-element formulation of a vector-potential model
of two-dimensional resistive MHD. Existence and uniqueness are considered separately for the continuum
nonlinear equations and the discretized and linearized form that arises from Newton’s method applied to
a modified system. Under some conditions, we prove that the solutions of the original and modified weak
forms are the same, allowing us to prove convergence of both the discretization and the nonlinear iteration.
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1 Introduction

Magnetohydrodynamics (MHD) models the flow of a charged fluid, or plasma, in the presence of electromagnetic
fields. There are many formulations of MHD, depending on the domain and physical parameters considered. This
includes assumptions associated with the coupling between the electric field, current density, and Ohm’s law,
leading to formulations such as ideal, resistive, and Hall MHD [16]. In this paper, we use a single incompressible
fluid model, treating ions and electrons together, along with a resistive formulation. The resulting visco-resistive
model couples the Navier-Stokes equations with Maxwell’s equations, forming a nonlinear system of partial
differential equations (PDEs). Moreover, we focus on time-independent solutions, with our primary focus on
existence and uniqueness of solutions to the nonlinear and linearized systems of equations.

The equations of stationary, incompressible single fluid MHD posed in three dimensions are considered in
(for example) [17, 18]. Under some conditions on the data, the existence and uniqueness of solutions to weak
formulations of the equations is known both in the continuum and for certain discretizations. The focus of
this paper is on MHD in two dimensions (2D). Here, a vector potential formulation was used in [2, 10]. Vector
potential formulations are attractive for electromagnetic problems with two-dimensional dynamics, since they
substantially reduce the complexity of the resulting equations, by trading vector for scalar unknowns, and
the curl terms that arise in Maxwell’s equations for standard gradient and diffusion operators. Despite this
attractiveness, there is a scarcity of analysis for multiphysics systems using vector potential formulations, for
both the continuum and discretized models. In this paper, we demonstrate that standard analysis techniques can
be extended from three-dimensional MHD [17, 18] to the two-dimensional discretizations considered in [2, 10],
although some complications arise that can only be addressed (to our knowledge) by making more restrictive
assumptions.
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NSERC discovery grant.
†Department of Mathematics, Tufts University, Bromfield-Pearson Building, 503 Boston Avenue, Medford, MA 02155, USA
‡Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
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Figure 1: Cross-sectional view of large aspect-ratio tokamak geometry, with major radius, R, and minor radius,
r, satisfying R� r. A cross-section of thickness dr can be unfolded to create a Cartesian grid as pictured.

Two-dimensional models of MHD arise when considering magnetically confined plasmas, such as in a large
aspect-ratio tokamak reactor, as illustrated in Figure 1. In this setting, the magnetic field along the toroidal
direction (denoted by z) is very large in order to contain the plasma. Consequently, the resulting dynamics
decouple into a two-dimensional problem posed over the poloidal cross-section. While such a configuration can be
accurately studied using full three-dimensional models, the computational cost of such models is substantially
more than their two-dimensional counterparts, thus motivating the many numerical studies of MHD in two
dimensions.

While numerical results using the vector potential formulation already exist in the literature, [2, 10] focus
primarily on linear algebraic aspects of the solution of the resulting linearized systems of equations, leaving
open the questions of existence and uniqueness of solutions. In this paper, we focus on the theoretical analysis
of both the continuum model and its discretization, applying standard theoretical tools for the existence and
uniqueness of solutions at both the continuum and discrete levels. For the discretization, this is complicated
when considering a nonconforming discretization, as was used in [2, 10]. Nonetheless, under moderate conditions,
we prove that Newton’s method yields well-posed linearizations and converges to the solution of the weak
formulation.

An outline of this paper is as follows. In Section 2, we detail the vector-potential formulation for the MHD
problem in 2D and, under standard conditions, we prove the existence and uniqueness of the continuum solution.
In Section 3, we introduce a modified, “uncurled”, formulation for the MHD problem and present the analysis
of the discretized problem using a mixed finite-element method. In Section 4, we consider Newton’s method for
solving the nonlinear system and analyze convergence. Numerical results supporting the theory are presented
in Section 5. Finally, some concluding remarks are given in Section 6.

In what follows, the letter C (with or without subscripts) denotes a generic positive constant which may be
different depending on the context. For a Lipschitz domain Ω ⊂ R2, denote by Lp, 1 ≤ p ≤ ∞, the Lebesgue
space of p-integrable functions, endowed with the norm ‖ · ‖0,p. Denote the standard Euclidean norm as | · |,
the classical L2(Ω) inner product and norm as 〈·, ·〉0 and ‖ · ‖0, respectively, and 〈f, g〉 =

∫
Ω
fgdX, where

fg ∈ L1(Ω). The standard L2-based Sobolev space with integer or fractional exponent s is denoted by Hs(Ω).
We write ‖ · ‖s for its norm.
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For convenience, we introduce the spaces

J :=
(
H1

0 (Ω)
)2 ∩H(div0; Ω), W :=

(
H1

0 (Ω)
)2
, Q := L2

0(Ω),

X := H2
τ (Ω) ∩ L2

0(Ω), X̃ := H1(Ω) ∩ L2
0(Ω), X0 := H2

γ(Ω), X̃0 := H1
0 (Ω),

endowed with natural Sobolev norms. Here, in addition to the standard (scalar and vector) spaces H1(Ω) and
H1

0 (Ω), we take

H(div0; Ω) :=
{
~v
∣∣∣~v ∈ (L2(Ω)

)2
, ∇ · ~v = 0 in Ω

}
, L2

0(Ω) :=

{
q

∣∣∣∣q ∈ L2(Ω),

∫
Ω

q dX = 0

}
,

H2
τ (Ω) :=

{
φ

∣∣∣∣φ ∈ H2(Ω),
∂φ

∂~n
|∂Ω = 0

}
, H2

γ(Ω) := {φ|φ ∈ H2(Ω), φ|∂Ω = 0}.

2 Steady-state visco-resistive MHD

In this paper, we consider cylindrical three-dimensional domains, Ω̂ = Ω × [z0.z1], where Ω ⊂ R2 is Lipschitz,
which are coupled with a large incident magnetic field in the z-direction. To begin, we consider the one-fluid
visco-resistive MHD model, where the dependent variables are the fluid velocity ~u, the hydrodynamic pressure
p, and the magnetic field ~B. The equations are

∂~u

∂t
+ (~u · ∇)~u−∇ · (T + TM ) +∇p = ~F , (2.1)

∂ ~B

∂t
−∇× (~u× ~B) +∇× (

1

Rem
∇× ~B) = ~G, (2.2)

∇ · ~u = 0, (2.3)

∇ · ~B = 0, (2.4)

where ~G = −∇ × ~Estat, and ~Estat is the static component of the electric field. The Newtonian and magnetic
stress tensors are

T =
1

2Re

[
∇~u+∇~uT

]
, and TM = ~B ⊗ ~B − 1

2
| ~B|2I,

respectively. We define the tensor ~B ⊗ ~B component-wise as ( ~B ⊗ ~B)i,j = BiBj and ~F = (~f, 0) ∈
(
H−1(Ω̂)

)3
for ~f ∈

(
H−1(Ω)

)2
, ~G ∈

(
L2(Ω̂)

)3
. Additionally, we define the standard nondimensional Reynolds number, Re,

and magnetic Reynolds number, Rem:

Re =
ρUL

ν
, Rem =

µ0UL

η
,

for a characteristic velocity, U , and a characteristic length scale, L. The physical parameters, all assumed
constant, are the fluid viscosity ν, the fluid density ρ, the magnetic permeability of free space µ0, and the
magnetic resistivity η.

Assuming that the domain is coupled with a large incident magnetic field in the z-direction, the resulting
dynamics decouple into a two-dimensional problem over Ω with simple behaviour in the z-direction. For the
tokamak pictured in Figure 1, this is equivalent to assuming both a large incident magnetic field in the toroidal
direction as well as a large aspect-ratio, so that the curvature of the tokamak is negligible. Considering the
resulting plasma behaviour over Ω (the poloidal cross-section of the tokamak), and assuming no variation in the

z- (toroidal-)direction, we take ~B = (B1(x, y), B2(x, y), B0) and ~u = (u1(x, y), u2(x, y), u0). Then, we complete
the above system with homogeneous boundary conditions on the velocity, ~u = ~0 on ∂Ω, and either perfect
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conductor or perfect insulator boundary conditions on ~B, ~B · ~n = 0 or ~B × ~n = ~0 on ∂Ω, respectively, where ~n
denotes the outward normal vector on ∂Ω.

