MATH 2260 (Ordinary Differential Equations I) — Fall 2014 Homework #6

Due Date: Tuesday, November 4, in class or in marking box #59 by 5:00 PM. You must show all work to receive credit.

1. (5 points each) Compute the following determinants:

	Г 1	9	1	ء ר		0	0	0	1	0
(a) det		2	T	3 0 7 5	(b) det	1	3	2	-3	3
	2	0	5			0	ົ້	0	ົ	0
	0	1	3			0	2	0	2	0
		5	Õ			1	5	3	5	4
		9	0	0]		1	-2	2	6	5
							-2		0	5

2. (10 points) We say that a matrix is upper triangular if all entries below the diagonal (entries a_{ii} for i = 1, ..., n) are zero, and that it is lower triangular if all entries above the diagonal are zero. Use expansion by minors to show that the determinant of a matrix that is either upper or lower triangular is the product of the diagonal entries. In other words, show that

$$\det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} = \det \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

- 3. (10 points) Check that $y_1(x) = x + 1$, $y_2(x) = 1 + x^2$, and $y_3(x) = x^2 x$ are solutions of the equation y''' = 0 for all x. Is $\{y_1, y_2, y_3\}$ a fundamental set?
- 4. (10 points) Check that $y_1(x) = 1$, $y_2(x) = e^{2x}$, and $y_3(x) = e^{-2x}$ are solutions of the equation y''' 4y' = 0 for all x. Is $\{y_1, y_2, y_3\}$ a fundamental set?
- 5. (5 points each) From Section 9.2
 (a) #1 (b) #3 (c) #5 (d) #7 (e) #31 (f) #33
- 6. (10 points) From Section 9.2, #23.
- 7. (10 points each)
 - (a) Find the general solution of y'' y' 2y = 4 x, by first finding the general solution of the related homogeneous equation, then guessing a particular solution of the form $y_p(x) = Ax + B$ and solving for A and B.
 - (b) Find the general solution of y''' y'' 2y' = 4, by first finding the general solution of the related homogeneous equation, then guessing a particular solution of the form $y_p(x) = Ax$ and solving for A.