MATH 2050

Fall 2015 Midterm 2

- 1. (15 points) Consider the point P(1,2,1) and the plane x y + 2z = 4.
 - (a) Find the distance from the point to the plane.
 - (b) Find the point in the plane that is closest to P.
- (15 points) For each set of vectors below, prove if they are linearly independent or dependent.

(a)
$$\vec{u}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $\vec{u}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 0\\0\\2 \end{bmatrix}$, and $\vec{u}_4 = \begin{bmatrix} 2\\3\\4 \end{bmatrix}$.
(b) $\vec{u}_1 = \begin{bmatrix} 2\\3\\1 \end{bmatrix}$, $\vec{u}_2 = \begin{bmatrix} 3\\2\\-1 \end{bmatrix}$, and $\vec{u}_3 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$.

3. (15 points) Compute the products of the matrices below, if possible. If not possible, explain why.

(a)
$$AB$$
 for $A = \begin{bmatrix} 1 & -1 & 3 \\ -2 & 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 1 \\ -3 & 2 \end{bmatrix}$.
(b) $B^{T}A$ for $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}$.
(c) A^{3} for $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

4. (40 points) Find all solutions, if any, to each of the given systems of equations. Express your answers in vector form.

(a)
$$\begin{array}{c} x+y=3\\ 2x+y=4\\ (b) & x-2y+2z&= 3\\ 2x-4y&= 2\\ (c) & 2x+2y-2z&= -4\\ -2x+y+3z&= -5\\ x&-z&= 1\\ (d) & x+2y+2z&= 2\\ 3x+2y&= 3\\ \end{array}$$

- 5. (15 points) Let \vec{u} and \vec{v} be nonzero vectors in \mathbb{R}^n .
 - (a) Give the formula for $\operatorname{proj}_{\vec{v}}\vec{u}$.
 - (b) Show that \vec{v} is orthogonal to $\vec{u} \text{proj}_{\vec{v}}\vec{u}$.