Noting that ∇ · ~B = 0, we must have ∂B1

∂x + ∂B2

∂y = 0, which allows us to write ~B = ∇ × ~A + (0, 0, B0),

where ~A = (0, 0, A(x, y)). A standard result (see, for example [15]), is that if B ∈ (H1(Ω̂)
)3

, then A ∈ H2(Ω̂).

Consequently, we rewrite Equations (2.1)-(2.4) in terms of the vector potential, ~A. Considering the continuum
problem (2.1)-(2.4), direct calculation shows that B0 and u0 do not appear in the resulting equations for the

other components of ~B and ~u and, so, we ignore them (by treating them as zero) in what follows.

2.1 H2(Ω) weak formulation

We now introduce the weak formulation of (2.1)-(2.4) for the two-dimensional domain Ω. Writing ~B = ∇× ~A

for vector potential, ~A, gives ∇· ~B = 0 and Equation (2.4) is automatically satisfied. Thus, we no longer include
it in the formulation.

A standard vector calculus identity is that if ~B ∈
(
H1(Ω̂)

)3
,

∇ · ( ~B ⊗ ~B − 1

2
| ~B|2I) = (∇× ~B)× ~B + (∇ · ~B) · ~B,

and if ~B ∈
(
H1(Ω̂)

)3 ∩H(div0; Ω̂), then

∇ · ( ~B ⊗ ~B − 1

2
| ~B|2I) = (∇× ~B)× ~B.

Taking ~B = (∂A∂y ,−
∂A
∂x , 0) ensures that ~B ∈

(
H1(Ω̂)

)3 ∩H(div0; Ω̂) when A ∈ X, giving∫
Ω̂

∇ · ( ~B ⊗ ~B − 1

2
| ~B|2I) · ~V dX̂ =

∫
Ω̂

(∇× ~B)× ~B · ~V dX̂

=

∫
Ω̂

(−4A · ∂A
∂x

,−4A · ∂A
∂y

, 0) · ~V dX̂

= −(z1 − z0)

∫
Ω

4A · (∇A · ~v) dX, (2.5)

for any ~V = (~v, v3) ∈
(
H1(Ω̂)

)3
, with ~v ∈

(
H1(Ω)

)2
.

Taking ~C = ∇× (0, 0, ϕ) for ϕ ∈ X, then we can rewrite the weak formulation of (2.2), discarding the time
derivative, ∫

Ω̂

[
−∇× (~u× ~B) · ~C +∇× (Re−1

m ∇× ~B) · ~C
]

dX̂ =

∫
Ω̂

~G · ~CdX̂,

as ∫
Ω

−(u1, u2) · ∇A · 4ϕdX +

∫
Ω

Re−1
m 4A · 4ϕdX =

∫
Ω

E0 · 4ϕdX,

where E0 is the z-component of the electrostatic part, ~Estat, and we choose E0 so that
∫

Ω
E0dX = 0. We drop

the common scaling of (z1 − z0) when switching from integrals over Ω̂ to those over Ω. In the following, we
denote ~u = (u1(x, y), u2(x, y)).

Note that with ~B = (∂A/∂y,−∂A/∂x, 0), the perfect conductor boundary condition, ~B ·~n = 0 is implied by
a homogeneous Dirichlet boundary condition on A, as is included in the space X0, while the perfect insulator
boundary condition, ~B×~n = ~0, is implied by a homogeneous Neumann boundary condition on A, as is included
in the space X. In what follows, we state weak formulations and results for the latter case, A ∈ X (and, from

Section 3 onwards, A ∈ X̃) as proofs for this case are slightly more technical than for A ∈ X0 (or A ∈ X̃0).
Where substantial differences occur between the two cases, we provide remarks to clarify. With homogeneous
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Dirichlet boundary conditions on ~u and perfect insulator boundary conditions on A, the weak form of (2.1)-(2.4)
in two dimensions is : find ~u ∈W, A ∈ X, p ∈ Q such that

a1(~u,~v) + c0(~u; ~u,~v) + c1(A;~v,A) + b(p,~v) = 〈~f,~v〉, (2.6)

a2(A,ϕ)− c1(A; ~u, ϕ) = 〈E0,4ϕ〉, (2.7)

b(q, ~u) = 0, (2.8)

for all ~v ∈W, ϕ ∈ X, q ∈ Q, with S~u = 1
2 (∇~u+∇~uT ), where

a1(~u,~v) := Re−1

∫
Ω

S~u : ∇~v dX = Re−1

∫
Ω

S~u : S~v dX,

a2(φ, ψ) := Re−1
m

∫
Ω

4φ · 4ψ dX,

b(q,~v) := −
∫

Ω

q(∇ · ~v) dX,

c0(~w; ~u,~v) :=
1

2

∫
Ω

(~w · ∇)~u · ~v dX− 1

2

∫
Ω

(~w · ∇)~v · ~udX,

c1(ψ;~v, φ) :=

∫
Ω

4φ · ∇ψ · ~v dX.

2.2 Properties of the weak formulation

In this section, we briefly analyze the weak form in Equations (2.6)-(2.8), which we write as

Formulation 1. Find (~u, p,A) ∈W ×Q×X such that

A(~u,A;~v, ϕ) + C(~u,A; ~u,A;~v, ϕ) + B(p;~v, ϕ) = L(~v, ϕ), (2.9)

B(q; ~u,A) = 0, (2.10)

for all (~v, q, ϕ) ∈W ×Q×X,

with

A(~u,A;~v, ϕ) := a1(~u,~v) + a2(A,ϕ),

B(q;~v, ϕ) := b(q,~v),

C(~w, ψ; ~u, φ;~v, ϕ) := c0(~w; ~u,~v) + c1(ψ;~v, φ)− c1(ψ; ~u, ϕ),

L(~v, ϕ) := 〈~f,~v〉+ 〈E0,4ϕ〉.

We define the product space W×X with the norm |||(~v, ϕ)|||2 := ‖~v‖21 +‖ϕ‖22 and define the operator norm,

|||L|||− := sup
(~0,0)6=(~v,ϕ)∈J×X

L(~v, ϕ)

|||(~v, ϕ)|||
. Next, we consider the properties of the forms A, B, and C.

Lemma 2.1. For any (~v, ϕ), (~w, ψ) ∈W ×X, we have

A(~v, ϕ;~v, ϕ) ≥ cαmin{Re−1, Re−1
m }|||(~v, ϕ)|||2, (2.11)

A(~w, ψ;~v, ϕ) ≤ max{2Re−1, Re−1
m }|||(~w, ψ)||| · |||(~v, ϕ)|||,

where cα ≤ 1 is a constant depending only on Ω.
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Proof. Since (~v, ϕ) ∈W ×X, we have

A(~v, ϕ;~v, ϕ) = Re−1

∫
Ω

S~v : S~v dX +

∫
Ω

Re−1
m 4ϕ · 4ϕdX

= Re−1‖S~v‖20 +Re−1
m ‖4ϕ‖20

≥ β1Re
−1‖~v‖21 + β2Re

−1
m ‖ϕ‖22

≥ cαmin{Re−1, Re−1
m }|||(~v, ϕ)|||2,

where cα = min{β1, β2}, β1 comes from Korn’s Inequality [7, Corollary 11.2.22], and β2 comes from a regularity
argument [15, Chapter I, Theorem 1.10]. This gives the coercivity of A.

For continuity,

A(~u, ψ;~v, ϕ) = Re−1

∫
Ω

S~u : S~v dX +Re−1
m

∫
Ω

4ψ · 4ϕdX

≤ 2Re−1‖~u‖1‖~v‖1 +Re−1
m ‖ψ‖2‖ϕ‖2

≤ max{2Re−1, Re−1
m }|||(~u, ψ)||| · |||(~v, ϕ)|||,

via the Cauchy-Schwarz inequality.

Remark 2.1. If ϕ ∈ X0, then ‖∆ϕ‖20 ≥ β2‖ϕ‖22 also holds (see [15, Chapter I, Theorem 1.8]).

