
Laplace Transforms

Definition
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Transform of a Derivative

L [Dnx] = snL [x]− sn−1x(0)− sn−2x′(0)− . . .− sx(n−2)(0)− x(n−1)(0)

Derivative of a Transform

L [tnf(t)] = (−1)n d
n

dsn
F (s) where F (s) = L [f(t)]
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= (−1)ntnf(t) where f(t) = L−1 [F (s)]

Shift Formula

L
[
eλtf(t)

]
= F (s− λ) where F (s) = L [f(t)]

L−1 [F (s)] = eλtL−1 [F (s+ λ)]

Step and Impulse Functions

L [ua(t)f(t)] = e−asL [f(t+ a)]

L−1
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]
= ua(t)f(t− a) where f(t) = L−1 [F (s)]

L [δ(t− a)f(t)] = e−asf(a)