We state two Lemmas that follow directly from the standard Compact Imbedding Theorem for Sobolev
spaces (see, e.g., [15], Theorem I.1.2), showing the trilinear forms c0 and c1 are well defined.

Lemma 2.2. If ~u,~v, ~w ∈
(
H1(Ω)

)2
, then

|c0(~w; ~u,~v)| ≤ C0‖~w‖0,4 · ‖∇~u‖0 · ‖~v‖0,4 ≤ C0‖~w‖1 · ‖~u‖1 · ‖~v‖1, (2.12)

where C0 is a constant depending only on Ω.

Lemma 2.3. If ψ, φ ∈ H2(Ω) and ~v ∈
(
H1(Ω)

)2
, then

|c1(ψ;~v, φ)| ≤ C1‖∇ψ‖0,4 · ‖4φ‖0 · ‖~v‖0,4 ≤ C1‖ψ‖2 · ‖φ‖2 · ‖~v‖1, (2.13)

where C1 is a constant depending only on Ω.

Lemma 2.4. For any ~w, ~u,~v ∈W and ψ, φ, ϕ ∈ X , the trilinear form C has the following properties

|C(~w, ψ; ~u, φ;~v, ϕ)| ≤ Cc|||(~w, ψ)||| · |||(~u, φ)||| · |||(~v, ϕ)|||, (2.14)

where Cc is a constant only depending on Ω. Furthermore,

C(~w, ψ;~v, ϕ;~v, ϕ) = 0. (2.15)

Proof. The continuity bound follows directly from inequalities (2.12) and (2.13). That C(~w, ψ;~v, ϕ;~v, ϕ) = 0
follows directly from its definition, and those of c0 and c1.

The form b(q,~v) is continuous and satisfies the following inf-sup condition

inf
0 6=q∈Q

sup
~06=~v∈W

b(q,~v)

‖~v‖1‖q‖0
≥ Γ > 0, (2.16)

where Γ is a constant depending only on Ω [15, Chapter I.5.1].
The form B is obviously continuous:

|B(q;~v, ϕ)| ≤ Cb‖q‖0‖~v‖1 ≤ Cb‖q‖0|||(~v, ϕ)|||,

for all (~v, q, ϕ) ∈W ×Q×X, with a constant Cb > 0. Furthermore, it inherits the inf-sup condition from b.
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Lemma 2.5. There exists a constant Γ > 0 depending only on Ω, such that

sup
(~0,0) 6=(~v,ϕ)∈W×X

B(q;~v, ϕ)

|||(~v, ϕ)|||
≥ Γ‖q‖0,

for all q ∈ Q.

Proof. Since
B(q;~v, ϕ) = b(q,~v),

we have

sup
(~0,0) 6=(~v,ϕ)∈W×X

B(q;~v, ϕ)

|||(~v, ϕ)|||
≥ sup
~06=~v∈W

b(q,~v)

‖~v‖1
≥ ‖q‖0 · Γ,

where the last inequality follows directly from (2.16).

2.3 Existence and uniqueness of solutions

From [15], we quote the main theorem that we will apply to this weak formulation.

Theorem 2.1 ([15], Theorem IV.1.3). Let V be a separable Hilbert space with the norm ‖ · ‖V , l be a linear
functional in the dual space V ′ and, for w ∈ V , the mapping (u, v) → a(w;u, v) be a bilinear continuous form
on V × V . Assume that the following hold:

• the bilinear form a(w; v, v) is uniformly V-coercive with respect to w, i.e., there exists a constant α > 0
such that

a(w; v, v) ≥ α‖v‖2V , ∀v, w ∈ V.

• there exists a continuous and monotonically increasing function L : R+ → R+ such that for all µ > 0

|a(w1;u, v)− a(w2;u, v)| ≤ L(µ)‖u‖V ‖v‖V ‖w1 − w2‖V ,

∀u, v ∈ V, w1, w2 ∈ Sµ = {w ∈ V ; ‖w‖V ≤ µ}.

• the linear function l and α satisfy
‖l‖V ′
α2

· L(‖l‖V ′/α) < 1.

Then the problem: find u ∈ V such that

a(u;u, v) = l(v), ∀v ∈ V,

has a unique solution that satisfies the stability bound ‖u‖V ≤ α−1‖l‖V ′ .

Theorem 2.2. Let ~f ∈
(
H−1(Ω)

)2
and E0 ∈ L2(Ω), and assume that

Cc|||L|||−
c2αmin{Re−2, Re−2

m }
< 1, (2.17)

where cα comes from (2.11), and Cc comes from (2.14). Then, there exists a unique solution (~u, p,A) in
W ×Q×X of Formulation 1. Furthermore, we have the stability bounds

|||(~u,A)||| ≤ |||L|||−
cαmin{Re−1, Re−1

m }

and

‖p‖0 ≤ Γ−1

[
||~f ||−1 + 2Re−1‖~u‖1 + C0‖~u‖21 + C1‖A‖21

]
,

where C0 comes from (2.12), and C1 comes from (2.13).
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Proof. We first apply Theorem 2.1 to Formulation 1 restricted to (~u,A) ∈ J ×X, satisfying the constraint in

Equation (2.10). We note that J ×X is separable, since J and X are closed subsets of
(
H1(Ω)

)2
and H2(Ω)

respectively, and
(
H1(Ω)

)2
and H2(Ω) are separable Hilbert Spaces.

For any (~w, ψ), define the mapping ((~u, φ), (~v, ϕ))→ A1(~w, ψ; ~u, φ,~v, ϕ), where

A1(~w, ψ; ~u, φ,~v, ϕ) = A(~u, φ;~v, ϕ) + C(~w, ψ; ~u, φ;~v, ϕ).

From inequalities (2.11) and (2.15), we have

|A1(~w, ψ;~v, ϕ;~v, ϕ)| = |A(~v, ϕ;~v, ϕ) + C(~w, ψ;~v, ϕ;~v, ϕ)| = |A(~v, ϕ;~v, ϕ)|
≥ cαmin{Re−1, Re−1

m }|||(~v, ϕ)|||2 ∀(~w, ψ), (~v, ϕ) ∈ J×X.

Finally, linearity in the first argument of C and inequality (2.14) give

|A1(~w1, ψ1; ~u, φ;~v, ϕ) − A1(~w2, ψ2; ~u, φ;~v, ϕ)|
= |C((~w1, ψ1; ~u, φ;~v, ϕ)− C(~w2, ψ2; ~u, φ;~v, ϕ)|
= |C(~w1 − ~w2, ψ1 − ψ2; ~u, φ;~v, ϕ)|
≤ Cc|||(~w1 − ~w2, ψ1 − ψ2)||| · |||(~u, φ)||| · |||(~v, ϕ)|||,

∀(~w1, ψ1), (~w2, ψ2), (~u, φ), (~v, ϕ) ∈ J×X. In the notation of Theorem 2.1, this gives L(µ) = Cc, where Cc comes
from (2.14).

Thus, by Theorem 2.1, assumption (2.17) proves existence of a unique solution to Formulation 1 restricted
to J×X. Let (~u,A) ∈ J×X be that unique solution, which satisfies the stability bound stated.

By the inf-sup condition in Equation (2.16), there also exists a unique solution of the following problem:
find p ∈ Q such that

b(p,~v) = B(p;~v, ϕ) = L(~v, ϕ)−A(~u,A;~v, ϕ)− C(~u,A; ~u,A;~v, ϕ),

= 〈~f,~v〉 − a1(~u,~v)− c0(~u; ~u,~v)− c1(A;~v,A),

for all ~v ∈W \ J [15, Theorem IV.1.4].
From the inf-sup condition, we have

Γ‖p‖0 ≤ sup
~06=~v∈W

b(q,~v)

‖~v‖1

= sup
~0 6=~v∈W

〈~f,~v〉 − a1(~u,~v)− c0(~u; ~u,~v)− c1(A;~v,A)

‖~v‖1
.

Combining this with Equations (2.12) and (2.13), we obtain the bound on p.

Any conforming mixed finite-element discretization of (2.9) and (2.10) necessarily requires the use of H2-
conforming elements for A ∈ X, such as Argyris triangle elements, or Bogner-Fox-Schmit elements [9]. By using
the antisymmetric form of c0 in the weak formulation, existence and uniqueness of the solution to the discretized
form of Formulation 1 follows immediately, so long as an appropriate inf-sup stable finite-element pair is used for
the velocity and pressure unknowns. While these approximations have been thoroughly studied, particularly for
fourth-order problems, their use also poses some additional difficulties for implementation and efficient solution
of the resulting linearized systems. Thus, we next consider a modified approach using H1-conforming elements,
following [2, 10].
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3 Uncurled formulation of MHD

Introducing the vector potential into Equation (2.2) leads to the bilinear form a2(φ, ψ), which requires H2-
conforming elements for discretization. Notice, however, that, in the steady-state case, Equation (2.2) can be

rewritten as ∇ × (−~u × ~B + Re−1
m ∇ × ~B) = −∇ × ~Estat, which can be simplified into a first-order equation

in ~B, resulting in a second-order equation in A. Using this in place of (2.2), we derive an “uncurled” weak

formulation: find (~u,A) ∈W × X̃, p ∈ Q such that

a1(~u,~v) + c0(~u; ~u,~v) + c̃1(A;~v,A) + b(p,~v) = 〈~f,~v〉, (3.1)

ã2(A,ψ) + c̃2(A; ~u, ψ) = 〈−E0, ψ〉, (3.2)

b(q, ~u) = 0, (3.3)

for all (~v, ψ) ∈W × X̃, q ∈ Q, where

ã2(φ, ψ) := Re−1
m

∫
Ω

∇φ · ∇ψ dX,

c̃1(φ;~v,A) :=
1

2

〈(
∂A

∂y
· ∂φ
∂y
− ∂A

∂x
· ∂φ
∂x
,−
[
∂A

∂x
· ∂φ
∂y

+
∂A

∂x
· ∂φ
∂y

])
,
∂~v

∂x

〉
0

,

+
1

2

〈(
−
[
∂A

∂x
· ∂φ
∂y

+
∂A

∂x
· ∂φ
∂y

]
,
∂A

∂x
· ∂φ
∂x
− ∂A

∂y
· ∂φ
∂y

)
,
∂~v

∂y

〉
0

,

c̃2(φ; ~u, ψ) :=

∫
Ω

~u · ∇φ · ψ dX.

Note, we now integrate by parts on the stress tensor in (2.1) since c1(A,~v,A) is obviously ill-defined if
A /∈ H2(Ω). The corresponding term in (2.7) becomes c̃2(φ; ~u, ψ) due to the “uncurling” of (2.2). This is the
formulation used in [2, 10]; in [2], an inf-sup stable finite-element method pair is used for discretization of ~u
and p, while a stabilized pair was used in [10]. Neither of these papers considered theoretical analysis of this
formulation, which we do here.

The analysis below shows that, in contrast to the formulation considered above, this formulation does not
directly yield unique solutions under the classical theory. To address this, we augment analysis of the continuum
weak form with that at the discrete level. We separately consider the well-posedness of the Newton linearizations
in Section 4.

3.1 Mixed variational formulation

Extending the bilinear form B to act on X̃ gives

B̃(q;~v, ψ) := b(q,~v),

where the only difference between B and B̃ is that they act on X and X̃, respectively. The mixed variational
formulation in (3.1)-(3.3) can then be rewritten as

Formulation 2. Find (~u, p,A) ∈W ×Q× X̃ such that

Ã(~u,A;~v, ψ) + C̃(~u,A; ~u,A;~v, ψ) + B̃(p;~v, ψ) = L̃(~v, ψ), (3.4)

B̃(q; ~u,A) = 0,

for all (~v, q, ψ) ∈W ×Q× X̃, where

Ã(~u,A;~v, ψ) := a1(~u,~v) + ã2(A,ψ),
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C̃(~w, φ; ~u,A;~v, ψ) := c0(~w; ~u,~v) + c̃1(ψ;~v,A) + c̃2(ψ; ~u, φ),

L̃(~v, ψ) := 〈~f,~v〉+ 〈−E0, ψ〉.

For our later analysis, we note some properties of the terms in this formulation.

Lemma 3.1. Let ψ, φ ∈ H1(Ω) and ~u ∈
(
H1(Ω)

)2
, then

|c̃2(φ; ~u, ψ)| ≤ C‖~u‖0,4 · ‖∇φ‖0 · ‖ψ‖0,4 ≤ C‖~u‖1 · ‖φ‖1 · ‖ψ‖1,

where C is a constant depending only on Ω.

We define the product space W × X̃ with the norm

‖(~v, ψ)‖21 := ‖~v‖21 + ‖ψ‖21,

and consider ellipticity of Ã on this product space.

Lemma 3.2. For any (~v, ϕ) ∈W × X̃, we have

Ã(~v, ϕ;~v, ϕ) ≥ c̃αmin{Re−1, Re−1
m }‖(~v, ϕ)‖21,

Ã(~w, ψ;~v, ϕ) ≤ max{2Re−1, Re−1
m }‖(~w, ψ)‖1‖(~v, ϕ)‖1,

where c̃α ≤ 1 is a constant depending only on Ω.

Proof. The proof follows that of Lemma 2.1, substituting Friedrichs’ Inequality [7],

‖∇ϕ‖20 ≥ ξ‖ϕ‖21, ∀ϕ ∈ X̃,

for the regularity argument used in the coercivity bound.

Remark 3.1. For ϕ ∈ X̃0, the standard Friedrichs’ Inequality also gives the coercivity result.

The form B̃ is again continuous:

|B̃(q;~v, ψ)| ≤ Cb‖q‖0‖~v‖1 ≤ C̃b‖q‖0‖(~v, ψ)‖1, (3.5)

for all (~v, q, ψ) ∈W ×Q× X̃, with a constant C̃b > 0, and inherits the inf-sup condition from b:

Lemma 3.3. There exists a constant Γ > 0 depending only on Ω such that

sup
(~0,0)6=(~v,ψ)∈W×X̃

B̃(q;~v, ψ)

‖(~v, ψ)‖1
≥ Γ‖q‖0, (3.6)

for all q ∈ Q.

The form C̃ no longer satisfies the desired zero property C̃(~w, φ;~v, ψ;~v, ψ) = 0. Also, c̃1 is not obviously
continuous in H1(Ω). Consequently, classical results, such as Theorem 2.1, cannot be directly applied to
establish existence and uniqueness of solutions to Formulation 2. Instead, we tackle this question indirectly,
leveraging the result given in Theorem 2.2 for Formulation 1.
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3.2 Relationship between solutions of the two formulations

Formulations 1 and 2 offer two weak formulations of the steady-state visco-resistive MHD problem, (2.1)-(2.4).
A natural question is whether the solutions of these two formulations are the same. Here, we provide conditions
under which this is the case. These results follow naturally from the fact that X ⊆ X̃.

Theorem 3.1. Assume that (~u, p,A) ∈ W × Q × X is a solution of Formulation 1, then (~u, p,A) is also a
solution of Formulation 2.

Proof. Let (~u, p,A) ∈W ×Q ×X be a solution of Formulation 1. According to (2.5), the following equality
holds ∫

Ω

4A · (∇A · ~v) dX = −
∫

Ω

(∇ · TM ) · ~v dX =

∫
Ω

TM : ∇~v dX, ∀~v ∈W.

Then, (2.6) is the same as (3.1). For any ψ ∈ X̃ ⊆ L2(Ω), there exists ϕ ∈ X such that 4ϕ = ψ (see [15,
Chapter I, Theorem 1.10]). In (2.7),∫

Ω

−~u · ∇A · 4ϕdX +

∫
Ω

Re−1
m 4A · 4ϕdX = 〈E0,4ϕ〉, ∀ϕ ∈ X,

taking 4ϕ = ψ implies (3.2). So (~u, p,A) is also a solution of Formulation 2.

Remark 3.2. When ψ ∈ X̃0, [15](Chapter I, Theorem 1.8) gives the existence of ϕ ∈ X0 such that ∆ϕ = ψ in
Ω.

Theorem 3.2. Assume that (~u, p,A) ∈ W × Q × X̃ is a solution of Formulation 2 and that this solution is
smooth enough such that A ∈ H2(Ω). Then, (~u, p,A) is also a solution of Formulation 1.

Proof. Let (~u, p,A) ∈ W ×Q × X̃ be a solution of Formulation 2. Since A ∈ H2(Ω) and ~v ∈
(
H1

0 (Ω)
)2

, the
following equality holds∫

Ω

TM : ∇~v dX = −
∫

Ω

(∇ · TM ) · ~v dX =

∫
Ω

4A · (∇A · ~v) dX, ∀~v ∈W.

Then, (3.1) is the same as (2.6). Furthermore,∫
Ω

[
~u · ∇A · ψ +Re−1

m ∇A · ∇ψ
]
dX = −

∫
Ω

E0 · ψ dX, ∀ψ ∈ X̃,

can be rewritten as ∫
Ω

∇A · ∇ψdX = −Rem
∫

Ω

(
E0 + ~u · ∇A

)
· ψ dX, ∀ψ ∈ X̃.

Since
∫

Ω
E0dX = 0 and

∫
Ω
~u ·∇AdX = −

∫
Ω

(∇·~u)AdX +
∫
∂Ω

(~u ·~n)AdX = 0, we have
∫

Ω
(E0 +~u ·∇A) dX = 0.

Using the results of Proposition 1.2 of [15], the weak form of finding w ∈ X̃ such that∫
Ω

∇w · ∇ψdX =

∫
Ω

−Rem
(
E0 + ~u · ∇A

)
· ψ dX, ∀ψ ∈ X̃, (3.7)

has a unique solution, and if w ∈ H2(Ω), then it is the strong solution of the Neumann problem,
−∆w = −Rem(E0 + ~u · ∇A), in Ω,

∂w
∂~n = 0, on ∂Ω,∫

Ω
w dX = 0.

(3.8)

Thus, from [15, Chapter I, Theorem 1.10], we have that (3.8) has a unique solution, w ∈ H2
τ (Ω), which is

given by w = A, implying that −~u · ∇A+ Re−1
m 4A = E0. For ϕ ∈ H2

τ (Ω), multiplying both sides by 4ϕ and
integrating yields (2.7). So (~u, p,A) is also a solution of Formulation 1.
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Remark 3.3. Using the Lax-Milgram Lemma, problem (3.7) considered over H1
0 (Ω), has one and only one

solution, w ∈ H1(Ω). By Theorem 1.8 of [15], if w ∈ H2(Ω), then it is the strong solution of the corresponding

Dirichlet problem. Thus, Theorem 3.2 also applies in the case when A ∈ X̃0.

Theorem 3.3. Assume that (2.17) holds. Then, Formulation 2 has at least one solution (~u, p,A) ∈W×Q×X̃,
which is the unique solution of Formulation 1. Furthermore, if all of the solutions of Formulation 2 satisfy
(~u, p,A) ∈ W × Q × X, then Formulation 1 and Formulation 2 have the same solution, and the solution is
unique.

Proof. Since (2.17) holds, Theorem 2.2 states that Formulation 1 has a unique solution (~u, p,A). According to
Theorem 3.1, (~u, p,A) is also a solution of Formulation 2.

If A ∈ X, Theorem 3.2 states that the solution (~u, p,A) of Formulation 2 is also a solution of Formulation
1. However, since (2.17) holds, Formulation 1 has only one solution. This means that Formulation 2 has only
one solution.

3.3 Finite-element discretization

In this subsection, we introduce a mixed finite-element approximation of the uncurled formulation and discuss
the convergence rates that are obtained under some standard smoothness assumptions.

Let Th be a quasi-uniform family of subdivisions that partition Ω into triangles or quadrilaterals, K, with
diameters bounded by h [15, Chapter I, Definitions A.2]. Based on these meshes, we construct a series of
finite-element spaces satisfying

Wh ⊂W,Xh ⊂ X̃,Qh ⊂ Q.

The discretization of Formulation 2 can be written as

Formulation 3. Find (~uh, ph, Ah) ∈Wh ×Qh ×Xh such that

Ã(~uh, Ah;~v, ψ) + C̃(~uh, Ah; ~uh, Ah;~v, ψ) + B̃(ph;~v, ψ) = L̃(~v, ψ),

B̃(q; ~uh, Ah) = 0,

for all (~v, q, ψ) ∈Wh ×Qh ×Xh.

In the following, we assume that Formulation 3 is well-posed. In this paper, we consider the 2D problem
and assume that the solution A ∈ Hs+1(Ω), s > 1, then we have

|∇A|∞ ≤ CA‖∇A‖s ≤ CA‖A‖s+1, s > 1. (3.9)

More details can be found in [1, Theorem IV4.12].

Theorem 3.4. Assume that (2.17) holds and that (~u,A) is the solution of Formulation 2 with ~u ∈
(
H1(Ω)

)2
and A ∈ Hs+1(Ω) for s > 1, and (~uh, Ah) is the solution of Formulation 3 satisfying ‖~uh‖1 + |∇Ah|∞ ≤ d,
where d is a constant. Then,

‖(~u− ~uh, A−Ah)‖1 ≤ C
(

inf
(~v,ψ)∈Wh×Xh

‖(~u− ~v,A− ψ)‖1 + inf
q∈Qh

‖p− q‖0
)
,

with a constant C > 0, depending on d, for sufficiently small values of Re and Rem.

Proof. Subtracting Formulation 3 from Equality (3.4), we have

Ã(~u−~uh, A−Ah;~v, ψ)+C̃(~u−~uh, A−Ah; ~u,A;~v, ψ)+C̃(~uh, Ah; ~u−~uh, A−Ah;~v, ψ)+B̃(p−ph;~v, ψ) = 0, (3.10)

for all (~v, ψ) ∈Wh ×Xh.
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From (3.10), for any ~v such that b(q,~v) = 0 for all q ∈ Qh, we have

Ã(~v − ~uh, ψ −Ah;~v − ~uh, ψ −Ah) + C̃(~v − ~uh, ψ −Ah; ~u,A;~v − ~uh, ψ −Ah)

+C̃(~uh, Ah;~v − ~uh, ψ −Ah;~v − ~uh, ψ −Ah)

= Ã(~v − ~u, ψ −A;~v − ~uh, ψ −Ah) + C̃(~v − ~u, ψ −A; ~u,A;~v − ~uh, ψ −Ah)

+C̃(~uh, Ah;~v − ~u, ψ −A;~v − ~uh, ψ −Ah)− B̃(p− ph;~v − ~uh, ψ −Ah), (3.11)

For such a ~v, we also have

B̃(p− ph;~v − ~uh, ψ −Ah) = B̃(p− q;~v − ~uh, ψ −Ah), (3.12)

for all q ∈ Qh.
From (3.11) and (3.12), we have the estimate

r.h.s of (3.11) ≤ ‖(~v − ~uh, ψ −Ah)‖1
[
max{2Re−1, Re−1

m }‖(~v − ~u, ψ −A)‖1
+C‖(~v − ~u, ψ −A)‖1

(
‖~u‖1 + CA‖A‖s+1

)
+C‖(~v − ~u, ψ −A)‖1

(
‖~uh‖1 + |∇Ah|∞

)
+ C̃b‖p− q‖0

]
≤ Cr‖(~v − ~uh, ψ −Ah)‖1

(
‖(~u− ~v,A− ψ)‖1 + ‖p− q‖0

)
, (3.13)

where Cr = max{2Re−1, Re−1
m }+2C ·max{‖~u‖1+CA‖A‖s+1,2, ‖~uh‖1+|∇Ah|∞}+C̃b, CA comes from (3.9), and

C̃b comes from (3.5). Since (~u,A) is the solution of the continuous problem and ~u ∈ H1(Ω) and A ∈ Hs+1(Ω),
then ‖~u‖1 + CA‖A‖s+1,2 can be bounded by some constant. By assumption, so can ‖~uh‖1 + |∇Ah|∞.

Similarly,

l.h.s of (3.11) ≥ c̃αmin{Re−1, Re−1
m } · ‖(~v − ~uh, ψ −Ah)‖21

−C‖(~v − ~uh, ψ −Ah)‖21 ·
(
‖~u‖1 + ‖A‖s+1,2

)
−C‖(~v − ~uh, ψ −Ah)‖21 ·

(
‖~uh‖1 + |∇Ah|∞

)
≥ Cl‖(~v − ~uh, ψ −Ah)‖21, (3.14)

where Cl = c̃αmin{Re−1, Re−1
m } − 2C ·max{‖~u‖1 + CA‖A‖s+1,2, ‖~uh‖1 + |∇Ah|∞} and c̃α comes from Lemma

3.2. Here, we assume that c̃αmin{Re−1, Re−1
m } is large enough such that Cl ≥

c̃α
2

min{Re−1, Re−1
m }.

According to (3.13) and (3.14), we have the following estimate

‖(~v − ~uh, ψ −Ah)‖1 ≤ C
(
‖(~u− ~v,A− ψ)‖1 + ‖p− q‖0

)
,

where C = Cr/Cl. Furthermore,

‖(~u− ~uh, A−Ah)‖1 ≤
√

2
(
‖(~u− ~v,A− ψ)‖1 + ‖(~v − ~uh, ψ −Ah)‖1

)
≤ C‖(~u− ~v,A− ψ)‖1 + C‖p− q‖0.

Now, let ~v ∈Wh be arbitrary and take ~w ∈Wh to be a solution of

b(q, ~w) = b(q, ~u− ~v), ∀q ∈ Qh.

Since b satisfies an inf-sup condition and a continuity condition, then there exists a solution to this problem
such that

‖~w‖1 ≤ C‖~u− ~v‖1,
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and such that b(q, ~w + ~v) = 0 for all q ∈ Qh. By the triangle inequality and using the result above, we then
have

‖(~u− ~uh, A−Ah)‖1 ≤ C‖(~u− (~w + ~v), A− ψ)‖1 + C‖p− q‖0
≤ C‖(~u− ~v,A− ψ)‖1 + C‖~w‖1 + C‖p− q‖0
≤ C‖(~u− ~v,A− ψ)‖1 + C‖p− q‖0.

To give a more precise definition of our finite-element approximations, define, on an element K,

Pk(K) := the space of polynomials of degree ≤ k,

and let C0(Ω̄) denote the standard space of continuous functions on Ω̄. The finite-element spaces are defined as

Wh := {~vh ∈ C0(Ω̄) : ~vh|K ∈ (Pk+1)2, ∀K ∈ Th},
Qh := {qh ∈ C0(Ω̄) : qh|K ∈ Pk, ∀K ∈ Th},
Xh := {ψh ∈ C0(Ω̄) : ψh|K ∈ Pk+1, ∀K ∈ Th},

where k ≥ 1. In what follows, we make standard approximation assumptions for generalized Taylor-Hood mixed
finite-elements on either triangular or quadrilateral elements in 2D [6, Proposition 8.2.2] as well as for the scalar
space Xh.

Assumption 1. Let k ≥ 1, s > 1. Assume that

inf
~vh∈Wh

‖~u− ~vh‖1 + inf
qh∈Qh

‖p− qh‖0 ≤ Chmin{s,k+1}[‖u‖s+1 + ‖p‖s
]
,

for all (~u, p) ∈ Hs+1(Ω)2 ×Hs(Ω) and that

inf
ψh∈Xh

‖A− ψh‖1 ≤ Chmin{s,k+1}‖A‖s+1,

for all A ∈ Hs+1(Ω).

Corollary 3.1. Let (~uh, Ah) ∈ Wh × Xh be the finite-element approximation in Formulation 3. Under the
assumptions of Theorem 3.4 and Assumption 1, we have the error bound

‖(~u− ~uh, A−Ah)‖1 ≤ Chmin{s,k+1}[‖~u‖s+1 + ‖p‖s + ‖A‖s+1

]
.

4 Newton’s Method

Since the weak formulation in (3.1)-(3.3) is nonlinear, we use Newton’s method to derive a linearized system. As
expected, the discrete form leads to a saddle-point problem [5, 8]. Here, we focus on the linearization steps and
show that the resulting systems are well-posed, and that the solutions converge to that of the original problem,
under certain assumptions.

4.1 Newton linearizations

Let S = W × X̃ with the norm ‖W‖21 = ‖~v‖21 + ‖ψ‖21 for all W = (~v, ψ) ∈ S. For convenience, we denote the
solutions of Formulations 2 and 3 as (U∗, p∗), (U∗h , p

∗
h), respectively.

For U = (~u,A),W = (~v, ψ) ∈ S, define the following operators:

L1(~u,A, p)[~v] := a1(~u,~v) + b(p,~v) + c0(~u; ~u,~v) + c̃1(A;~v,A)− 〈~f,~v〉,
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L2(~u,A, p)[ψ] := ã2(A,ψ) + c̃2(A; ~u, ψ) + 〈E0, ψ〉,
L3(~u,A, p)[q] := −b(q, ~u).

Problem (3.1)-(3.3) is equivalent to

L1(~u,A, p)[~v] = 0, ∀~v ∈W, (4.1)

L2(~u,A, p)[ψ] = 0, ∀ψ ∈ X̃, (4.2)

L3(~u,A, p)[q] = 0, ∀q ∈ Q.

Since the variational system contains nonlinearities in both (4.1) and (4.2), we linearize the above forms. Let
~uk, Ak, pk be the current approximations for ~u,A, p, respectively and δ~uk = ~uk+1 − ~uk, δA = Ak+1 − Ak, δp =
pk+1 − pk be the update to the approximations, then the linear systems that arise within Newton’s method are
denoted L1,~u L1,A L1,p

L2,~u L2,A 0
L3,~u 0 0

δ~uδA
δp

 = −

L1

L2

L3

 ,
where each of the system components is evaluated at ~uk, Ak, pk. That is

L1,~u[~v] · δ~u =
∂

∂~u
(L1(~uk, Ak, pk)[~v])[δ~u] = a1(δ~u,~v) + c0(~uk; δ~u,~v) + c0(δ~u; ~uk, ~v),

L1,A[~v] · δA =
∂

∂A
(L1(~uk, Ak, pk)[~v])[δA] = â(Ak;~v, δA),

L1,p[~v] · δp =
∂

∂p
(L1(~uk, Ak, pk)[~v])[δp] = b(δp,~v),

L2,~u[ψ] · δ~u =
∂

∂~u
(L2(~uk, Ak, pk)[ψ])[δ~u] = c̃2(Ak; δ~u, ψ),

L2,A[ψ] · δA =
∂

∂A
(L2(~uk, Ak, pk)[ψ])[δA] = ã2(δA, ψ) + c̃2(δA; ~uk, ψ),

L3,~u[q] · δ~u =
∂

∂~u
(L3(~uk, Ak, pk)[q])[δ~u] = b(q, δ~u),

where

â(Ak;~v,A) :=

〈(
∂Ak
∂y
· ∂A
∂y
− ∂Ak

∂x
· ∂A
∂x

,−
[
∂Ak
∂x
· ∂A
∂y

+
∂A

∂x
· ∂Ak
∂y

])
,
∂~v

∂x

〉
0

+

〈(
−
[
∂Ak
∂x
· ∂A
∂y

+
∂A

∂x
· ∂Ak
∂y

]
,
∂Ak
∂x
· ∂A
∂x
− ∂Ak

∂y
· ∂A
∂y

)
,
∂~v

∂y

〉
0

.

Define the following forms:

A(Uk;U,W ) := â(Ak;~v,A) + a1(~u,~v) + ã2(A,ψ) + c0(~uk; ~u,~v) + c0(~u; ~uk, ~v) + c̃2(Ak; ~u, ψ) + c̃2(A; ~uk, ψ),

B(W, q) := b(q,~v),

F (Uk, pk;W ) := L̃(~v, ψ)− Ã(~uk, Ak;~v, ψ)− C̃(~uk, Ak; ~uk, Ak;~v, ψ)− B̃(pk;~v, ψ),

G(Uk; q) := −B(Uk, q).

For Newton’s method applied in a linearize-then-discretize formulation, we consider the finite-element spaces
Sh = Wh×Xh ⊂ S and Qh ⊂ Q. Given an approximation, (Uh,k, ph,k) ∈ Sh×Qh, the discrete Newton update
is given by
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Formulation 4. Find (δUh, δph) ∈ Sh ×Qh such that

A(Uh,k; δUh,Wh) + B(Wh, δph) = F (Uh,k, ph,k;Wh), (4.3)

B(δUh, qh) = G(Uh,k; qh), (4.4)

for all (Wh, qh) ∈ Sh ×Qh. Let Uh,k+1 = Uh,k + δUh, ph,k+1 = ph,k + δph.

For simplicity, throughout the remainder of this section, we drop the subscript h. Since we consider
finite-element approximations ~uk and Ak, we denote Csup = sup

(x,y)∈Ω

|∇~uk|, Dsup = sup
(x,y)∈Ω

|∇Ak|, and Msup =

sup
(x,y)∈Ω

|~uk|, and note that they are all finite quantities.

Lemma 4.1. A(Uk;U,W ) and B(W, q) are continuous on Sh and Qh for the norms ‖ · ‖1 and ‖ · ‖0.

Proof. For the continuity of A(Uk;U,W ), observe that

|A(Uk;U,W )| ≤ |â(Ak;~v,A) + a1(~u,~v) + ã2(A,ψ) + c0(~uk; ~u,~v) + c0(~u; ~uk, ~v) + c̃2(Ak; ~u, ψ) + c̃2(A; ~uk, ψ)|.

Next, consider the above summands separately. First, note that

|â(Ak;~v,A)| ≤ 2Dsup‖∇A‖0‖∇~v‖0.

Recalling the definitions of the rest of these terms, we obtain the following estimates

|a1(~u,~v)| ≤ CR−1
e ‖~u‖1‖~v‖1,

|ã2(A,ψ)| ≤ Re−1
m ‖A‖1‖ψ‖1,

|c0(~uk; ~u,~v)| ≤ Msup

2
(‖|∇~u‖0‖~v‖0 + ‖~u‖0‖∇~v‖0) ,

|c0(~u; ~uk, ~v)| ≤ 1

2
(Csup‖~u‖0‖~v‖0 +Msup‖~u‖0‖∇~v‖0) ,

|c̃2(Ak; ~u, ψ)| ≤ Dsup‖~u‖0‖ψ‖0,
|c̃2(A; ~uk, ψ)| ≤ Msup‖∇A‖0‖ψ‖0.

An application of the Cauchy-Schwarz inequality shows that

|A(Uk;U,W )| ≤ C‖U‖1‖W‖1,

where C is a constant depending on Csup, Dsup, Msup, Re and Rem.
Continuity of B(W, q) holds by standard arguments.

Lemma 4.2. F (Uk, pk;W ) and G(Uk; q) are bounded linear functionals on Sh and Qh, respectively.

Proof. The components of F (Uk, pk;W ) can be bounded as in the proof of Lemma 4.1. Since, additionally,

|〈E0, ψ〉0| ≤ ‖E0‖0‖ψ‖0,
|〈~f,~v〉| ≤ ‖~f‖−1‖~v‖1,

and b(q,~v) is continuous, we have
|F (Uk, pk;W )| ≤ C‖W‖1,

where C is a constant only depending on the norms of Uk and pk.
By Hölder’s inequality, we have

|G(Uk; q)| = | −B(Uk, q)| ≤ ‖Uk‖1‖q‖0,

implying that G(Uk; q) is bounded.
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To illustrate the existence and uniqueness of solutions to the system given by (4.3) and (4.4), we now give
conditions under which A(Uk;U,W ) is a coercive and continuous bilinear form. When B(W, q) is continuous
and weakly coercive in the chosen finite-element spaces, existence and uniqueness of solutions to the discretized
Newton linearization is automatic.

Theorem 4.1. Let Re and Rem be small enough such that

min{α1Re
−1, α2Re

−1
m } − (Csup +Dsup +

Msup

2
) > 0,

where α1, α2 are constants defined below, and Csup, Dsup, and Msup are as given above. Then, there exists a
constant γ > 0 depending on Uk and Ω such that

A(Uk;W,W ) ≥ γ‖W‖21, ∀W ∈ Sh. (4.5)

Proof. By standard arguments,

〈∇~v +∇~vT ,∇~v〉0 ≥ α1‖~v‖21, ∀~v ∈Wh,

where α1 is a constant depending only on Ω (see [7], Corollary 11.2.22) and

〈∇ψ,∇ψ〉0 ≥ α2‖ψ‖21, ∀ψ ∈ Xh,

where α2 depends only on Ω (see Friedrichs’ inequality [7]).
The remaining terms in A(Uk;W,W ) can be bounded as in the proof of Lemma 4.1, giving

A(Uk;W,W ) ≥ α1Re
−1‖~v‖21 + α2Re

−1
m ‖ψ‖21 − 2Dsup‖∇ψ‖0‖∇~v‖0

−Msup‖~v‖0‖∇~v‖0 −
Csup

2
‖~v‖20 −

Msup

2
‖~v‖0‖∇~v‖0 −Dsup‖~v‖0‖ψ‖0 −Msup‖∇ψ‖0‖ψ‖0

≥ min{α1Re
−1, α2Re

−1
m }‖W‖21 −

2Csup + 6Dsup + 5Msup

4
‖W‖21

= (γ1 − γ2)‖W‖21,

where γ1 = min{α1Re
−1, α2Re

−1
m }, γ2 = (2Csup + 6Dsup + 5Msup)/4. Let γ = γ1 − γ2 > 0. Thus, A(Uk;W,W )

is coercive.

Remark 4.1. Since the standard Friedrichs’ inequality applies for ψ ∈ X̃0, the coercivity bound will also hold
for the appropriate finite-element space in the case of perfect conductor boundary conditions.

Assumption 2. There exists a constant Γs > 0 depending on Ω such that

inf
06=q∈Xh

sup
~0 6=~v∈Wh

b(q,~v)

‖~v‖1‖q‖0
≥ Γs > 0. (4.6)

Remark 4.2. The major difference between (3.6) and (4.6) is that the inf-sup condition must be satisfied on
the discrete space. There is, however, no restriction on the discrete space chosen to approximate A. Choosing
a pair of spaces for which the discrete inf-sup condition (4.6) holds is well-known to be a delicate matter, and
seemingly natural choices of velocity and pressure approximation do not always work [13]. For example, the
simplest globally continuous approximations, using linear or bilinear elements for both velocity and pressure on
triangles or quadrilaterals, respectively (the so-called P1 − P1 and Q1 − Q1 approximations), are unstable. In
general, care must be taken to make the velocity space rich enough compared to the pressure space, otherwise
the discrete solution will be “over-constrained”. Any stable element pair for the Navier-Stoke equations (e.g.,
P2 − P1 or Q2 −Q1 Taylor-Hood elements) can be used for ~u and p (see [6, 13, 14, 15]) to satisfy (4.6).

Theorem 4.2. Under the assumptions of Theorem 4.1 and Assumption 2, there is a unique solution to For-
mulation 4.

Proof. Following Theorem 1.2 of [15, Chapter III], Lemmas 4.1, 4.2, and Theorem 4.1 prove the result.
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4.2 Solvability of stabilized discretizations

In this subsection, we give a solvability condition for stabilized finite-element methods, since our analysis is also
suitable for this setting. From Formulation 4, the matrix equations that result from a stabilized finite-element
discretization have the following block form:

Mx =

 K Z B
Y D 0
BT 0 −T

x~uxA
xp

 =

f~ufA
fp

 , (4.7)

where x~u, xA, and xp are the discrete Newton corrections for ~u,A, and p, respectively, and f~u, fA, and fp are the
corresponding blocks of the residual, while T is the stabilization term.

Let

K̂ =

[
K Z
Y D

]
, B̂ =

[
B
0

]
, x~̂u =

[
x~u
xA

]
, f~̂u =

[
f~u
fA

]
.

Then, Equation (4.7) can be rewritten as

Mx =

[
K̂ B̂

B̂T −T

] [
x~̂u
xp

]
=

[
f~̂u
fp

]
, (4.8)

where K̂ ∈ Rn×n, B̂ ∈ Rn×m, f~̂u ∈ Rn, fp ∈ Rm and m ≤ n.

Lemma 4.3. Under the assumptions of Theorem 4.1, K̂ is positive definite.

Proof. This is a consequence of (4.5).

With homogeneous Dirichlet boundary conditions on ~v ∈ W, b(p,~v) = 0 for all ~v ∈ W implies that the
pressure, p, is a constant. When using a nodal finite-element basis, Span{~1} ⊂ Ker(B) is a natural consequence
of this. If the two spaces are equal, the resulting pressure is unique up to constants. When a discrete inf-
sup condition (as in (4.6)) does not hold, Ker(B) 6= Span{~1}. However, we have the following condition that
guarantees the solvability of the stabilized method, and gives insight into the construction of T .

Theorem 4.3. Under the assumptions of Theorem 4.1, let S = −(T + B̂T K̂−1B̂) be the Schur complement of
K̂ in M, with T symmetric and positive semidefinite. If Ker(T )∩Ker(B) ⊆ Span{~1}, then Ker(S) ⊆ Span{~1}.

Proof. Since K̂ is positive definite, K̂−1 is also positive definite. This implies that pT B̂T K̂−1B̂p ≥ 0 with
equality if and only if Bp = 0. On the other hand, because T is symmetric positive semidefinite, Ker(S) =
Ker(T ) ∩Ker(B).

This theorem tells us that (4.8) is well-posed if the stabilized pressure Schur Complement, S, is a positive
semi-definite matrix with the following stability condition:

Ker(S) ⊆ Span{~1}.

The important consequence of Theorem 4.3 is that any stabilization approach that is suitable for the Stokes
equations is also suitable in this context, since K̂ does not enter the intersecting kernels condition. In particular,
standard approaches for equal-order Q1 − Q1 approximations of velocity and pressure can be used, including
diffusion stabilization and pressure-projection [12, 13]. Thus, the analysis above can be applied to discretization
approaches similar to those in [10], which uses diffusion-type stabilization of the pressure equation (although we
note that [10] also makes use of additional stabilization for the case when the Reynolds numbers are not small,
which is not considered here). Based on the above discussions, we give the natural result.

Theorem 4.4. Under the assumptions of Theorem 4.3, the stabilized discrete Newton approximation of For-
mulation 3 yields a pressure that is unique up to constants.
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We note here that, for both the stable and stabilized cases, the assumptions of Theorem 4.1 could be relaxed
with the use of appropriate stabilized finite-elements for the convection-diffusion parts of the weak form, as
was done in [10]. The general conclusions of Theorems 4.2 and 4.4 would naturally still hold in this case,
notably that any standard mixed finite-element space for Stokes or Navier-Stokes can be used for the velocity
and pressures, and an independent choice can be made for the potential, A.

4.3 Convergence of Newton’s Method

Finally, under much more restrictive assumptions, we give a local convergence analysis of Newton’s method at
the discrete level. Define ‖U‖1,∞ := max{‖~u‖1,∞, ‖A‖1,∞} and D(U ; r) = {W : ‖W − U‖1 < r} and assume
the following.

Assumption 3. Assume the conditions of Corollary 3.1 hold; furthermore, assume the solution U∗h of Formu-
lation 3 satisfies

κ∗h = ‖U∗h‖1,∞ < γ1,

where γ1 = min{α1Re
−1, α2Re

−1
m } is from Theorem 4.1.

Assumption 4. Assume that there exists r1 > 0 such that for any initial iterate Uk ∈ D(U∗h ; r1) Newton’s
method converges to the unique solution of Formulation 3 and converges quadratically.

Recalling constants γ1, γ2 from the proof of Theorem 4.1,

γ2 = (2Csup + 6Dsup + 5Msup)/4 < 4 ·max{Csup, Dsup,Msup} < 4‖Uk‖1,∞,

gives
A(Uk;W,W ) > (γ1 − 4‖Uk‖1,∞)‖W‖21.

Thus, if ‖Uk‖1,∞ <
γ1

4
, then A(Uk;W,W ) is coercive.

Lemma 4.4. Assume that U ∈ Sh and ‖U‖1,∞ = κh. Then,

‖W‖1,∞ ≤ κh + C1h
−1r, ∀W ∈ D(U ; r) ∩ Sh,

where C1 is a constant depending on Ω.

Proof. According to the standard inverse inequality [7, Theorem IV.5.11],

‖U‖1,∞ ≤ C1h
−1‖U‖1, ∀U ∈ Sh,

where C1 is a constant. By the triangle inequality, for W ∈ D(U ; r) ∩ Sh

‖W‖1,∞ ≤ ‖U‖1,∞ + ‖W − U‖1,∞
≤ κh + C1h

−1‖W − U‖1
≤ κh + C1h

−1r.

Remark 4.3. Lemma 4.4 indicates that if we take Uk ∈ D(U ; r2), for r2 =
h(γ1/4−κ∗h)

C1
, then A(Uk;W,W ) is

always coercive.

If for the stabilized case, we have the same approximation result as in Theorem 3.1, then the next convergence
theorem is not only true for stable element approximations, but also for the stabilized case.
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Theorem 4.5. Under Assumptions of Theorem 4.2 or Theorem 4.4, and Assumptions 3 and 4, for any initial
U0 ∈ D(U∗h ; r∗), r∗ = min{r1, r2}, the sequence {Uk} produced by Newton’s method is both well-defined and
converges to the solution of Formulation 3.

Proof. Since U0 ∈ D(U∗h ; r∗), then according to Lemma 4.4, Formulation 4 has a unique solution for every Uk.
By the triangle inequality, we have

‖Uk − U∗‖1 ≤ ‖Uk − U∗h‖1 + ‖U∗h − U∗‖1. (4.9)

According to Assumptions 3 and 4, (4.9) goes to zero.

5 Numerical Results

To demonstrate both the finite-element convergence and performance of Newton’s method for this formulation,

we consider the Hartmann flow test problem on the domain
[
− 1

2 ,
1
2

]2
. For this problem, we have an analytical

solution, given by ~u = (u1, 0) and ~B = (B1, B2) with

u1(x, y) =
1

2 tanh(Ha/2)

√
Re

Rem

(
1− cosh(yHa)

cosh(Ha/2)

)
,

B1(x, y) =
sinh(yHa)

2 sinh(Ha/2)
− y,

B2(x, y) = 1,

p(x, y) = −x− 1

2
(B1(x, y))

2
,

where the Hartmann number is given by Ha =
√
ReRem. Increasing Ha leads to increased coupling between

the velocity and magnetic field components of the solution, which is seen in [2] to lead to difficulties with
some preconditioners for the discretized and linearized equations. In the numerical results that follow, we fix
Re = Rem = Ha. From this expression, we compute A(x, y) such that B1(x, y) = ∂A

∂y and B2(x, y) = −∂A∂x .

For this solution, we have non-homogeneous conductor boundary conditions on ~B, which we implement with
suitable non-homogeneous Dirichlet boundary conditions on A(x, y).

Figure 2 shows finite-element convergence for this problem with varying Ha and mesh-size h. We solve
the problem using a linearize-then-discretize formulation, starting from an initial guess that matches the non-
homogeneous Dirichlet boundary conditions, but is zero for all variables inside the domain. The discretization
is done in deal.II [4, 3], with each linearization solved using a direct solver (UMFPACK [11]), and the nonlinear
iteration stopped when the vector `2-norm, scaled by the mesh-size h, of the nonlinear residual or that of the
Newton update is less than 10−8. These results are presented in the setting of Corollary 3.1, using (general-
ized) Taylor-Hood elements for the velocity and pressure, and matching the degree of the velocity space for the
potential. The numerical results presented here agree quite well with Corollary 3.1, with O(h2) errors observed
for approximation of velocities and potential in Q2 and pressure in Q1 and O(h3) errors observed for approxi-
mation with velocities and potential in Q3 and pressure in Q2. For the range of Hartmann numbers considered
in these figures, no difficulties are seen with convergence either of the nonlinear iteration or the finite-element
approximations; convergence is seen within 4 to 7 Newton steps for all Hartmann numbers and all meshes. For
larger Hartmann numbers, we did observe convergence issues with Newton’s method.

6 Conclusions

In this paper, we present a theoretical analysis of the weak formulations of a steady-state visco-resistive vector-
potential MHD formulation. Under certain conditions, we prove the uniqueness and existence of the solutions.
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Figure 2: H1 approximation error,
(
‖~u− ~uh‖21 + ‖A−Ah‖21

)1/2
, for finite-element solution of Hartmann test

problem on uniform quadrilateral meshes with meshwidth h. At left, error for approximation with velocities
and potential in Q2 and pressure in Q1, at right, error for approximation with velocities and potential in Q3

and pressure in Q2.

Furthermore, we show that the solutions of the curled and uncurled formulations are the same, under some
conditions. From this point of view, using the uncurled formulation to approximate the MHD problem is
reasonable and meaningful. A mixed finite-element approximation of the uncurled formulation is discussed.
The convergence rates obtained under some standard smoothness assumptions have been analysed and show
that it is a suitable option. Thus, using Newton stepping and a stable Stokes finite-element method pair plus
any space for A yields a convergent solution scheme for MHD.
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